[go: up one dir, main page]

JPS6259227A - Production of ethanol - Google Patents

Production of ethanol

Info

Publication number
JPS6259227A
JPS6259227A JP60197789A JP19778985A JPS6259227A JP S6259227 A JPS6259227 A JP S6259227A JP 60197789 A JP60197789 A JP 60197789A JP 19778985 A JP19778985 A JP 19778985A JP S6259227 A JPS6259227 A JP S6259227A
Authority
JP
Japan
Prior art keywords
catalyst
rhodium
carrier
hydrogen
ethanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60197789A
Other languages
Japanese (ja)
Other versions
JPS63412B2 (en
Inventor
Satoshi Arimitsu
有光 聰
Katsumi Yanagi
柳 勝美
Hitomi Hosono
細野 仁美
Toshihiro Saito
寿広 斉藤
Kazuaki Tanaka
和明 田中
Kazuo Takada
和夫 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60197789A priority Critical patent/JPS6259227A/en
Priority to GB08602390A priority patent/GB2171925B/en
Priority to US06/941,072 priority patent/US4758600A/en
Publication of JPS6259227A publication Critical patent/JPS6259227A/en
Publication of JPS63412B2 publication Critical patent/JPS63412B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To selectively obtain the aimed compound, by using a catalyst of a specific rhodium based catalyst and a copper catalyst containing zinc and/or chromium in combination in producing ethanol from carbon monoxide and hydrogen. CONSTITUTION:Carbon monoxide is reacted with hydrogen in the presence of any of a catalyst containing rhodium supported on a carrier, (B) a catalyst containing rhodium and lithium or manganese supported on a carrier or (C) a catalyst containing rhodium and manganese, iridium and/or lithium supported on a carrier and (D) a catalyst consisting of copper, zinc and/or chromium to selectively give ethanol. The weight ratio of the rhodium to the carrier in the catalysts (A)-(C) is preferably 0.001-0.3 and the atomic ratio of the cocatalyst to the rhodium in the catalysts (B) and (C) is preferably respectively 0.01-5. The atomic ratios of the zinc and chromium to the copper in the catalyst (D) are preferably 1-10 respectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はエタノールの製造方法に関する。更に詳しくは
、(イ)ロジウムを担体担持してなる触媒、(ロ)ロジ
ウム及びリチウム又はマンガンを担体担持してなる触媒
、(ハ)ロジウム、マンガン、イリジウム及び/又はリ
チウムを担体担持してなる触媒のいずれかと(ニ)銅、
亜鉛及び/又はクロムからなる触媒との存在下、一酸化
炭素と水素とを反応させることからなる、エタノールの
製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing ethanol. More specifically, (a) a catalyst comprising rhodium supported on a carrier, (b) a catalyst comprising rhodium and lithium or manganese supported on a support, and (c) a catalyst comprising rhodium, manganese, iridium and/or lithium supported on a support. Any of the catalysts and (d) copper,
The present invention relates to a process for producing ethanol, which comprises reacting carbon monoxide and hydrogen in the presence of a catalyst consisting of zinc and/or chromium.

〔従来の技術及び発明が解決しようとする問題点〕エタ
ノール、アセトアルデヒド等の炭素数2の含酸素化合物
は従来ナフサを原料とする石油化学的方法によって製造
されてきた。しかし、近年の原油の高騰により、製造価
格の著しい上昇が起り原料転換の必要性が生じている。
[Prior art and problems to be solved by the invention] Oxygen-containing compounds having two carbon atoms, such as ethanol and acetaldehyde, have conventionally been produced by a petrochemical method using naphtha as a raw material. However, due to the recent rise in the price of crude oil, the manufacturing price has increased significantly, making it necessary to switch raw materials.

