[go: up one dir, main page]

JPS6257689B2 - - Google Patents

Info

Publication number
JPS6257689B2
JPS6257689B2 JP26174084A JP26174084A JPS6257689B2 JP S6257689 B2 JPS6257689 B2 JP S6257689B2 JP 26174084 A JP26174084 A JP 26174084A JP 26174084 A JP26174084 A JP 26174084A JP S6257689 B2 JPS6257689 B2 JP S6257689B2
Authority
JP
Japan
Prior art keywords
annealing
silicon steel
steel sheet
heat treatment
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP26174084A
Other languages
Japanese (ja)
Other versions
JPS61139624A (en
Inventor
Masao Iguchi
Isao Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP26174084A priority Critical patent/JPS61139624A/en
Publication of JPS61139624A publication Critical patent/JPS61139624A/en
Publication of JPS6257689B2 publication Critical patent/JPS6257689B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 一方向性珪素鋼板の高磁束度、低鉄損化を有利
にもたらすように、2次再結晶焼鈍つまり最終仕
上焼鈍前の脱炭・1次再結晶焼鈍の際、鋼板表面
近傍に微小歪を附し、同時に不均一熱処理を施す
ことによりGoss方位の不均一2次再結晶粒を発
達させる手法の有用性に着目して、高磁束密度・
低鉄損一方向性珪素鋼板の有利な製造方法を提案
するものである。 一方向性珪素鋼板は変圧器その他電気機器の鉄
心材料として用いられるもので磁束密度(B10
で代表される)が高く、鉄損(W17/50値で代表
される)が低いことが要求される。このような一
方向性珪素鋼板はN.P.Gossによつて2段冷延法
が提案されて以来、その後のおびただしい発明・
改善がなされ、今日では磁束密度B10値が1.89T以
上で、鉄損W17/50値が1.05W/Kg以下の低い鉄
損を有する一方向性珪素鋼板が製造されるように
なつた。 しかしながらエネルギー危機を境にしてより鉄
損の低い一方向性珪素鋼板の製造がきわめて急勢
の問題となつて来た。 特に最近では殴米を中心にして超低鉄損一方向
性珪素鋼板についてはボーナスを附する制度
(Loss Evoluation System)が普及して来てい
る。 このような鉄損を低下させる方法として珪素
鋼中のSi含有量を高める。製品板厚を薄くす
る。鋼板の純度を高める。製品の2次再結晶
粒のGoss方位集積度を低下させないで細粒の2
次再結晶粒を発達させる。等が考えられている。 まずの場合、通常Si含有量3.0%より増加し
たり、の場合通常製品板厚0.35,0.30mmより薄
い0.23,0,20mmにしたりすると、2次再結晶組
織が不均一となり、Goss方位集積度が低下する
問題が生じる。また通常よりSi含有量を増加させ
た場合、熱間ぜい化が顕著となり、スラブ加熱あ
るいは熱間圧延途中で熱間割れを生じ、製品の表
面性状が著しく劣化してしまう。 一方の鋼板の純度あるいはの方向性の改善
に関しては現在極限と考えられる所まで来てい
る。例えば現行製品の2次再結晶粒のGoss方位
は圧延方向に平均3゜〜4゜以内に集積してお
り、このように高度に集積した結晶粒径をさらに
小さくすることは冶金学上きわめて困難とされて
いる。 (従来の技術) このような状況下で、低鉄損一方向性珪素鋼板
の製造開発を行なうために、素材成分から被膜処
理工程に至る各諸工程の根本的な再検討が望まれ
ていた。このためインヒビター成分の異なる数多
くの小型鋼塊を溶製し、試験実験から開始した。
その結果、従来一方向性珪素鋼に全く用いられな
かつたMoを微量添加(特公昭57−14737号および
特公昭56−4613号公報参照)することにより、永
年の懸案であつたSi量を増加させた状況下におい
て製品の表面性状の改善(特公昭58−32215号お
よび特公昭58−33298号各公報参照)が可能とな
り、しかも低鉄損に有利な細粒の2次再結晶粒を
発達させることができること{井口征夫、伊藤
庸:日本金属学会会報、23(1984)、276}さらに
微量Moを添加した珪素鋼では薄型で密着性の優
れた下地被膜(特願昭58−100318号明細書)を形
成させることができることなどが見出された。 このような知見により製品の磁気特性および表
面性状は大巾に改善されたがまだ充分な状態とは
いえない。 これとは別に特公昭57−2252号公報にはAl添
加一方向性珪素鋼板の仕上焼鈍後の鋼板表面に圧
延方向とほぼ直角にレーザービームを数mm間隔に
照射し鋼板表面に局部高転位密度領域を導入する
ことにより磁区の幅を微細化し鉄損を低減する方
法が提案されている。この製造方法は磁区幅を微
細化して鉄損の低減を図るものであつて、均しく
実用的でありかつ鉄損低減効果も優れているが、
鋼板の打抜き加工、剪断加工や巻き加工後の歪取
り焼鈍やその他コーテイングの焼付け処理の如き
熱処理によつて塑性ひずみ導入による効果が減殺
される欠点がある。 ごく最近特開昭59−100221号公報および同昭59
−100222号公報には、一方向性珪素鋼の最終仕上
焼鈍前の時点において鋼板ストリツプに対して局
部焼なまし処理を施して大きい1次再結晶領域を
作ることにより不均質の2次再結晶粒を発達させ
る方法が提案されている。この製造方法はレーザ
ービームによる人工粒界導入法と異なり、歪取り
焼鈍によつて磁気特性が劣化しないため画期的な
製造方法であるが、鋼板中で大きい1次再結晶の
局部領域を安定して作り出すにはまだかなり問題
が残されている。 (発明が解決しようとする問題点) 発明者らは以前から冶金学的な手法を有効利用
することにより、鉄損を向上させる模索実験のよ
