JPS6257730B2 - - Google Patents
Info
- Publication number
- JPS6257730B2 JPS6257730B2 JP53159702A JP15970278A JPS6257730B2 JP S6257730 B2 JPS6257730 B2 JP S6257730B2 JP 53159702 A JP53159702 A JP 53159702A JP 15970278 A JP15970278 A JP 15970278A JP S6257730 B2 JPS6257730 B2 JP S6257730B2
- Authority
- JP
- Japan
- Prior art keywords
- yarn
- filament
- twisting
- false
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Description
本発明は単糸2.0デニール(以下drと略す)以
上のマルチフイラメントが芯糸となり、単糸
1.5dr以下の極細マルチフイラメントが外側をカ
バリングしている嵩高加工糸及びその製造法に関
するものであり、該加工糸を用いることによつて
柔軟な風合いと適度の反撥性(ハリ、腰)および
嵩高性を有する従来にない高付加価値の布帛を提
供せんとするものである。
従来技術として、ポリマーの〔η〕差、紡糸速
度差、繊維のデニール差、張力差、熱収縮差を利
用して合撚、仮撚、空気絡合などによる芯鞘の2
層構造カバリング糸は知られているが、これらは
いずれも単糸が1.5dr以上であり、本発明のよう
に極細糸と太drの同時仮撚により極細繊維のカバ
リング糸及びそれによつて柔軟で適度の反撥性を
有する商品が得られることは知られていない。一
方1.5dr以下の極細糸のみで仮撚した場合は糸切
れなど工程通過性が不良であり、かつ得られる商
品は柔軟なタツチを有するがハリ、腰のないもの
となる。また特公昭48−23968及び特開昭52−
18968に見られる如く、単糸が1.0dr以下の細drと
1.0dr以上の太drの合糸仮撚も公知であるが、こ
れらは2層構造を有さずしかも柔軟性が失われる
という問題を生じる。さらに特開昭53−86875の
如く、0.01〜1.5drの極細糸と高収縮糸との混繊
加工で2層構造糸を作り、該繊維を用いて布帛を
構成して起毛、熱処理する方法もあるが、芯糸が
無撚で反撥性(ハリ、腰)の少ない商品となる。
以上の背景により、本発明者らは柔軟なタツチ
と適度の反撥性及び嵩高性を有する布帛を得るた
めには、単糸が太drである繊維に先撚を施して芯
糸とし、該芯糸に極細糸をカバリング(鞘)した
2層構造加工糸を得る必要があると考え、その点
について鋭意研究を進めた結果、単糸が2.0dr以
上のマルチフイラメントに100〜1000T/Mの先
撚を施したのち1.5dr以下のマルチフイラメント
と同時仮撚すること及び仮撚方向は仮撚ヒーター
上で該先撚方向と逆の方向(解撚方向)とするこ
とによつて従来見られない本発明の加工糸が得ら
れることを見出した。
また特開昭52−27823の如くΔnの異なる繊維
を同時仮撚することは公知であるが、本発明で初
めてΔnが異なる太デニールの先撚糸と1.5dr以
下の極細糸を同時仮撚することによつて柔軟で腰
のある2層構造加工糸を得る方法が見出された。
すなわち、本発明の極細繊維のカバリング糸お
よびその製造法の主たる構成要件はつぎのとおり
である。
1 単糸デニール2.0以上で100〜1000T/Mの撚
を有する熱可塑性マルチフイラメント(A)が芯糸
となり、該フイラメント(A)の外側を単糸1.5デ
ニール以下の極細マルチフイラメント(B)が被覆
(カバリング)して成る嵩高を有する極細繊維
のカバリング糸。
2 熱可塑性合成繊維から成る単糸2.0dr以上の
マルチフイラメント(A)に100〜1000T/Mの先
撚(下撚り)をかけ、ついで該先撚フイラメン
ト(A)と単糸1.5dr以下の無撚又はフイラメント
(A)と同一撚方向で100T/M以上少ない撚を有
するマルチフイラメント(B)とを同時仮撚するに
際し、仮撚ヒーター上で該先撚方向と逆方向
(解撚方向)でかつ融着温度以下で仮撚するこ
とを特徴とする極細繊維のカバリング糸の製造
法。
本発明に言う熱可塑性合成繊維とは、ポリエス
テル系、ポリアミド系、ポリアクリルニトリル
系、ポリビニール系の繊維を意味し、改質成分を
共重合したもの及びつや消し剤、熱安定剤、顔
料、制電性向上剤、防炎性向上剤などを添加した
ものも含まれる。特に反復単位の80%以上がポリ
エチレンテレフタレートであるポリエステルが製
品物性などの点で好ましく、また該フイラメント
(A)及びBは同種又は異種であつても、2種以上の
ポリマーから成り立つていてもよい。
本発明で用いる単糸1.5dr以下の極細繊維を得
る主な方法は次の通りである。
1 フラツシユ法―紡糸ノズルからの爆発的噴出
2 スーパードロー法―配向を伴わない低温高倍
率延伸
3 チツプブレンド又は多芯々鞘紡糸法―海島構
造繊維で海成分除去
4 分割法―2成分以上の複合繊維を機械的又は
化学的処理で分割
5 直接紡糸法―通常の紡糸により直接極細糸を
得る
本発明は直接紡糸による円型又は異型断面の極
細糸第1図〜第4図の如き断面を有する海島構造
繊維及び第5図〜第8図の如き分割型繊維など上
記のいずれの方法で得られた極細糸を用いてもよ
く、これらの繊維断面は一例であつてこれに制約
を受けるものではない。第1〜第8図において斜
線を施した部分が極細繊維であるが、特に第5図
や第7〜8図においては斜線部分以外の部分も極
細繊維として用いることができる。
布帛に適度の反撥性と嵩高性を付与させるため
には、芯糸であるフイラメント(A)は単糸2.0dr以
上好ましくは3〜8drで100〜1000T/Mの撚が必
要でありかつ先撚で仮撚することが必要である。
撚数が100T/M未満ではフイラメント(A)と(B)の
糸長差が小さく完全な2層構造をとらず反撥性も
低下する。一方、1000T/Mを超える場合はコス
ト増加や仮撚の操作性不良を招くのでいずれも不
適である。鞘糸であるフイラメント(B)は柔軟性の
点で1.5dr以下好ましくは1.0dr以下さらに好まし
くは0.3〜0.8drであり、仮撚時に芯糸をカバリン
グする(糸長差を出す)ためには無撚又は芯糸と
同一撚方向で100T/M以上少ない先撚でなけれ
ばならない。
また、芯鞘の2層構造を得る方法として紡糸速
度差などにより複屈折率(Δn)に差を有する
(伸度差を有する)繊維同志を同時仮撚する方法
があるが、本発明の特徴を発揮するためにはフイ
ラメント(A)及び(B)の仮撚前の複屈折をそれぞれΔ
nA及びΔnBとした場合Δn(A)−ΔnBが10×
10-3以上好ましくは20×10-3〜50×103でなけれ
ばならず、さらにフイラメント(A)は100〜
1000T/Mの先撚を有する必要がある。特にΔn
A及びΔnBが70×10-3以下の場合、ΔnA−ΔnB
が10×10-3未満では十分な糸長差を得られない。
また、反撥性向上、工程通過性などにより、撚
数差が100T/M以上であるフイラメント(A)とフ
イラメント(B)を仮撚前にフイラメント(A)と同一撚
方向でかつ900T/M以下で合撚することも本発
明では支障ない。
さらに、工程通過性や混繊度を良くするために
仮撚後に撚を施す(追撚する)ことも可能である
が、嵩高性、糸長差などの点で追撚方向はフイラ
メント(A)の先撚と逆方向でかつ300T/M以下で
なければならない。仮撚方向は仮撚ヒーター上で
フイラメント(A)の先撚方向と逆方向(解撚方向)
の仮撚が好ましく、正方向(加撚方向)では芯糸
と鞘糸の糸条分離(肌分れ)が起りその後の工程
通過性が不良でかつ2層構造をとりづらい。また
仮撚温度はフイラメント(A)及び(B)の融着温度以下
が良く、融着が起ると柔軟性と嵩高性が減少す
る。なお、仮撚方式は1段ヒーターセツトでも2
段ヒーターセツトでも良い。
本発明により得られた極細繊維カバリング糸の
断面及び側面の模式図の一例を第9図及び第10
図に示したが、第9図における中心部分の太い繊
維が単糸デニール2.0以上の芯糸集合体であり、
第10図における中心部分の太い繊維も同じく芯
糸集合体である。また仮撚操作の一例に関する略
図を第11図に示したが、マルチフイラメント
(A)、(B)は第1ローラーR1通過後にヒーター(1
段でも2段でも可)Hを通りスピナーSで仮撚さ
れたのち第2ローラーR2を経由して捲取機Wに
捲取られる。
本発明のカバリング糸は必要に応じさらに追撚
又は他繊維との合撚を施し、従来方法により編
物、織物、不織布などの布帛を構成することがで