一方、豊富でばつ安価に入手可能な一酸化炭素及び水素
の混合ガスより炭素数2の含酸素化合物を製造する方法
が種々検討されている。則ち、一酸化炭素と水素の混合
ガスを、ロジウムを主成分とし、マンガン、チタン、ジ
ルコニウム、タングステンなどの金属もしくは金属酸化
物より成る触媒の存在下に反応させて、炭素数2の含酸
素化合物を選択的に製造する方法は公知である。
On the other hand, various methods for producing oxygen-containing compounds having 2 carbon atoms from a mixed gas of carbon monoxide and hydrogen, which are abundant and available at low cost, have been studied. In other words, a mixed gas of carbon monoxide and hydrogen is reacted with rhodium as the main component in the presence of a catalyst made of a metal or metal oxide such as manganese, titanium, zirconium, or tungsten to form an oxygen-containing gas containing 2 carbon atoms. Methods for selectively producing compounds are known.

しかしながら、かかる方法も副生ずる炭化水素、例えば
メタン等の量が多く、含酸素化合物の選択率が低いもの
や含酸素化合物の選択率が高い場合には主生成物の選択
性が低いものであった。更に高価な貴金属であるロジウ
ムあたりの目的化合物の生成量がまだまだ少く、経済的
にもプロセス的にも完成された技術が提供されていない
のが実情である。
However, this method also produces a large amount of by-product hydrocarbons such as methane, and when the selectivity of oxygen-containing compounds is low or the selectivity of oxygen-containing compounds is high, the selectivity of the main product is low. Ta. The reality is that the amount of the target compound produced based on rhodium, which is an expensive noble metal, is still small, and a technology that has been completed economically and process-wise has not been provided.

更に炭素数2の含酸素化合物を高収量で高選択的に製造
することを目的としたロジウムにマンガンを添加した触
媒及びその改良法(特開昭52−14706.56−8
333.56−8334号)が提案されているが、いず
れの方法もアセトアルデヒド、酢酸を主生成物とするも
のであり、エタノールの収率、選択性などは著しく低い
欠点を有している。
Furthermore, a catalyst in which manganese is added to rhodium and an improved method thereof (Japanese Patent Application Laid-open No. 14706.56-8
No. 333.56-8334) has been proposed, but both methods use acetaldehyde and acetic acid as main products, and have the disadvantage that the yield and selectivity of ethanol are extremely low.

以上述べた如く、一酸化炭素及び水素を含有する気体よ
りエタノールを主成分とする含酸素化合物を効率よく経
済性よく製造する方法は提供されていない。
As described above, no method has been provided for efficiently and economically producing an oxygen-containing compound containing ethanol as a main component from a gas containing carbon monoxide and hydrogen.

本発明者らはエタノールを選択的に製造する方法につい
て鋭意検討を重ねた結果、前述した如くアセトアルデヒ
ドや酢酸の製造用触媒として知られていたロジウム系触
媒と亜鉛及び/又はクロムを含有する銅触媒とを組合せ
ることによりエタノールを高選択的に製造できることを
見出し本発明を完成した。
As a result of intensive studies on a method for selectively producing ethanol, the present inventors found that, as mentioned above, a rhodium-based catalyst and a copper catalyst containing zinc and/or chromium, which are known as catalysts for producing acetaldehyde and acetic acid, were used. The present invention was completed by discovering that ethanol can be produced with high selectivity by combining the following.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前記した如く (イ)〜(ハ)のいずれかの触
媒と、(ニ)の触媒との存在下、一酸化炭素及び水素を
反応させてエタノールを製造するものである。
As described above, the present invention produces ethanol by reacting carbon monoxide and hydrogen in the presence of any one of the catalysts (a) to (c) and the catalyst (d).

以下、本発明を順次詳述する。The present invention will be explained in detail below.