り詳細な研究を継続している。すなわち発明者ら
はより高い磁束密度でしかもより低い鉄損値を示
す一方向性珪素鋼板を得るには、従来からのX線
回析による調査検討だけでは現象論的な考察しか
できず不充分であるため、本発明者らが特開昭55
−33660号、実開昭55−383349号各公報にて提案
したような走査電子像を用いた透過コツセル装置
の開発を進め、この装置の使用により一方向性珪
素鋼板の途中工程から採取した熱延板、中間焼鈍
板、脱炭・1次再結晶板さらに初期2次再結晶板
等を詳細に調査した結果、次に列記するような新
規な知見を得た。 (1) (110)〔001〕方位の2次再結晶粒の2次再
結晶核の発生源は熱延板表面から約1/10深さに
存在する(110)〔001〕方位伸長粒中の歪の存
在しない小領域から起こる。また珪素鋼中に少
量のMoを添加すると熱延板表面近傍の(110)
〔001〕方位の2次再結晶核発生頻度は従来材に
比べて約3倍高くなる。 (2) (110)〔001〕方位の2次再結晶核発生は熱
延からのストラクチヤ・メモリーにより1次冷
延→中間焼鈍→2次冷延→脱炭・1次再結晶焼
鈍工程へと受け継がれ、鋼板表面から30〜50μ
m深さにおいて優先的に起こる。 (3) 脱炭・1次再結晶焼鈍後の2次再結晶核は数
個の(110)〔001〕方位の1次再結晶粒が合体
してできた大きな集合体の結晶粒で、マトリツ
クス粒の2〜6倍である。またこの(110)
〔001〕方位の大きな1次再結晶粒の集合体は圧
延方向に長く延びた特定領域内で群落として優
先生成するのが特徴である。 (4) 2次再結晶焼鈍初期において(110)〔001〕
方位の大きな結晶粒の集合体が一つの大きな結
晶粒として優先成長する。 以上のような知見に基づいて発明者らは良好な
(110)〔001〕方位の2次再結晶核発生およびその
途中工程の2次再結晶核の継承がどうあるべきか
について素材成分から製鋼、加熱、熱延、冷延お
よび焼鈍に至る根本的な検討を加えた。 (問題点を解決するための手段) その結果、2次再結晶焼鈍前の脱炭.1次再結
晶焼鈍時に鋼板表面に微小歪を附し、同時に不均
一熱処理を施すことによりGoss方位の不均一2
次再結晶粒を発達させることにより磁束密度で低
鉄損の一方向性珪素鋼板の製造が可能であること
を発見し、この発明を完成するに至つたものであ
る。 この発明は一方向性珪素鋼熱延板を1回以上の
冷延過程、脱炭を兼ねる1次再結晶焼鈍ならびに
最終仕上焼鈍過程に供する一方向性珪素鋼板の製
造方法において、脱炭.1次再結晶焼鈍時の鋼板
表面近傍に微小歪を附し、同時に複数の凹凸ロー
ルによる、該凹凸ロールをバツクアツプする高温
ロールからの温度転写により圧延方向にほぼ直角
方向に0.1〜5mm幅、1〜20mm間隔にて不均一熱
処理を施すことによりGoss方位の不均一2次再
結晶粒を発生させることを特徴とする高磁束密
度・低鉄損一方向性珪素鋼板の製造方法である。 この発明の構成は次のように展開される。たと
えば、C0.045%,Si3.40%,Se0.020%,Mn0.067
%,Sb0.025%,Mo0.025%を含有する鋼塊を熱
延して2.2mm厚とし、その後900℃で3分間均一化
焼鈍後、950℃で3分間の中間焼鈍をはさんで2
回の冷間圧延を行ない0.3mm厚の最終冷延板と
し、その後820℃湿水素雰囲気中で脱炭・1次再
結晶焼鈍するがこの際に、第1図の模式図に示す
ように鋼板にレベラー方式で微小歪を附し、而つ
不均一熱処理{この熱処理は圧延方向に直角に巾
2mm、間隔6mmで4本の凹凸ロールでそれらをバ
ツクアツプする高温ロールから温度転写(800〜
850℃)}を施す。 その後、鋼板表面上にMgOを主成分とする焼
鈍分離剤を塗布した後、850℃で50時間の2次再
結焼鈍および1180℃で5時間水素中で純化焼鈍を
施し製品とする。 磁気特性比較のため、脱炭・1次再結晶焼鈍時
にレベラーによる微小歪のみを附与した場合、あ
るいは不均一熱処理のみを施した場合の実験も同
時に行なつた。これらの一連の実験結果による製
品の磁気特性を表1に示す。
(Industrial Application Field) In order to advantageously achieve high magnetic flux and low core loss of unidirectional silicon steel sheets, during secondary recrystallization annealing, that is, decarburization and primary recrystallization annealing before final finish annealing, Focusing on the usefulness of the method of developing non-uniform secondary recrystallized grains with Goss orientation by applying micro-strain near the surface of the steel sheet and simultaneously applying non-uniform heat treatment, we
This paper proposes an advantageous manufacturing method for a unidirectional silicon steel sheet with low core loss. Unidirectional silicon steel sheets are used as core materials for transformers and other electrical equipment, and are required to have high magnetic flux density (represented by the B10 value) and low iron loss (represented by the W17/50 value). be done. Since the two-stage cold rolling method was proposed by NPGoss to produce such unidirectional silicon steel sheets, numerous inventions and developments have been made since then.