きる。なお布帛構成時に一部他繊維を使用しても
良いが、本発明による加工糸が布帛の表面を覆う
のがより好ましい。本発明で言う編織物としては
平坦な面を有するもの、ループなど立毛を有する
もの、畝やしぼを有するものなどすべての編織物
が含まれ、さらにバフイング又は/及び針布起毛
などにより毛羽立てた立毛編織物も含まれる。本
発明の糸を用いて得られた編織物は1.5dr以下の
極細糸が表面に現われて柔軟なヌメリ感を有し、
かつ2.0dr以上の太drが撚りと仮撚加工により反
撥性及び嵩高性を向上させており、従来に見られ
ない高付加価値商品となつた。また、該編織物に
さらにバフイング又は/及び針布起毛などを施し
て表面に1.5dr以下の極細糸を毛羽立てた立毛編
織物は、本発明の糸の有する効果が著しく発現さ
れており高級な秋冬素材となつた。
以下実施例により本発明を具体的に説明する。
実施例1及び比較例1,2
〔η〕=0.65dl/g(フエノールとテトラクロ
ルエタンの等量混合溶媒を用い30℃恒温槽中でウ
ツペローデ型粘度計を用い測定した極限粘度が
0.65dl/g)のポリエチレンテレフタレートを通
常の方法により紡糸、延伸した100dr/20fのマル
チフイラメント(A)に500T/MのS撚を施し、つ
いで該フイラメント(A)と、〔η〕=0.69dl/gのポ
リエチレンテレフタレートで直接紡糸、延伸後
50dr/72fの無撚の極細マルチフイラメント(B)を
同時仮撚して加工糸を得た。仮撚条件は第11図
の如き仮撚方式によつてオーバーフイード率:1
%、ヒーター温度:220℃、スピナー:Z方向
(解撚方向)で240000rpm、捲取速度:100m/
minであつた。
次いで、該加工糸を2本合わせて150T/Mの
Z撚追撚を施し、タテ、ヨコ使いで1/1の平組
織の織物を構成したのちリラツクス及び染色を行
い、織物の表裏に軽度の針布起毛を施した。
また比較例1として、フイラメント(A)に先撚を
せず無撚で同時仮撚した場合、及び比較例2とし
てフイラメント(B)に50dr/24f(単糸2.08dr)を
用いた場合について実施例1と同様の織物加工を
施した。
これらの物性評価結果を第1表に示し次の事が
判明した。
In the present invention, a multifilament with a single yarn of 2.0 denier (hereinafter abbreviated as DR) or more serves as a core yarn, and a single yarn
This relates to a bulky processed yarn whose outer surface is covered with ultra-fine multifilaments of 1.5 dr or less, and its manufacturing method.By using this processed yarn, it is possible to achieve a soft texture, appropriate repulsion (firmness, waist), and bulkiness. The aim is to provide fabrics with unprecedented high added value that have the same properties as before. Conventional technology uses the [η] difference of polymers, spinning speed difference, denier difference of fibers, tension difference, and heat shrinkage difference to create a core-sheath structure by twisting, false twisting, air entanglement, etc.
Layered covering yarns are known, but each of these has a single yarn of 1.5 dr or more, and as in the present invention, by simultaneous false twisting of ultra-fine yarn and thick dr, covering yarn of ultra-fine fibers and softness thereof can be obtained. It is not known that a product with adequate repellency can be obtained. On the other hand, if only ultra-fine yarn of 1.5 dr or less is false-twisted, process passability such as thread breakage will be poor, and the resulting product will have a soft touch but lack firmness and stiffness. Also, JP 48-23968 and JP 52-
As seen in 18968, the single yarn has a fine dr of less than 1.0 dr.
False twisted fibers with a thick dr of 1.0 dr or more are also known, but these do not have a two-layer structure and have the problem of loss of flexibility. Furthermore, as in Japanese Patent Application Laid-Open No. 53-86875, there is also a method of making a two-layer structured yarn by blending 0.01 to 1.5 dr ultra-fine yarn and high shrinkage yarn, and constructing a fabric using this fiber, raising it, and heat-treating it. However, the core thread is untwisted, resulting in a product with less repulsion (firmness, stiffness). Based on the above background, in order to obtain a fabric with a flexible touch, appropriate repulsion properties, and bulkiness, the present inventors first twisted a single yarn with a thick drench to make a core yarn, and We thought that it was necessary to obtain a two-layer processed yarn with a covering (sheath) of ultra-fine yarn, and as a result of intensive research on this point, we found that single yarns with multifilaments of 2.0 dr or more and tips with 100 to 1000 T/M. After twisting, it is simultaneously false-twisted with a multifilament of 1.5 dr or less, and the direction of false-twisting is opposite to the first twisting direction (untwisting direction) on the false-twisting heater, which is not seen in the past. It has been found that the processed yarn of the present invention can be obtained. Although it is known to simultaneously false-twist fibers with different Δn as disclosed in Japanese Patent Application Laid-open No. 52-27823, the present invention is the first to simultaneously false-twist fibers with different Δn of thick denier and ultra-fine yarn of 1.5 dr or less. discovered a method to obtain a soft and stiff two-layer textured yarn. That is, the main constituent elements of the ultrafine fiber covering yarn of the present invention and the method for producing the same are as follows. 