本発明において用いられる触媒は前述の如く、(イ)〜
(ハ)のいずれかの触媒と、(ニ)の触媒とからなる三
者の触媒を主たる構成成分とする両者の触媒は各々別途
に調製したものを使用することが必要であり、使用に際
しては混合あるいは(イ)〜(ハ)の触媒をに層に(ニ
)の触媒を下層に充填して使用することができる。触媒
の調製にあたっては通常、貴金属触媒において行われる
如く担体上に上記の成分を分散させた触媒を用いる。
As mentioned above, the catalyst used in the present invention is (a) to
It is necessary to use separately prepared catalysts for both catalysts whose main constituents are either one of the catalysts in (c) and the catalyst in (d). It can be used as a mixture or by filling the catalysts (a) to (c) in the upper layer and the catalyst (d) in the lower layer. In preparing the catalyst, a catalyst is usually used in which the above-mentioned components are dispersed on a carrier, as is done for noble metal catalysts.

本発明において用いられる触媒は貴金属常法を用いて調
製することができる。例えば含浸法、浸漬法、イオン交
換法、共沈法、混練法等によって調製できる。
The catalyst used in the present invention can be prepared using conventional noble metal methods. For example, it can be prepared by an impregnation method, a dipping method, an ion exchange method, a coprecipitation method, a kneading method, etc.

前記触媒を構成する諸成分の原料化合物とし、では、酸
化物、塩化物、硝酸塩、炭酸塩等の無機塩、酢酸塩、シ
ュウ酸塩、アセチルアセトナート塩、ジメチルグリオキ
シム塩、エチレンジアミン酢酸塩等有機塩又はキレート
化物、カルボニル化合物、シクロペンタジェニル化合物
、アンミン錯体、金属アルコキシド化合物、アルキル金
属化合物等通常貴金属触媒を調製する際に用いられる化
合物を使用することができる。
The raw material compounds for the various components constituting the catalyst include inorganic salts such as oxides, chlorides, nitrates, carbonates, acetates, oxalates, acetylacetonate salts, dimethylglyoxime salts, ethylenediamine acetate, etc. Compounds commonly used in preparing noble metal catalysts can be used, such as organic salts or chelates, carbonyl compounds, cyclopentadienyl compounds, ammine complexes, metal alkoxide compounds, and alkyl metal compounds.

以下に含浸法に例をとり触媒の調製法を説明する。The method for preparing the catalyst will be explained below by taking the impregnation method as an example.

上記の金属化合物を水、メタノール、エタノール、テト
ラヒドロフラン、ジオキサン、ヘキサンベンゼン、トル
エン等の溶媒に溶解し、その溶液に担体を加え浸漬し、
溶媒を留去、乾燥し、必要とあれば加熱等の処理を行い
、担体に金属化合物を担持する。
The above metal compound is dissolved in a solvent such as water, methanol, ethanol, tetrahydrofuran, dioxane, hexanebenzene, toluene, etc., and a carrier is added and immersed in the solution.
The solvent is distilled off and dried, and if necessary, heating or other treatment is performed to support the metal compound on the carrier.

担持の手法としては、原料化合物を同一溶媒に同時に溶
解した混合溶液を作り、担体に同時に担持する方法、各
成分を遂次的に担体に担持する方法、あるいは各成分を
必要に応じて還元、熱処理等の処理を行いながら遂次的
、段階的に担持する方法などの各手法を用いることがで
きる。尚、前記した如く三者の触媒はそれぞれ別個にこ
れらの手法を用いて調製する。
Supporting methods include preparing a mixed solution in which the raw material compounds are simultaneously dissolved in the same solvent and supporting them on the carrier at the same time, supporting each component on the carrier sequentially, or reducing each component as necessary. Various methods can be used, such as a method of supporting the material sequentially or stepwise while performing treatments such as heat treatment. Incidentally, as described above, each of the three catalysts is prepared separately using these methods.

その他の調製法、例えば担体のイオン交換能を利用した
イオン交換によって金属を担持する方法共沈法によって
触媒を調製する方法なども本発明方法に用いられる触媒
の調製手法として採用できる。
Other preparation methods, such as a method in which a metal is supported by ion exchange utilizing the ion exchange ability of a carrier and a method in which a catalyst is prepared by a coprecipitation method, can also be employed as a method for preparing the catalyst used in the method of the present invention.