Improvements have been made, and today unidirectional silicon steel sheets are produced that have a magnetic flux density B10 value of 1.89T or more and a low iron loss W17/50 value of 1.05W/Kg or less. However, in the wake of the energy crisis, the production of unidirectional silicon steel sheets with lower iron loss has become an extremely urgent issue. Particularly recently, a system (Loss Evolution System) that provides bonuses for ultra-low iron loss unidirectional silicon steel sheets, mainly for beaten rice, has become popular. One way to reduce such iron loss is to increase the Si content in silicon steel. Reduce product board thickness. Increase the purity of steel plate. 2 of the fine grains without reducing the Goss orientation integration degree of the secondary recrystallized grains of the product.
Next recrystallization grains develop. etc. are being considered. In the first case, if the Si content is increased from the normal 3.0%, or if the thickness is reduced to 0.23, 0, or 20 mm, which is thinner than the normal product plate thickness of 0.35 or 0.30 mm, the secondary recrystallized structure will become non-uniform, and the Goss orientation will increase. A problem arises in which the value decreases. Furthermore, when the Si content is increased more than usual, hot embrittlement becomes noticeable, hot cracking occurs during slab heating or hot rolling, and the surface quality of the product deteriorates significantly. On the other hand, improvements in the purity or directionality of steel sheets have now reached the limit. For example, the Goss orientation of the secondary recrystallized grains of current products is concentrated within an average of 3° to 4° in the rolling direction, and it is extremely difficult from a metallurgical point of view to further reduce the grain size of such highly concentrated grains. It is said that (Prior technology) Under these circumstances, in order to develop and manufacture low core loss unidirectional silicon steel sheets, it was desired to fundamentally reconsider each process from material composition to coating treatment process. . For this reason, we melted a number of small steel ingots with different inhibitor components and started testing.
As a result, by adding a small amount of Mo, which was previously not used at all in unidirectional silicon steel (see Japanese Patent Publication No. 14737-1982 and Japanese Patent Publication No. 4613-1983), we increased the amount of Si, which had been a long-standing issue. Under these conditions, it is possible to improve the surface properties of the product (see Japanese Patent Publication No. 58-32215 and Japanese Patent Publication No. 58-33298), and develop fine secondary recrystallized grains that are advantageous for low iron loss. {Yukio Iguchi, Tsune Ito: Bulletin of the Japan Institute of Metals, 23 (1984), 276} In addition, silicon steel with a trace amount of Mo added has a thin base coat with excellent adhesion (Patent Application No. 100318/1982). It was discovered that it is possible to form a book (written in Japanese). Although these findings have greatly improved the magnetic properties and surface properties of products, they are still not in a satisfactory state. Separately, Japanese Patent Publication No. 57-2252 discloses that the surface of an Al-added unidirectional silicon steel sheet after finish annealing is irradiated with a laser beam at intervals of several mm approximately perpendicular to the rolling direction, resulting in a locally high dislocation density on the surface of the steel sheet. A method has been proposed in which the width of the magnetic domain is made finer by introducing regions to reduce iron loss. This manufacturing method aims to reduce iron loss by making the magnetic domain width finer, and is uniformly practical and has an excellent iron loss reduction effect.
There is a drawback that the effect of introducing plastic strain is diminished by heat treatment such as strain relief annealing after punching, shearing, and winding of a steel plate, and baking treatment of a coating. Very recently, Japanese Patent Application Laid-Open No. 1983-100221 and
Publication No. 100222 discloses that, before final annealing of unidirectional silicon steel, a steel plate strip is locally annealed to create a large primary recrystallization region, resulting in non-uniform secondary recrystallization. Methods for developing grains have been proposed. Unlike the artificial grain boundary introduction method using a laser beam, this manufacturing method is revolutionary because the magnetic properties do not deteriorate due to strain relief annealing, but it stabilizes large local areas of primary recrystallization in the steel sheet. There are still quite a few problems left to create. (Problems to be Solved by the Invention) The inventors have been conducting more detailed research on exploratory experiments to improve iron loss by effectively utilizing metallurgical techniques. In other words, the inventors found that in order to obtain a grain-oriented silicon steel sheet that exhibits a higher magnetic flux density and lower iron loss value, conventional investigation and investigation using X-ray diffraction alone is insufficient as it can only provide phenomenological considerations. Therefore, the inventors of the present invention