1 A thermoplastic multifilament (A) with a single yarn denier of 2.0 or more and a twist of 100 to 1000 T/M serves as the core yarn, and the outside of the filament (A) is covered with an ultrafine multifilament (B) with a single yarn of 1.5 denier or less. (covering) A covering yarn made of ultrafine fibers with bulk. 2 A multifilament (A) made of thermoplastic synthetic fiber with a single yarn of 2.0 dr or more is first twisted (pre-twisted) at 100 to 1000 T/M, and then the first twisted filament (A) and a single yarn with a single yarn of 1.5 dr or less are twisted. twisted or filament
When simultaneously false-twisting (A) and multifilament (B) which has a twist less than 100T/M in the same twisting direction, they are fused together on the false-twisting heater in the opposite direction (untwisting direction) to the previous twisting direction. A method for producing a covering yarn of ultrafine fibers, which is characterized by false twisting at a temperature below. The thermoplastic synthetic fibers referred to in the present invention refer to polyester-based, polyamide-based, polyacrylonitrile-based, and polyvinyl-based fibers, including those copolymerized with modifying components, matting agents, heat stabilizers, pigments, and control materials. It also includes those to which electrical property improvers, flame retardant improvers, etc. are added. In particular, polyester in which 80% or more of the repeating units are polyethylene terephthalate is preferable in terms of product properties, and the filament
(A) and B may be the same or different types, or may be composed of two or more types of polymers. The main method for obtaining the ultrafine fibers with a single yarn of 1.5 dr or less used in the present invention is as follows. 1 Flash method - Explosive ejection from the spinning nozzle 2 Super draw method - Low-temperature, high-magnification stretching without orientation 3 Chip blend or multi-core core-to-sheath spinning method - Removal of sea components with sea-island structure fibers 4 Split method - Composite of two or more components Dividing fibers by mechanical or chemical treatment 5 Direct spinning method - Obtaining ultrafine yarns directly by ordinary spinning The present invention has ultrafine yarns with circular or irregular cross sections by direct spinning as shown in Figures 1 to 4. Ultrafine yarns obtained by any of the above methods, such as sea-island structure fibers and splittable fibers as shown in FIGS. do not have. In FIGS. 1 to 8, the shaded areas are ultrafine fibers, but in particular, in FIGS. 5 and 7 to 8, areas other than the shaded areas can also be used as ultrafine fibers. In order to impart appropriate repulsion and bulkiness to the fabric, the filament (A), which is the core yarn, must be a single yarn of 2.0 dr or more, preferably 3 to 8 dr, and twisted at 100 to 1000 T/M, and must be pre-twisted. It is necessary to false twist it.