上述の手法によって調製された触媒は通常還元処理を行
うことにより活性化し次いで反応に供せられる。還元を
行うには水素を含有する気体により昇温下で行うことが
簡便であって好ましい。この際還元温度として、ロジウ
ムの還元される温度即ち100℃程度の温度条件下でも
還元処理ができるのであるが、好ましくは200℃〜6
00°Cの温度下で還元処理を行う。この際触媒の各成
分の分散を十分に行わせる目的で低温より徐々にあるい
は段階的に昇温しながら水素還元を行ってもよい。また
還元剤を用いて、化学的に還元を行うこともできる。た
とえば、一酸化炭素と水を用いたり、ヒドラジン、水素
化ホウ素化合物、水素化アルミニウム化合物などの還元
剤を用いた還元処理を行ってもよい。
The catalyst prepared by the above method is usually activated by reduction treatment and then subjected to reaction. In order to carry out the reduction, it is convenient and preferable to carry out the reduction using a hydrogen-containing gas at an elevated temperature. In this case, the reduction temperature can be the temperature at which rhodium is reduced, that is, about 100°C, but preferably 200°C to 6°C.
The reduction treatment is carried out at a temperature of 00°C. At this time, hydrogen reduction may be performed while the temperature is gradually or stepwise raised from a low temperature in order to sufficiently disperse each component of the catalyst. Further, reduction can also be carried out chemically using a reducing agent. For example, reduction treatment may be performed using carbon monoxide and water, or using a reducing agent such as hydrazine, a boron hydride compound, or an aluminum hydride compound.

本発明において用いられる担体は好ましくは比表面積1
0〜1000rrr/g、細孔径10久以上を有するも
のであれば通常担体として知られているものを使用する
ことができる。具体的な担体としては、シリカ、珪酸塩
、シリカゲル、モレキュラーシーブ、ケイソウ十等のシ
リカ系担体、アルミナ、活性炭などがあげられるがシリ
カ系の担体が好ましい。(イ)〜(ニ)触媒いずれの場
合も触媒中の各成分の濃度と組成比は広い範囲でかえる
ことかできる。
The carrier used in the present invention preferably has a specific surface area of 1
Any carrier commonly known as a carrier can be used as long as it has a pore size of 0 to 1000 rrr/g and a pore diameter of 10 mm or more. Specific carriers include silica-based carriers such as silica, silicates, silica gel, molecular sieves, and diatomaceous materials, alumina, and activated carbon, with silica-based carriers being preferred. In any of the catalysts (a) to (d), the concentration and composition ratio of each component in the catalyst can be varied within a wide range.

ロジウムの担体に対する比率は、担体の比表面積を考慮
して重l比で0.0001〜0.5、好ましくは0.0
01〜0.3である。また、(イ)〜(ハ)触媒におい
て、助触媒金属の比率はロジウムに対して原子比で各々
0.001〜10、好ましくは0.01〜5の範囲であ
る。更に(ニ)の触媒において、亜鉛及びクロムの比率
は銅に対し原子比で各々0.1〜50、好ましくは1〜
10の範囲である。(ニ)触媒は共沈法や担体担持法に
より調製される。
The ratio of rhodium to the carrier is 0.0001 to 0.5, preferably 0.0 in terms of weight per liter, considering the specific surface area of the carrier.
01 to 0.3. Further, in the catalysts (a) to (c), the ratio of the cocatalyst metal to rhodium is in the range of 0.001 to 10, preferably 0.01 to 5, respectively, in terms of atomic ratio. Furthermore, in the catalyst (d), the ratio of zinc and chromium to copper is each in an atomic ratio of 0.1 to 50, preferably 1 to 50.
The range is 10. (d) The catalyst is prepared by a coprecipitation method or a support method.