-33660 and Utility Model Application Publication No. 55-383349, we are proceeding with the development of a transmission cell device using a scanning electron image, and by using this device, we can collect the heat collected from the mid-process of a unidirectional silicon steel plate. As a result of detailed investigation of rolled plates, intermediate annealed plates, decarburized/primary recrystallized plates, initial secondary recrystallized plates, etc., we obtained new findings as listed below. (1) The source of secondary recrystallization nuclei of secondary recrystallized grains with the (110) [001] orientation exists at a depth of about 1/10 from the surface of the hot-rolled sheet in the elongated grains with the (110) [001] orientation. This occurs from a small area where no distortion exists. Furthermore, when a small amount of Mo is added to silicon steel, the (110)
The frequency of secondary recrystallization nuclei in the [001] orientation is approximately three times higher than in conventional materials. (2) The generation of secondary recrystallization nuclei in the (110) [001] orientation occurs in the process of primary cold rolling → intermediate annealing → secondary cold rolling → decarburization and primary recrystallization annealing due to structure memory from hot rolling. Inherited, 30~50μ from the steel plate surface
occurs preferentially at a depth of m. (3) Secondary recrystallization nuclei after decarburization and primary recrystallization annealing are crystal grains in large aggregates formed by the coalescence of several (110) [001] oriented primary recrystallization grains, and the matrix It is 2 to 6 times the size of a grain. Also this (110)
It is a feature that aggregates of primary recrystallized grains with a large [001] orientation are preferentially produced in clusters within a specific region extending in the rolling direction. (4) At the beginning of secondary recrystallization annealing (110) [001]
An aggregate of highly oriented crystal grains preferentially grows as one large crystal grain. Based on the above knowledge, the inventors investigated how to generate good secondary recrystallized nuclei in the (110) [001] orientation and how the secondary recrystallized nuclei should be inherited in the intermediate process. , fundamental examinations were made on heating, hot rolling, cold rolling and annealing. (Means for solving the problem) As a result, decarburization before secondary recrystallization annealing. By applying micro-strain to the steel plate surface during primary recrystallization annealing and at the same time applying non-uniform heat treatment, non-uniform Goss orientation 2
The inventors discovered that it is possible to manufacture unidirectional silicon steel sheets with low core loss and magnetic flux density by developing secondary recrystallized grains, and this led to the completion of this invention. This invention provides a method for producing a unidirectional silicon steel sheet in which the hot rolled unidirectional silicon steel sheet is subjected to one or more cold rolling processes, primary recrystallization annealing that also serves as decarburization, and final finish annealing process. During the primary recrystallization annealing, a micro-strain is applied near the surface of the steel sheet, and at the same time, by temperature transfer from a high temperature roll that backs up the uneven rolls using a plurality of uneven rolls, a 0.1 to 5 mm width 1 is applied in a direction approximately perpendicular to the rolling direction. This is a method for producing a unidirectional silicon steel sheet with high magnetic flux density and low iron loss, which is characterized by generating non-uniform secondary recrystallized grains with a Goss orientation by applying non-uniform heat treatment at intervals of ~20 mm. The configuration of this invention is developed as follows. For example, C0.045%, Si3.40%, Se0.020%, Mn0.067
%, Sb0.025%, Mo0.025% was hot-rolled to a thickness of 2.2 mm, and then uniformly annealed at 900℃ for 3 minutes, followed by intermediate annealing at 950℃ for 3 minutes.