When the number of twists is less than 100 T/M, the difference in yarn length between filaments (A) and (B) is small, and a complete two-layer structure is not formed, resulting in a decrease in repulsion. On the other hand, if it exceeds 1000 T/M, it is unsuitable because it increases the cost and causes poor operability of false twisting. In terms of flexibility, the filament (B), which is a sheath yarn, has a drency of 1.5 dr or less, preferably 1.0 dr or less, and more preferably 0.3 to 0.8 dr, and in order to cover the core yarn (create a difference in yarn length) during false twisting. Must be untwisted or have less twist than the core yarn by 100T/M or more in the same twist direction as the core yarn. In addition, as a method for obtaining a two-layer core-sheath structure, there is a method in which fibers having different birefringence (Δn) (having different elongation) are simultaneously false-twisted due to differences in spinning speed, etc., but the features of the present invention In order to achieve this, the birefringence of filaments (A) and (B) before false twisting must be adjusted by
When n A and Δn B , Δn(A) − ΔnB is 10×
It must be 10 -3 or more, preferably 20×10 -3 to 50×10 3 , and the filament (A) should be 100 to
Must have a pre-twist of 1000T/M. Especially Δn
If A and Δn B are 70×10 -3 or less, Δn A −Δn B
If it is less than 10×10 -3 , a sufficient yarn length difference cannot be obtained. In addition, in order to improve repulsion, process passability, etc., filament (A) and filament (B) with a twist number difference of 100T/M or more are twisted in the same direction as filament (A) and 900T/M or less before false twisting. In the present invention, there is no problem in the present invention. Furthermore, it is possible to perform twisting (additional twisting) after false twisting to improve process passability and fiber blending, but due to bulkiness, yarn length difference, etc. It must be in the opposite direction to the first twist and must be less than 300T/M. The false twisting direction is opposite to the first twisting direction (untwisting direction) of the filament (A) on the false twisting heater.
False twisting is preferred; in the positive direction (twisting direction), yarn separation (separation) of the core yarn and sheath yarn occurs, resulting in poor passability in subsequent processes and making it difficult to form a two-layer structure. Further, the false twisting temperature is preferably lower than the fusion temperature of filaments (A) and (B), and when fusion occurs, flexibility and bulkiness decrease. In addition, the false twisting method requires two
A stage heater set may also be used. Examples of schematic cross-sectional and side views of the ultrafine fiber covering yarn obtained by the present invention are shown in FIGS. 9 and 10.
As shown in the figure, the thick fibers in the center part in Figure 9 are core yarn aggregates with a single yarn denier of 2.0 or more,
The thick fibers at the center in FIG. 10 are also core yarn aggregates. A schematic diagram of an example of the false twisting operation is shown in FIG.
(A) and (B) are heaters (1) after passing through the first roller R1.
After passing through H and being falsely twisted by a spinner S, it is wound up by a winding machine W via a second roller R2 . The covering yarn of the present invention can be further twisted or twisted with other fibers as necessary to form fabrics such as knitted fabrics, woven fabrics, and nonwoven fabrics by conventional methods. Although some other fibers may be used when constructing the fabric, it is more preferable that the processed yarn according to the present invention covers the surface of the fabric. The knitted fabrics referred to in the present invention include all knitted fabrics, such as those with a flat surface, those with raised naps such as loops, and those with ridges and wrinkles, and those that are fluffed by buffing and/or needle cloth raising. Also included are napped knitted fabrics. The knitted fabric obtained using the yarn of the present invention has ultrafine yarns of 1.5 dr or less on the surface and has a soft slimy feel.