本発明は、たとえば固定床の流通式反応装置に適用する
ことができる。すなわち反応器内に触媒を充填し、原料
ガスを送入して反応を行わせる。
The present invention can be applied to, for example, a fixed bed flow reactor. That is, a reactor is filled with a catalyst, and a raw material gas is introduced to cause a reaction.

生成物は分離し、未反応の原料ガスは精製したのちに循
環再使用することも可能である。
It is also possible to separate the product and purify the unreacted raw material gas, which can then be recycled and reused.

また、本発明は流動床式の反応装置にも適用できる。す
なわち原料ガスと流動化した触媒を同伴させて反応を行
わせることもできる。更には本発明は溶媒中に触媒を分
散させ、原料ガスを送入し反応を行うことからなる液相
不均一反応にも適用できる。
Further, the present invention can also be applied to a fluidized bed type reactor. That is, the reaction can also be carried out by bringing the raw material gas and the fluidized catalyst together. Furthermore, the present invention can also be applied to a liquid phase heterogeneous reaction in which a catalyst is dispersed in a solvent and a raw material gas is introduced to carry out the reaction.

本発明を実施するに際して採用される条件は、目的化合
物を高選択率・高収率で製造できるのであるが、空時収
率を高める目的で加圧下において反応を行うことができ
る。
The conditions employed in carrying out the present invention are such that the target compound can be produced with high selectivity and high yield, and the reaction can be carried out under pressure in order to increase the space-time yield.

従って反応圧力としてはQkg/cdゲージ〜350k
g / ctAゲージ、好ましくはOkg / ctゲ
ージ〜250kg/cJゲージの圧力下で行う。反応温
度は150℃〜450℃、好ましくは180℃〜350
℃である。反応温度が高い場合には、炭化水素の副生量
が増加するため原料の送入速度を早くする必要がある。
Therefore, the reaction pressure is Qkg/cd gauge ~ 350k
It is carried out under a pressure of g/ctA gauge, preferably Okg/ct gauge to 250 kg/cJ gauge. The reaction temperature is 150°C to 450°C, preferably 180°C to 350°C.
It is ℃. When the reaction temperature is high, the amount of hydrocarbon by-product increases, so it is necessary to increase the feed rate of the raw material.

従って、空間速度(原料ガス送入量×触媒容積)は、標
準状態(0℃、1気圧)換算で101、−1〜10bh
−’の範囲より、反応圧力と反応温度、原料ガス組成と
の関係より適宜選択される。
Therefore, the space velocity (raw material gas feed rate x catalyst volume) is 101, -1 to 10 bh in terms of standard conditions (0°C, 1 atm).
-' is appropriately selected based on the relationship between the reaction pressure, reaction temperature, and raw material gas composition.

当該原料ガスの組成は、主として一酸化炭素と水素を含
有しているガスであって、窒素、アルゴン、ヘリウム、
メタン等の不活性ガスあるいは反応条件下において気体
の状態であれば炭化水素や炭酸ガスや水を含有していて
もよい。一酸化炭素と水素の混合比はCO/H,比で0
.1〜10、好ましくは0.2〜5(容積比)である。
The composition of the raw material gas is a gas mainly containing carbon monoxide and hydrogen, and nitrogen, argon, helium,
It may contain an inert gas such as methane, or a hydrocarbon, carbon dioxide gas, or water as long as it is in a gaseous state under the reaction conditions. The mixing ratio of carbon monoxide and hydrogen is CO/H, a ratio of 0
.. 1 to 10, preferably 0.2 to 5 (volume ratio).

以下実施例によって本発明を更に詳細に説明する。The present invention will be explained in more detail below with reference to Examples.