The final cold-rolled sheet with a thickness of 0.3 mm is obtained by cold rolling twice, and then decarburized and primary recrystallization annealed in a wet hydrogen atmosphere at 820°C. micro-strain is applied using a leveler method, and then non-uniform heat treatment {this heat treatment is carried out by temperature transfer (800 ~
850℃)}. After that, an annealing separator mainly composed of MgO is applied to the surface of the steel sheet, and then secondary reconsolidation annealing is performed at 850°C for 50 hours and purification annealing is performed at 1180°C for 5 hours in hydrogen to produce a product. To compare the magnetic properties, experiments were also conducted in which only a small strain was applied by a leveler during decarburization and primary recrystallization annealing, or where only nonuniform heat treatment was applied. Table 1 shows the magnetic properties of the products based on the results of these series of experiments.

【表】 表1から明らかなように、 (a)の条件のレベラーで微小歪を導入すると同時
に不均一熱処理した場合の磁気特性はB10
1.92T,W17/50が0.96W/Kgと極端に良好であ
ることがわかる。 (b)の条件のレベラーによる微小歪の導入又は(c)
の条件の不均一熱処理の磁気特性は、B10
1.91T,W17/50が1.00〜1.01W/Kgで比較材
(B10が1.90T,W17/50が1.05W/Kg)よりも良
好ではあるが、(a)の条件にくらべて磁気特性が悪
い。 (作 用) このような鋼板表面近傍に微小歪を導入すると
同時に不均一熱処理を施したときの顕著な鉄損向
上の理由は、脱炭・1次再結晶焼鈍時に鋼板表面
近傍に優先生成した(110)〔001〕方位の2次再
結晶粒の核に微小歪を与えると同時に不均一焼鈍
において高温領域の(110)〔001〕方位結晶粒中
の歪エネルギーの解放を早くさせて(110)
〔001〕方位結晶粒を粗大化促進領域と(110)
〔001〕方位結晶粒の粗大化遅滞領域を作り出すこ
とより(110)〔001〕方位の2次再結晶粒の不均
一化が促進されたために鉄損の極めて低い製品が
得られたと考えられる。 以上、この発明をいくつかの先行技術と対比し
て説明したところから明らかなように、この発明
の構成は、先行の諸公知技術と発想の基本を異に
するものであつて、それによつて得られる特性向
上効果もはるかにすぐれていることがわかる。 次にこの発明の製造工程限定条件について述べ
る。この発明では従来公知の一方向性珪素鋼素材
成分、例えば、 (1) C0.01〜0.06%,Si2.0〜4.0%,Mn0.01〜0.2
%,Mo0.005〜0.05%,Sb0.005〜0.25%,Sあ
るいはSeを0.005〜0.05%含有する組成、 以下同様に、 (2) C0.01〜0.08%,Si2.0〜4.0%,Mn0.01〜0.2
%,Al0.01〜0.05%,S0.005〜0.05%,N0.001
〜0.01%を含有する組成、 (3) C0.01〜0.06%,Si2.0〜4.0%,Mn0.01〜0.2
%,SあるいはSeを0.005〜0.05,B0.0003〜
0.0040%,Cu0.1〜1.0%,N0.001〜0.01%を含
有する組成、 (4) C0.001〜0.015%,Si2.0〜4.0%,Mn0.005〜
0.05%,S0.001〜0.015%,Al0.01〜0.05%,
N0.001〜0.01%を含有する組成、 (5) C0.01〜0.06%,Si2.0〜4.0%,Mn0.01〜0.2
%,Sb0.005〜0.25%,SあるいはSeを0.005〜
0.05%含有する組成あるいは、 (6) C0.01〜0.06%,Si2.0〜4.0%,Mn0.01〜0.2
%,SあるいはSeを0.005〜0.05%含有する組
成などいずれもが適用可能である。 これらの珪素鋼素材成分を公知の方法で加熱、
熱延して通常2〜4mm厚程度の熱延板とする。 次に熱延板は通常800〜1100℃で均一化焼鈍を
したあと、冷延される。冷延は1回の圧延で最終
板厚とする1回冷延法かまたは850〜1050℃の中
間焼鈍をはさんで2回の圧延を施し、最初の圧下
率は50%から80%程度、最終の圧下率は50%から
85%程度で0.2mmから0.35mm厚の最終板厚とする
2回冷延法のいずれでもよい。なお、通常仕上り
板厚は、0.3mmとされることが多い。 最終冷延を終り、製品板厚に仕上げた鋼板は、
表面脱脂後750〜850℃の温度範囲で湿水素中で脱
炭・1次再結晶焼鈍を施される。 この発明では鋼板表面近傍に微小歪を導入する
こと、またそれと同時に鋼板上に不均一熱処理を
施すことを必須とする。 まず微小歪導入に関しては数%の歪となるスキ
ンパスのような圧延方法では磁気特性がむしろ劣
化するので、微小ひずみ導入方法は例えば第1図
のAからHまでに示すようなロール径50〜200mm
程度のレベラー方式による微小歪(圧延歪で0.5
%以下)であれば充分であり、その他公知のいず
れの微小歪導入法を用いてもよい。このような微
小歪を導入するとともにこの発明では鋼板上に不
均一熱処理を行なうことが必須であるが、鋼板に
このような熱処理を行なうには、例えば第1図の
C,D,E,Fに示すような径50〜200mm程度の
ロール表面に圧延方向にほぼ直角方向になるよう
に凹凸を付してロールを使用し、これらをバツク
アツプする斜線で示すI〜Lの高温度のロールか
ら転写させる方法で行なうのが理想的であり、こ
の不均一熱処理領域は0.1〜5mm幅,1〜20mm間
隔であれば2次再結晶核の不均一成長を促進する
のに有効である。 このような処理を施した後、鋼板表面にMgO
を主成分とする焼鈍分離剤を塗布したあと、2次
再結晶焼鈍が施される。この2次再結晶焼鈍は、
(110)〔001〕方位の2次再結晶粒を充分発達させ
るため施されるもので、通常箱焼鈍によつて直ち
に1000℃以上に昇温し、その温度に保持すること
によつて行なわれる。この2次再結晶焼鈍は
(110)〔001〕方位に高度に揃つた2次再結晶粒を
発達させるために820℃から900℃の低温で保定焼
鈍する方が有利であるが、そのほか例えば0.5〜
15℃/hの昇温速度の徐熱焼鈍でも良い。 次にこの発明の実施例について説明する。 実施例 1 C0.046%,Si3.38%,Mn0.062%,Se0.021%,
Mo0.035%,Sb0.020%を含み残部実質的にFeよ
りなる組成のスラブを熱延して2.6mm厚の熱延板
とした。この熱延板に900℃で3分間の均一焼鈍
を施した後、950℃で3分間の中間焼鈍をはさん
で2回の冷間圧延を行なつて0.3mmおよび0.23mm
厚の最終冷延板とした。その後、820℃湿水素中
で脱炭・1次再結晶焼鈍時に、 第1図の方法により微小歪を導入すると同時に
不均一熱処理を施した後、鋼板表面上にMgOを
主成分とする焼鈍分離剤を塗布した。その後、
850℃で50時間の2次再結晶焼鈍と、水素中で
1180℃で5時間の純化焼鈍を施した。そのときの
製品の磁気特性は次のようであつた。 0.30mm厚の製品 B10:1.92T,W17/50:
0.96W/Kg 0.23mm厚の製品 B10:1.91T,W17/50:
0.76W/Kg 実施例 2 C0.05%,Si3.25%,Mn0.082%,S0.020%,
Al0.025%,Cu0.08%,Sn0.02%を含み残部実質
的にFeよりなる組成のスラブを熱延して2.0mm厚
の熱延板とした。その後、1050℃で3分間の均一
化焼鈍後急冷処理を施した後、約250℃で温間圧
延して0.23mm厚の最終冷延板とした。ついで850
℃湿水素中で脱炭・1次再結晶焼鈍時に、第1図
の方法により微小歪を導入すると同時に不均一熱
処理を施した後、鋼板表面上にMgOを主成分と
する焼鈍分離剤を塗布した。その後850℃から
1050℃まで6℃/hrで昇温して2次再結晶焼鈍を
施した後、1200℃で10時間乾水素中で純化焼鈍を
施した。そのときの製品の磁気特性は次のようで
あつた。 B10:1.93T,W17/50:0.78W/Kg 実施例 3 C0.046%,Si3.26%,Mn0.049%,S0.028%,
B0.0029%,Cu0.3%,N0.0049%を含み、残部実
質的にFeよりなる珪素鋼スラブを1320℃で4時
間加熱後熱延して1.8mm厚の圧延板とした。その
後1050℃で30分間の均一化焼鈍を施して後、1回
強冷延を行なつて0.30mm厚の最終冷延板とした
後、その後800℃の湿水素中で脱炭・1次再結晶
焼鈍後に、第1図の方法により微小歪を導入する
と同時に不均一熱処理を施した後、鋼板表面上に
MgOを主成分とする焼鈍分離剤を塗布した。そ
の後820℃から5℃/hrで1050℃まで昇温して2
次再結晶させた後、1200℃で8時間乾H2中で純
化焼鈍を施した。そのときの磁気特性は次のよう
であつた。 B10=1.92T,W17/50=0.97W/Kg 実施例 4 C0.009%,Si3.18%,Mn0.045%,S0.008%,
Al0.028%,N0.0069%を含み、残部実質的にFe
よりなる珪素鋼スラブを1230℃で6時間加熱後、
熱延して2.0mm厚の熱延板とした。その後980℃で
3分間の均一化焼鈍後急冷処理した後約300℃で
温間圧延を施して0.30mm厚の最終冷延板とした。
ついで830℃の湿水素中で脱炭・1次再結晶焼鈍
時に、第1図の方法により微小歪を導入すると同
時に不均一歪を導入した後、温度傾斜炉(1220℃
の最高温度)の中へ鋼板を、温度勾配30℃/cm,
10cm/hrで降下させて2次再結晶させた後、1200
℃で8時間乾H2で純化焼鈍を行なつた。そのと
きの製品の磁気特性は次のようであつた。 B10=1.96T,W17/50=0.99W/Kg 実施例 5 C0.043%,Si3.26%,Mn0.066%,Sb0.023%,
Se0.020%を含み、残部実質的にFeよりなる珪素