In addition, the thick dr of 2.0 dr or more has improved repellency and bulk through twisting and false twisting, making it a high value-added product never seen before. In addition, napped knitted fabrics in which the knitted fabrics are further subjected to buffing and/or needle cloth raising to fluff ultrafine yarns of 1.5 dr or less on the surface are highly effective due to the effects of the yarn of the present invention, and are of high quality. It has become a fall/winter material. The present invention will be specifically explained below using Examples. Example 1 and Comparative Examples 1 and 2 [η] = 0.65 dl/g (Intrinsic viscosity measured using an Utsperohde viscometer in a constant temperature bath at 30°C using a mixed solvent of equal amounts of phenol and tetrachloroethane)
A 100 dr/20 f multifilament (A) made by spinning and drawing polyethylene terephthalate (0.65 dl/g) by a conventional method is subjected to S twist of 500 T/M, and then the filament (A) and [η] = 0.69 dl /g of polyethylene terephthalate after direct spinning and stretching.
A processed yarn was obtained by simultaneously false-twisting 50 dr/72 f non-twisted ultrafine multifilament (B). The false twisting conditions are as shown in Figure 11, with an overfeed rate of 1.
%, heater temperature: 220℃, spinner: 240000rpm in Z direction (untwisting direction), winding speed: 100m/
It was min. Next, the two processed yarns are combined and subjected to 150T/M Z-twist and additional twist to form a fabric with a 1/1 flat texture in both the warp and weft, and is then relaxed and dyed to create a light texture on the front and back of the fabric. The needle cloth is brushed. In addition, Comparative Example 1 was carried out when the filament (A) was not pre-twisted but simultaneously false-twisted, and Comparative Example 2 when 50 dr/24 f (single yarn 2.08 dr) was used for the filament (B). The same textile processing as in Example 1 was carried out. The results of these physical property evaluations are shown in Table 1, and the following was found.
【表】
この結果から明らかなように、実施例1で得ら
れた加工糸はフイラメント(A)と(B)の糸長差が10.2
%で第9図及び第10図の如く完全な2層構造を
有した。また、この糸を用いた織物のカンチレバ
ーの値から明らかのように適度の硬さを有し、耐
シワ性も75%以上と良好でハリ、腰があり、圧縮
率及び回復率も高く嵩高性と反撥性に富むもので
あつた。また、単糸0.69drが織物表面を覆つて柔
軟なタツチを有し、従来にないエタミン調織物が
得られた。一方、比較例1はフイラメント(A)に先
撚をしていないため糸長差も0.5%と低く、太dr
の芯糸が一部外側に出て織物も柔軟性が不足した
ものとなつた。また比較例2は、フイラメント(B)
の単糸デニールが2.08と太いために2層構造を有
しても粗硬な織物となつた。
実施例 2
フイラメント(A)にポリエステル50dr/24f―
300T/M S撚を用い、フイラメント(B)に第7
図の如き断面を有するナイロン6―ポリエステル
で無撚の50dr/12f(11分割で単糸0.3〜0.4dr)
を使用して両繊維を200T/M S撚で合撚した
後に次の条件で仮撚した。
オーバーフイード:1%、ヒーター:170℃、
スピナー:Z方向で260000rpm
捲取:100m/min。
次いで、該加工糸をフロント糸に用い、熱水収
縮率25%の高収縮ポリエステルフイラメント
75dr/32fをバツク糸に用いて1/2ハーフ組織
で28Gのシングルトリコツト編を構成した。その
後にリラツクス(熱水処理)及び酸性染料による
染色を施してバツク糸を十分収縮させてフロント
糸を編地表面に浮き出させ、軽度のバフイングを
行つた。
本発明による加工糸はフイラメント(A)にフイラ
メント(B)がカバリングしかつフイラメント(B)のナ
イロン6とポリエステルが仮撚で分割極細化して
おり、得られたトリコツト編は柔い表面タツチと
反撥性及びドレープ性を有し霜降り調の高付加価
値商品となつた。
実施例 3
〔η〕=0.70dl/gのポリエステルを2500m/
minの紡糸速度で捲取り複屈折(Δn)が37×
10-3の218dr/32fのフイラメント(A)を得た。一
方、〔η〕=0.62dl/gのポリエステルを1000m/
minの紡糸速度で捲取りΔn6×10-3の62dr/36fの
フイラメント(B)を得た。次いで、該フイラメント
(A)に150T/MのS撚をかけ、フイラメント(B)を
2本引揃えて次の条件で同時仮撚を行つた。
延伸倍率:2.0倍、ヒーター:180℃
スピナー:Z方向で330000rpm、捲取:150m/
min。
得られた加工糸はΔnの差(伸度差)及び先撚
数の差によりフイラメント(A)が芯糸に、フイラメ
ント(B)が鞘糸となつた2層構造を有し融着は起つ
ていなかつた。該加工糸をヨコ糸に、150dr/48f
のポリエステル加工糸をタテ糸に用いて1/2の
綾組織で織物を作成した。得られた織物は柔軟な
風合いと適度の腰を有し、高級秋冬素材となつ
た。
実施例 4
フイラメント(A)として75dr/24f−800T/M
S撚のナイロン6マルチフイラメントを用い、フ
イラメント(B)として第4図の断面を有する海島構
造繊維83dr/12f(海成分:ポリエチレン10%、
島成分:ナイロン90%、島デニール:1.0dr×2
本+0.7dr×4本+0.3dr×4本)をパークレン抽
出した極細繊維75dr/120fで、かつ200T/Mの
S撚をかけたものを用いて175℃でZ方向に同時
仮撚した。次いで、該仮撚糸をパイル糸に用い、
グランド糸に50dr/24fのナイロン6加工糸を使
用してパイル長(シンカー長)2.4m/mで28Gの
パイル丸編を構成した後に染色、セツト加工を施
した。
得られたパイル編は柔い肌ざわりを有し、パイ
ルに適度の反撥性があるためパイル乱れの少ない
高付加価値商品となつた。
実施例 5
フイラメント(A)に〔η〕の異なる五葉断面と三
葉断面の紡糸混繊ポリエステル糸で75dr/24f―
300T/M S撚を用い、フイラメント(B)として
第8図の断面(斜線部がポリエステル、白色部が
ジメチルイソフタール酸のスルホン酸ナトリウム
塩を5.0モル%共重合したポリエステル)を有す
る無撚のポリエステル繊維100dr/72fを用いて
200℃でZ方向に同時仮撚した。次いで、該仮撚
糸に250T/MのZ撚を施してパイル糸に用い、
グランド糸に75dr/24fのポリエステル加工糸を
用いて1.2m/mパイル長で28Gのパイル丸編を構
成した後、30g/lのカセイソーダ水溶液で処理
して分解速度差によりフイラメント(B)の断面を分
割極細化した。その後、染色してワイヤーブラシ
で表面を毛羽立てたところ、極細糸が表面を覆
い。本発明の効果を発揮した商品となつた。[Table] As is clear from this result, the processed yarn obtained in Example 1 has a yarn length difference of 10.2 between filaments (A) and (B).