(1,82mmo I)を溶解させたエタノール溶1−
に、予め300℃で2時間高真空下で焼成脱気したシリ
カゲル(Davison #57. Davison社
製)3.7g (10m1)を加え浸漬した。次いでロ
ータリーエバポレーターを用いてエタノールを留去し乾
固した後、更に真空乾燥した。その後、パイレックス反
応管に充填し、常圧で水素及び窒素の混合ガス(Hz:
60m1/分、Nz:60m1/分の通気下、400℃
で4時間活性化処理を行い、Rh / S i Oz触
媒を調製した。次いで、硝酸銅(Cu (NOx>z・
3HwO)1.895g、硝酸亜鉛(Zn (NOz)
z・6Hio)1.085gを溶解させた水溶液中に焼
成脱気したシリカゲル3.7g(10ml)を加え浸漬
した。上記と同様の調製法及び活性化処理を用いてCu
−Zn/SiO□触媒を調製した。このようにして得ら
れたRh/S i Oを触媒(触媒8 m l ) 、
  Cu −Z n /5IO2触媒(2ml)を高圧
流通式反応装置の反応管(チタン製)に、上層、下層に
なる様に充填し、常圧水素ガスの流通下(200m 1
7分)、300℃で2時間程度再還元処理した後、一酸
化定性及び定量分析し、生成物の分布を求めた。結ム(
Cr (Not)・9HgO)1.460gを溶解させ
た水溶液を300℃焼成脱気したシリカゲル10m1に
各々浸漬した後、実施例1と同様の処理によりRh  
L l/S l0il Cu  Cr/S l0il2 触媒を調製した。Rh  Li/Si0g(触媒2m1
) 、Cu−Cr/Sin、触媒(0,5m1)を高圧
流通式反応装置の反応管に上層、下層に充填し、実施例
1と同様の方法で活性試験を行った。
Ethanol solution 1- in which (1,82mmo I) was dissolved
3.7 g (10 ml) of silica gel (Davison #57, manufactured by Davison), which had been previously calcined and degassed under high vacuum at 300° C. for 2 hours, was added and immersed. Next, ethanol was distilled off using a rotary evaporator to dryness, followed by further vacuum drying. After that, the Pyrex reaction tube is filled with a mixed gas of hydrogen and nitrogen (Hz:
60m1/min, Nz: 400℃ under ventilation of 60m1/min
Activation treatment was performed for 4 hours to prepare a Rh/SiOz catalyst. Next, copper nitrate (Cu (NOx>z・
3HwO) 1.895g, zinc nitrate (Zn (NOz)
3.7 g (10 ml) of calcined and degassed silica gel was added and immersed in an aqueous solution in which 1.085 g of Z.z.6Hio) was dissolved. Cu using the same preparation method and activation treatment as above.
-Zn/SiO□ catalyst was prepared. The Rh/S i O thus obtained was used as a catalyst (catalyst 8 ml),
Cu -Z n /5IO2 catalyst (2 ml) was packed into a reaction tube (made of titanium) of a high-pressure flow reactor so as to form an upper layer and a lower layer, and the mixture was heated under normal pressure hydrogen gas flow (200 m 1
After re-reduction treatment at 300° C. for about 2 hours, qualitative and quantitative monoxide analysis was performed to determine the distribution of the product. Yumu (
Rh
A L l/S l0il Cu Cr/S l0il2 catalyst was prepared. Rh Li/Si0g (catalyst 2ml
), Cu-Cr/Sin, and a catalyst (0.5 ml) were filled in the upper and lower layers of a reaction tube of a high-pressure flow reactor, and an activity test was conducted in the same manner as in Example 1.

結果を表1に示した。The results are shown in Table 1.

実施例3 塩化ロジウム0.480g、塩化マンガン(MnC1,
−4)(to)0.018gを溶解させた様の処理によ
り、Rh  Mn/S 10i、Cu−Z n / S
 i O!を調製した。Rh−Mn/5108触媒(2
ml)とCu  Z n / S i Oを触媒(2m
l)を高圧流通式反応装置の反応管に上層、下層に充填
し、実施例1と同様の方法で活性試験を行った。結果を
表1に示した。
Example 3 Rhodium chloride 0.480g, manganese chloride (MnC1,
-4) Rh Mn/S 10i, Cu-Z n/S by dissolving 0.018 g (to)
i O! was prepared. Rh-Mn/5108 catalyst (2
ml) and Cu Z n /S i O as a catalyst (2 m
1) was filled into the upper and lower layers of a reaction tube of a high-pressure flow reactor, and an activity test was conducted in the same manner as in Example 1. The results are shown in Table 1.