鋼スラブを1390℃で4時間加熱後、熱延して2.4
mm厚の熱延板とした、その後950℃で3分間の中
間焼鈍をはさんで2回の冷延圧延を施して0.27mm
厚の最終冷延板とした。その後820℃の湿水素中
で脱炭・1次再結晶焼鈍を施した後、第1図に示
す方法により微小歪を導入すると同時に、不均一
熱処理を施した後、鋼板表面上にMgOを主成分
とする焼鈍分離剤をスラリー塗布した。その後
850℃で40時間の2次再結晶焼鈍後、ひきつづき
1180℃で6時間乾H2中で純化焼鈍を行なつた。
そのときの製品の磁気特性は次のようであつた。 B10=1.91T,W17/50=0.91W/Kg 実施例 6 C0.039%,Si3.21%,Mn0.062%,S0.018%を
含み、残部実質的にFeよりなる熱延板(2.4mm
厚)を900℃で3分間の中間焼鈍をはさんで2回
の冷間圧延を施して0.3mm厚の最終冷延板とし
た。その後800℃湿水素中で脱炭・1次再結晶焼
鈍時を行なつた後、第1図の方法により微小歪を
導入すると同時に不均一熱処理を施した後、鋼板
表面上にMgOを主成分とする焼鈍分.剤を塗布
した。その後850℃で50時間の2次再結晶焼鈍と
水素中で1200℃で8時間の純化焼鈍を施した。そ
のときの製品の磁気特性は次のようであつた。 B10=1.90T,W17/50=1.10W/Kg
[Table] As is clear from Table 1, the magnetic properties of B 10 when microstrain is introduced using the leveler under condition (a) and non-uniform heat treatment is applied at the same time.
It can be seen that 1.92T, W17/50 is extremely good at 0.96W/Kg. Introducing minute strain using a leveler under conditions (b) or (c)
The magnetic properties of non-uniform heat treatment under the conditions of B 10 are
1.91T, W17/50 is 1.00 to 1.01W/Kg, which is better than the comparison material (B 10 is 1.90T, W17/50 is 1.05W/Kg), but the magnetic properties are lower than the condition (a). bad. (Function) The reason for the remarkable improvement in iron loss when micro-strain is introduced near the surface of the steel sheet and nonuniform heat treatment is applied at the same time is that iron loss is preferentially generated near the surface of the steel sheet during decarburization and primary recrystallization annealing. At the same time, by imparting micro-strain to the nuclei of secondary recrystallized grains with the (110) [001] orientation, the release of strain energy in the (110) [001] grains in the high-temperature region during non-uniform annealing is accelerated. )
[001] oriented crystal grains as a region that promotes coarsening and (110)
It is thought that by creating a coarsening retardation region of the [001] oriented crystal grains, the non-uniformity of the secondary recrystallized grains of the (110) [001] orientation was promoted, resulting in a product with extremely low iron loss. As is clear from the above description of the present invention in comparison with several prior art techniques, the structure of the present invention differs from the prior art in basic concept, and thus It can be seen that the property improvement effect obtained is also far superior. Next, the limiting conditions of the manufacturing process of this invention will be described. In this invention, conventionally known unidirectional silicon steel material components are used, for example, (1) C0.01~0.06%, Si2.0~4.0%, Mn0.01~0.2
%, Mo0.005~0.05%, Sb0.005~0.25%, composition containing S or Se 0.005~0.05%, and so on. (2) C0.01~0.08%, Si2.0~4.0%, Mn0 .01~0.2
%, Al0.01~0.05%, S0.005~0.05%, N0.001
Composition containing ~0.01%, (3) C0.01~0.06%, Si2.0~4.0%, Mn0.01~0.2
%, S or Se from 0.005 to 0.05, B0.0003 to
Composition containing 0.0040%, Cu0.1~1.0%, N0.001~0.01%, (4) C0.001~0.015%, Si2.0~4.0%, Mn0.005~
0.05%, S0.001~0.015%, Al0.01~0.05%,
Composition containing N0.001~0.01%, (5) C0.01~0.06%, Si2.0~4.0%, Mn0.01~0.2
%, Sb0.005~0.25%, S or Se 0.005~
Composition containing 0.05% or (6) C0.01~0.06%, Si2.0~4.0%, Mn0.01~0.2
%, S, or a composition containing 0.005 to 0.05% Se. These silicon steel material components are heated by a known method,
It is hot-rolled into a hot-rolled sheet with a thickness of usually about 2 to 4 mm. Next, the hot-rolled sheet is usually uniformly annealed at 800 to 1100°C and then cold rolled. Cold rolling is done either by a single cold rolling method in which the final plate thickness is reached in one rolling process, or by rolling twice with intermediate annealing at 850 to 1050°C, with an initial reduction rate of about 50% to 80%. Final reduction rate starts from 50%
Any two-time cold rolling method that produces a final plate thickness of about 85% and a final thickness of 0.2 mm to 0.35 mm may be used. Note that the normal finished plate thickness is often 0.3 mm. After the final cold rolling, the steel plate finished to the product thickness is
After surface degreasing, decarburization and primary recrystallization annealing are performed in wet hydrogen at a temperature range of 750 to 850°C. In this invention, it is essential to introduce a minute strain near the surface of the steel plate, and at the same time to perform non-uniform heat treatment on the steel plate. First of all, regarding the introduction of microstrain, rolling methods such as skin pass that produce a strain of several percent actually deteriorate the magnetic properties, so microstrain introduction methods are recommended, for example, by rolling with a roll diameter of 50 to 200 mm as shown from A to H in Figure 1.