%, it had a complete two-layer structure as shown in FIGS. 9 and 10. In addition, as is clear from the cantilever value of the fabric using this thread, it has a moderate hardness, has good wrinkle resistance of 75% or more, has firmness and elasticity, and has high compression and recovery rates and is bulky. It was highly repellent. In addition, the single yarn 0.69 dr covered the surface of the fabric and had a soft touch, resulting in an unprecedented etamine-like fabric. On the other hand, in Comparative Example 1, the filament (A) was not first twisted, so the yarn length difference was as low as 0.5%, and the thick drier
Some of the core threads came out outside, resulting in a woven fabric that lacked flexibility. In addition, Comparative Example 2 is a filament (B)
Because the single yarn denier is as thick as 2.08, the fabric is rough and stiff even though it has a two-layer structure. Example 2 Polyester 50dr/24f for filament (A)
Using 300T/M S twist, the filament (B) has the 7th
Non-twisted 50dr/12f nylon 6-polyester with cross section as shown in the figure (11 divisions, single yarn 0.3-0.4dr)
Both fibers were twisted together at 200T/M S twist using the following method, and then false twisted under the following conditions. Overfeed: 1%, heater: 170℃,
Spinner: 260000rpm in Z direction Winding: 100m/min. Next, the processed yarn was used as a front yarn to form a high shrinkage polyester filament with a hot water shrinkage rate of 25%.
A 28G single tricot knit was constructed with a 1/2 half weave using 75dr/32f as the back yarn. Thereafter, the back yarns were sufficiently shrunk by relaxing (hot water treatment) and dyeing with an acid dye to make the front yarns stand out on the surface of the knitted fabric, and light buffing was performed. In the processed yarn of the present invention, the filament (A) is covered by the filament (B), and the nylon 6 and polyester of the filament (B) are divided into ultra-fine fibers by false twisting, and the resulting tricot knit has a soft surface touch and repulsion. It has become a high value-added product with marbled texture and drapability. Example 3 [η]=0.70dl/g polyester for 2500m/
At a spinning speed of min, the winding birefringence (Δn) is 37×
A 218dr/32f filament (A) of 10 -3 was obtained. On the other hand, [η] = 0.62 dl/g polyester per 1000 m/
A filament (B) of 62 dr/36 f with a winding Δn of 6×10 −3 was obtained at a spinning speed of min. Then the filament
(A) was subjected to S twist of 150T/M, two filaments (B) were aligned, and simultaneous false twisting was performed under the following conditions. Stretching ratio: 2.0x, heater: 180℃, spinner: 330000rpm in Z direction, winding: 150m/
min. The obtained processed yarn has a two-layer structure in which the filament (A) is the core yarn and the filament (B) is the sheath yarn due to the difference in Δn (difference in elongation) and the difference in the number of twists, and fusion does not occur. I wasn't there. The processed yarn is made into a weft yarn, 150dr/48f
A woven fabric was prepared with a 1/2 twill structure using the processed polyester yarn of 1.0 as the warp yarn. The resulting fabric has a flexible texture and a moderate waist, and has become a high-quality autumn/winter material. Example 4 75dr/24f-800T/M as filament (A)
Using S-twist nylon 6 multifilament, the filament (B) is sea-island structure fiber 83dr/12f (sea component: 10% polyethylene,
Island component: 90% nylon, island denier: 1.0 dr x 2
(4 pieces + 0.7 dr x 4 pieces + 0.3 dr x 4 pieces) were simultaneously false-twisted in the Z direction at 175°C using ultrafine fibers 75 dr/120 f extracted with perclene and subjected to S twist of 200 T/M. Next, the false twisted yarn is used as a pile yarn,
A 28G pile circular knit with a pile length (sinker length) of 2.4 m/m was constructed using 50 dr/24 f nylon 6 processed yarn as the ground yarn, and then dyed and set. The resulting pile knit has a soft texture, and the pile has appropriate repellency, making it a high value-added product with little pile disorder. Example 5 The filament (A) is a spun mixed polyester yarn with different [η] of five-lobed cross section and three-lobed cross section of 75 dr/24 f.