実施例4 に浸漬した後、実施例1と同様の処理により、Rh−M
n−L i/S ioz触媒を調製した。
After immersing in Example 4, Rh-M was treated in the same manner as in Example 1.
An n-Li/S ioz catalyst was prepared.

Rh−Mn−Li/SiO□触媒(2ml)、実施例2
で調製したCCu−Cr−3in触媒(2ml)を高圧
流通式反応装置の反応管に−L層、下層に充填し、実施
例1と同様の方法で活性試験を行った。結果を表1に示
した。
Rh-Mn-Li/SiO□ catalyst (2 ml), Example 2
The CCu-Cr-3in catalyst (2 ml) prepared in Example 1 was filled in the -L layer and the lower layer in a reaction tube of a high-pressure flow reactor, and an activity test was conducted in the same manner as in Example 1. The results are shown in Table 1.

実施例5 塩化ロジウム0.480g、塩化マンガン0.011し
た。他方、硝酸銅1.895g、硝酸亜鉛2.333g
硝酸クロム0.730gを溶解させた水溶液をシリカ1
0m1に浸漬した。実施例1と同様の処理により、Rh
−Mn−1r−Lt/5iOz、Cu−Zn−Cr/S
i0g触媒を調製した。Rh−Mn−1r−Li/Si
0g触媒(2m l )とCu−Zn−Cr/S i 
O,触媒(2ml)を高圧流通式反応装置の反応管に上
層、下層に充填し実施例1と同様の方法で活性試験を行
った。結果を表1に示した。
Example 5 0.480 g of rhodium chloride and 0.011 g of manganese chloride were used. On the other hand, copper nitrate 1.895g, zinc nitrate 2.333g
An aqueous solution in which 0.730 g of chromium nitrate was dissolved was added to silica 1
It was immersed in 0ml. By the same treatment as in Example 1, Rh
-Mn-1r-Lt/5iOz, Cu-Zn-Cr/S
An i0g catalyst was prepared. Rh-Mn-1r-Li/Si
0g catalyst (2ml) and Cu-Zn-Cr/Si
The reaction tube of a high-pressure flow reactor was filled with O and the catalyst (2 ml) in the upper and lower layers, and an activity test was conducted in the same manner as in Example 1. The results are shown in Table 1.

比較例1 実施例1で調製したRh/Si0g触媒(10m+)を
高圧流通式反応装置の反応管に充填し、実施例1と同様
の方法で活性試験を行った。結果を表1に示した。
Comparative Example 1 The Rh/Si0g catalyst (10 m+) prepared in Example 1 was packed into a reaction tube of a high-pressure flow reactor, and an activity test was conducted in the same manner as in Example 1. The results are shown in Table 1.

填し、実施例1と同様の方法で活性試験を行った結果を
表1に示した。
Table 1 shows the results of an activity test conducted in the same manner as in Example 1.

触媒(Q ’m I )を高圧流通式反応装置の反応管
に充填し、実施例1と同様の方法で活性試験を行った。
A reaction tube of a high-pressure flow reactor was filled with the catalyst (Q'm I), and an activity test was conducted in the same manner as in Example 1.

結果を゛表1に示した。The results are shown in Table 1.