Minimum strain (rolling strain of 0.5
% or less) is sufficient, and any other known micro-strain introduction methods may be used. In addition to introducing such micro-strains, it is essential to perform non-uniform heat treatment on the steel plate in this invention, but in order to perform such heat treatment on the steel plate, for example, A roll with a diameter of about 50 to 200 mm as shown in the figure is used with unevenness on the surface almost perpendicular to the rolling direction, and these are transferred from the high temperature rolls I to L shown by the diagonal lines that back up the rolls. Ideally, the nonuniform heat treatment region should be 0.1 to 5 mm wide and 1 to 20 mm apart, which is effective in promoting nonuniform growth of secondary recrystallization nuclei. After such treatment, MgO is added to the surface of the steel sheet.
After applying an annealing separator mainly composed of, secondary recrystallization annealing is performed. This secondary recrystallization annealing is
This is done to sufficiently develop secondary recrystallized grains with the (110) [001] orientation, and is usually carried out by box annealing, which immediately raises the temperature to 1000℃ or higher and maintains it at that temperature. . For this secondary recrystallization annealing, it is more advantageous to perform holding annealing at a low temperature of 820°C to 900°C in order to develop secondary recrystallized grains that are highly aligned in the (110) [001] orientation. ~
Slow annealing with a heating rate of 15°C/h may also be used. Next, embodiments of this invention will be described. Example 1 C0.046%, Si3.38%, Mn0.062%, Se0.021%,
A slab with a composition of 0.035% Mo, 0.020% Sb, and the remainder substantially Fe was hot-rolled to form a hot-rolled sheet with a thickness of 2.6 mm. This hot-rolled sheet was uniformly annealed at 900°C for 3 minutes, then cold-rolled twice with an intermediate annealing of 3 minutes at 950°C to 0.3mm and 0.23mm.
A thick final cold-rolled sheet was obtained. After that, during decarburization and primary recrystallization annealing in wet hydrogen at 820°C, micro-strains are introduced using the method shown in Figure 1, and at the same time a non-uniform heat treatment is applied, after which annealing separation with MgO as the main component appears on the surface of the steel sheet. The agent was applied. after that,
Secondary recrystallization annealing at 850℃ for 50 hours and in hydrogen
Purification annealing was performed at 1180°C for 5 hours. The magnetic properties of the product at that time were as follows. 0.30mm thick product B 10 : 1.92T, W17/50:
0.96W/Kg 0.23mm thick product B 10 : 1.91T, W17/50:
0.76W/Kg Example 2 C0.05%, Si3.25%, Mn0.082%, S0.020%,
A slab with a composition of 0.025% Al, 0.08% Cu, and 0.02% Sn, with the remainder essentially Fe was hot-rolled to form a hot-rolled sheet with a thickness of 2.0 mm. Thereafter, it was homogenized annealed for 3 minutes at 1050°C and then rapidly cooled, followed by warm rolling at about 250°C to obtain a final cold-rolled sheet with a thickness of 0.23 mm. Then 850
During decarburization and primary recrystallization annealing in wet hydrogen at ℃, micro-strain is introduced using the method shown in Figure 1, and at the same time non-uniform heat treatment is applied, after which an annealing separator mainly composed of MgO is applied to the steel plate surface. did. Then from 850℃
After performing secondary recrystallization annealing by raising the temperature to 1050°C at a rate of 6°C/hr, purification annealing was performed at 1200°C for 10 hours in dry hydrogen. The magnetic properties of the product at that time were as follows. B 10 : 1.93T, W17/50: 0.78W/Kg Example 3 C0.046%, Si3.26%, Mn0.049%, S0.028%,
A silicon steel slab containing 0.0029% B, 0.3% Cu, and 0.0049% N, with the remainder essentially Fe was heated at 1320°C for 4 hours and then hot rolled to form a rolled plate with a thickness of 1.8 mm. After that, homogenization annealing was performed at 1050℃ for 30 minutes, followed by strong cold rolling once to obtain a final cold rolled sheet with a thickness of 0.30mm, followed by decarburization and primary re-rolling in wet hydrogen at 800℃. After crystal annealing, micro-strain is introduced using the method shown in Figure 1, and at the same time, non-uniform heat treatment is applied.
An annealing separator containing MgO as the main component was applied. After that, the temperature was raised from 820℃ to 1050℃ at 5℃/hr.
After recrystallization, purification annealing was performed in dry H 2 at 1200° C. for 8 hours. The magnetic properties at that time were as follows. B 10 = 1.92T, W17/50 = 0.97W/Kg Example 4 C0.009%, Si3.18%, Mn0.045%, S0.008%,
Contains Al0.028%, N0.0069%, the balance is essentially Fe
After heating the silicon steel slab at 1230℃ for 6 hours,
It was hot-rolled into a hot-rolled sheet with a thickness of 2.0 mm. Thereafter, it was uniformly annealed at 980°C for 3 minutes and then rapidly cooled, followed by warm rolling at about 300°C to obtain a final cold-rolled plate with a thickness of 0.30 mm.