Using 300T/M S twist, a non-twisted filament (B) having the cross section shown in Figure 8 (the shaded area is polyester, the white area is polyester copolymerized with 5.0 mol% sodium sulfonate of dimethyl isophthalic acid) Using polyester fiber 100dr/72f
Simultaneous false twisting was carried out in the Z direction at 200°C. Next, the false twisted yarn was subjected to a Z twist of 250T/M and used as a pile yarn,
After constructing a 28G pile circular knit with a 1.2m/m pile length using 75dr/24f polyester processed yarn as the ground yarn, it was treated with a 30g/l caustic soda aqueous solution to determine the cross section of the filament (B) due to the difference in decomposition rate. was divided into ultra-fine parts. After that, I dyed it and fluffed the surface with a wire brush, and the ultra-fine threads covered the surface. This product has achieved the effects of the present invention.
第1図〜第4図は海島構造繊維断面の1例を示
し、斜線部が島成分、白色部は海成分を意味し、
島成分は異型でも2種以上のポリマーでも良い。
第5図〜第8図は分割型複合繊維断面の1例を示
し、斜線部と白色部は相互親和性の乏しい異種ポ
リマーを意味する。第9図及び第10図は本発明
により得られた極細繊維のカバリング糸の断面及
び側面の模式図である。第11図は本発明で用い
た仮撚操作の一例についての略図である。
Figures 1 to 4 show an example of a sea-island structure fiber cross section, where the shaded area represents the island component and the white area represents the sea component.
The island component may be of a different type or may be a polymer of two or more types.
FIGS. 5 to 8 show an example of a cross section of a splittable composite fiber, and the shaded areas and white areas indicate different types of polymers having poor mutual affinity. FIGS. 9 and 10 are schematic cross-sectional and side views of a covering yarn made of ultrafine fibers obtained according to the present invention. FIG. 11 is a schematic diagram of an example of the false twisting operation used in the present invention.
Claims (1)
ル(T/M)の撚を有する熱可塑性マルチフイラ
メント(A)が芯糸となり、該フイラメント(A)の外側
を単糸1.5デニール以下の極細マルチフイラメン
ト(B)が被覆(カバリング)して成る嵩高を有する
極細繊維のカバリング糸。 2 前項において、フイラメント(A)及び/又はフ
イラメント(B)が2種以上のポリマーから成る極細
繊維のカバリング糸。 3 熱可塑性合成繊維から成る単糸2.0デニール
以上のマルチフイラメント(A)に100〜1000T/M
の先撚(下撚り)をかけ、ついで該先撚フイラメ
ント(A)と単糸1.5デニール以下の無撚又はフイラ
メント(A)と同一撚方向で100T/M以上少ない撚
を有するマルチフイラメント(B)とを同時仮撚する
に際し、仮撚ヒーター上で該先撚方向と逆方向
(解撚方向)でかつ融着温度以下で仮撚すること
を特徴とする極細繊維のカバリング糸の製造法。 4 前項において、フイラメント(A)とフイラメン
ト(B)を仮撚前にフイラメント(A)と同一撚方向でか
つ900T/M以下で合撚することを特徴とする極
細繊維のカバリング糸の製造法。 5 特許請求の範囲3〜4において、フイラメン
ト(A)及び/又はフイラメント(B)が2種以上のポリ
マーから成ることを特徴とする極細繊維のカバリ
ング糸の製造法。 6 特許請求の範囲3〜5において、フイラメン
ト(A)及び(B)の仮撚前の複屈折率をそれぞれΔnA
及びΔnBとした場合、両者の差(ΔnA−Δn
B)が10×10-3以上であるフイラメントを用いる
ことを特徴とする極細繊維のカバリング糸の製造
法。 7 特許請求の範囲3〜6において、仮撚後にフ
イラメント(A)の先撚方向と逆に300T/M以下で
追撚することを特徴とする極細繊維のカバリング
糸の製造法。[Claims] 1. A thermoplastic multifilament (A) having a single yarn denier of 2.0 or more and a twist of 100 to 1000 times/meter (T/M) serves as a core yarn, and the outside of the filament (A) is a single yarn. A covering yarn made of ultrafine fibers that has bulk and is made by covering with ultrafine multifilaments (B) of 1.5 denier or less. 2. In the preceding item, the covering yarn is an ultrafine fiber in which the filament (A) and/or the filament (B) are made of two or more types of polymers. 3 100 to 1000 T/M to multifilament (A) of 2.0 denier or more single yarn made of thermoplastic synthetic fiber
The first twisted filament (A) is then untwisted with a single yarn of 1.5 denier or less, or the multifilament (B) has a twist less than 100 T/M in the same twist direction as the filament (A). A method for producing a covering yarn of ultrafine fibers, which comprises false-twisting the fibers on a false-twisting heater in a direction opposite to the first twisting direction (untwisting direction) and at a temperature below the fusion temperature. 4. The method for producing a covering yarn of ultrafine fibers as set forth in the preceding paragraph, characterized in that the filament (A) and the filament (B) are twisted together in the same twisting direction as the filament (A) and at 900 T/M or less before false twisting. 5. A method for producing a covering yarn of ultrafine fibers according to claims 3 to 4, characterized in that the filament (A) and/or the filament (B) are composed of two or more types of polymers. 6 In claims 3 to 5, the birefringence of filaments (A) and (B) before false twisting is defined as Δn A