剛製 謀 H汁 < 寸 置 = ヨ −Made of rigid conspiracy H juice < Dimensions Place = Yo -

Claims (3)

【特許請求の範囲】[Claims] (1)ロジウムを担体担持してなる触媒と、銅、亜鉛及
び/又はクロムからなる触媒との存在下、一酸化炭素と
水素とを反応させることからなるエタノールの製造法。
(1) A method for producing ethanol, which comprises reacting carbon monoxide and hydrogen in the presence of a catalyst comprising rhodium supported on a carrier and a catalyst comprising copper, zinc and/or chromium.
(2)ロジウム及びリチウム又はマンガンを担体担持し
てなる触媒と、銅、亜鉛及び/又はクロムからなる触媒
との存在下、一酸化炭素と水素とを反応させることから
なる、エタノールの製造法。
(2) A method for producing ethanol, which comprises reacting carbon monoxide and hydrogen in the presence of a catalyst comprising rhodium and lithium or manganese supported on a carrier and a catalyst comprising copper, zinc and/or chromium.
(3)ロジウム、マンガン、イリジウム及び/又はリチ
ウムを担体担持してなる触媒と、銅、亜鉛及び/又はク
ロムからなる触媒の存在下、一酸化炭素と水素とを反応
させることからなる、エタノールの製造法。
(3) Ethanol is produced by reacting carbon monoxide and hydrogen in the presence of a catalyst comprising rhodium, manganese, iridium and/or lithium supported on a carrier, and a catalyst comprising copper, zinc and/or chromium. Manufacturing method.
JP60197789A 1985-02-02 1985-09-09 Production of ethanol Granted JPS6259227A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60197789A JPS6259227A (en) 1985-09-09 1985-09-09 Production of ethanol
GB08602390A GB2171925B (en) 1985-02-02 1986-01-31 Process for the manufacture of ethanol based, oxygen-containing carbon compounds
US06/941,072 US4758600A (en) 1985-02-02 1986-12-12 Process for the manufacture of ethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60197789A JPS6259227A (en) 1985-09-09 1985-09-09 Production of ethanol

Publications (2)

Publication Number Publication Date
JPS6259227A true JPS6259227A (en) 1987-03-14
JPS63412B2 JPS63412B2 (en) 1988-01-07

Family

ID=16380377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60197789A Granted JPS6259227A (en) 1985-02-02 1985-09-09 Production of ethanol

Country Status (1)

Country Link
JP (1) JPS6259227A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012001441A (en) * 2010-06-14 2012-01-05 Sekisui Chem Co Ltd Method for producing ethanol and system for producing ethanol
CN103420791A (en) * 2012-05-16 2013-12-04 中国石油化工股份有限公司 Method for ethanol preparation through synthesis gas hydrogenation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012001441A (en) * 2010-06-14 2012-01-05 Sekisui Chem Co Ltd Method for producing ethanol and system for producing ethanol
CN103420791A (en) * 2012-05-16 2013-12-04 中国石油化工股份有限公司 Method for ethanol preparation through synthesis gas hydrogenation

Also Published As

Publication number Publication date
JPS63412B2 (en) 1988-01-07

Similar Documents

Publication Publication Date Title
JPS6049617B2 (en) Method for producing oxygenated compounds such as ethanol
JPS6259227A (en) Production of ethanol
JPS6341373B2 (en)
JPS61191635A (en) Production of ethanol
JPS6119608B2 (en)
JPS6353169B2 (en)
JPS6259228A (en) Production of ethanol
JPS6238343B2 (en)
JPS6049616B2 (en) Method for producing oxygen-containing compounds containing ethanol as the main component
JPS6049615B2 (en) Method for producing oxygen-containing compounds containing ethanol as the main component
JPS6238336B2 (en)
JPS6210486B2 (en)
JPS6238333B2 (en)
JPS6259230A (en) Production of ethanol
JPS6353168B2 (en)
JPS6238334B2 (en)
JPS6259232A (en) Production of ethanol
JPS6238337B2 (en)
JPS6218530B2 (en)
JPS6119611B2 (en)
JPS6238341B2 (en)
JPS6238339B2 (en)
JPS6238340B2 (en)
JPH058051B2 (en)
JPS6218531B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term