and Δn B , the difference between the two (Δn A −Δn
B ) A method for producing a covering yarn of ultrafine fibers, characterized by using a filament having a value of 10×10 -3 or more. 7. A method for producing a covering yarn of ultrafine fibers according to claims 3 to 6, characterized in that after false twisting, additional twisting is performed at 300 T/M or less in the opposite direction to the first twisting direction of the filament (A).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15970278A JPS5584431A (en) | 1978-12-22 | 1978-12-22 | Covering yarn of very fine fiber and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15970278A JPS5584431A (en) | 1978-12-22 | 1978-12-22 | Covering yarn of very fine fiber and method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5584431A JPS5584431A (en) | 1980-06-25 |
JPS6257730B2 true JPS6257730B2 (en) | 1987-12-02 |
Family
ID=15699437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15970278A Granted JPS5584431A (en) | 1978-12-22 | 1978-12-22 | Covering yarn of very fine fiber and method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5584431A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55148229A (en) * | 1979-05-08 | 1980-11-18 | Kuraray Co | Two layered structure processed yarn of extremely fine yarn and method |
JP5504076B2 (en) * | 2009-07-07 | 2014-05-28 | Kbセーレン株式会社 | Brush hair material and method for producing the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5927409U (en) * | 1982-08-16 | 1984-02-20 | 株式会社前川製作所 | Structure of rotor magnetic core of relative displacement angle measuring device |
-
1978
- 1978-12-22 JP JP15970278A patent/JPS5584431A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5584431A (en) | 1980-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6276121B1 (en) | Crimped yarn, textile fabric, and process for preparing the same | |
JP2003113554A (en) | Composite fabric and method for producing the same | |
KR100635857B1 (en) | A air jet textured yarn with different shrinkage and excellent melange effect, and a process of preparing for the same | |
JP7521255B2 (en) | Polyester false twist yarn and knitted fabric | |
JP2004183191A (en) | Stretch spun yarn, woven or knitted fabric and method for producing the same | |
JP2006214056A (en) | fabric | |
JPS6257730B2 (en) | ||
JPH0881854A (en) | Manufacture of woven fabric | |
KR100460003B1 (en) | Manufacturing method of composite false-twisted yarn having excellent surface touch and bulkiness | |
KR100635858B1 (en) | A textured yarn with different shrinkage and excellent suede effect, and a process of preparing for the same | |
JP2001214335A (en) | Low-shrinkage polyester slub yarn and combined polyester filament yarn composed thereof | |
JP2003268639A (en) | False twisted yarn and method for producing the same | |
KR100624146B1 (en) | A textured yarn with different shrinkage and excellent suede effect, and a process of preparing for the same | |
JPH0227455B2 (en) | ||
JP2003286621A (en) | Combined filament yarn and method for producing the same | |
JPH0657564A (en) | Compound false-twisted processed yarn having silky wool feeling and its production | |
JPH03167333A (en) | False twisted conjugated yarn and production thereof | |
JPH09132834A (en) | Worsted-tone composite combined filament yarn | |
JP3988286B2 (en) | Woven knitting | |
JPH04222242A (en) | Method for producing ultra-fine two-layer processed yarn | |
JP4660882B2 (en) | Composite false twisted yarn and method for producing the same | |
JP2527212B2 (en) | Polyester yarn | |
JP4214626B2 (en) | Strong twisted fabric | |
JP2021161550A (en) | Polyester conjugated false-twisted yarn | |
JPH0754240A (en) | Antistatic knitted or woven fabric |