Then, during decarburization and primary recrystallization annealing in wet hydrogen at 830°C, microstrain was introduced by the method shown in Figure 1, and at the same time non-uniform strain was introduced.
temperature gradient of 30℃/cm,
After secondary recrystallization by dropping at 10cm/hr, 1200
Purification annealing was carried out in dry H 2 for 8 hours at °C. The magnetic properties of the product at that time were as follows. B 10 = 1.96T, W17/50 = 0.99W/Kg Example 5 C0.043%, Si3.26%, Mn0.066%, Sb0.023%,
A silicon steel slab containing 0.020% Se and the remainder substantially Fe was heated at 1390℃ for 4 hours, then hot rolled to 2.4%
It was made into a hot-rolled sheet with a thickness of mm, and then cold-rolled twice with an intermediate annealing of 3 minutes at 950°C to a thickness of 0.27mm.
A thick final cold-rolled sheet was obtained. After that, after decarburization and primary recrystallization annealing in wet hydrogen at 820°C, microstrain was introduced by the method shown in Figure 1, and at the same time, after nonuniform heat treatment, MgO was mainly deposited on the surface of the steel sheet. The annealing separator as a component was applied as a slurry. after that
After secondary recrystallization annealing at 850℃ for 40 hours,
Purification annealing was carried out in dry H 2 at 1180° C. for 6 hours.
The magnetic properties of the product at that time were as follows. B 10 = 1.91T, W17/50 = 0.91W/Kg Example 6 A hot-rolled sheet containing 0.039% C, 3.21% Si, 0.062% Mn, 0.018% S, and the remainder substantially consisting of Fe ( 2.4mm
(thickness) was cold-rolled twice with intermediate annealing at 900°C for 3 minutes to obtain a final cold-rolled sheet with a thickness of 0.3 mm. After that, after decarburization and primary recrystallization annealing in wet hydrogen at 800°C, micro-strain was introduced by the method shown in Figure 1, and at the same time a non-uniform heat treatment was performed. The annealing portion. The agent was applied. Thereafter, secondary recrystallization annealing was performed at 850°C for 50 hours and purification annealing at 1200°C for 8 hours in hydrogen. The magnetic properties of the product at that time were as follows. B 10 = 1.90T, W17/50 = 1.10W/Kg

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は微小歪導入と同時に不均一熱処理を行
なう方法を示す模式図である。
FIG. 1 is a schematic diagram showing a method of performing nonuniform heat treatment at the same time as introducing minute strain.

Claims (1)

【特許請求の範囲】 1 一方向性珪素鋼熱延板を1回以上の冷延過
程、脱炭を兼ねる1次再結晶焼鈍ならびに最終仕
上焼鈍過程に供する一方向性珪素鋼板の製造方法
において、 脱炭・1次再結晶焼鈍時の鋼板表面近傍に微少
歪を附し、 同時に複数の凹凸ロールによる、該凹凸ロール
をバツクアツプする高温ロールからの温度転写に
より圧延方向にほぼ直角方向に0.1〜5mm幅、1
〜20mm間隔にて不均一熱処理を施すことにより
Goss方位の不均一2次再結晶粒を発生させるこ
とを特徴とする高磁束密度・低鉄損一方向性珪素
鋼板の製造方法。
[Scope of Claims] 1. A method for producing a unidirectional silicon steel sheet in which the unidirectional hot rolled silicon steel sheet is subjected to one or more cold rolling processes, primary recrystallization annealing that also serves as decarburization, and final finishing annealing process, During decarburization and primary recrystallization annealing, a slight strain is applied near the surface of the steel sheet, and at the same time, the temperature transfer from the high-temperature rolls that back up the uneven rolls by multiple uneven rolls causes a distortion of 0.1 to 5 mm in a direction approximately perpendicular to the rolling direction. Width, 1
By applying non-uniform heat treatment at ~20mm intervals
A method for producing a unidirectional silicon steel sheet with high magnetic flux density and low iron loss, characterized by generating non-uniform secondary recrystallized grains with Goss orientation.
JP26174084A 1984-12-13 1984-12-13 Production of unidirectional silicon steel sheet having very high magnetic flux density and small iron loss Granted JPS61139624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26174084A JPS61139624A (en) 1984-12-13 1984-12-13 Production of unidirectional silicon steel sheet having very high magnetic flux density and small iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26174084A JPS61139624A (en) 1984-12-13 1984-12-13 Production of unidirectional silicon steel sheet having very high magnetic flux density and small iron loss

Publications (2)

Publication Number Publication Date
JPS61139624A JPS61139624A (en) 1986-06-26
JPS6257689B2 true JPS6257689B2 (en) 1987-12-02

Family

ID=17366045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26174084A Granted JPS61139624A (en) 1984-12-13 1984-12-13 Production of unidirectional silicon steel sheet having very high magnetic flux density and small iron loss

Country Status (1)

Country Link
JP (1) JPS61139624A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570287U (en) * 1991-11-25 1993-09-24 株式会社昭和丸筒 Food support stick
JP3044725U (en) * 1997-06-24 1998-01-16 レティエリズ, インコーポレイテッド Foreskin food

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533409A (en) * 1984-12-19 1985-08-06 Allegheny Ludlum Steel Corporation Method and apparatus for reducing core losses of grain-oriented silicon steel
CN118591649A (en) * 2022-03-31 2024-09-03 日本制铁株式会社 Grain-oriented electrical steel sheet and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570287U (en) * 1991-11-25 1993-09-24 株式会社昭和丸筒 Food support stick
JP3044725U (en) * 1997-06-24 1998-01-16 レティエリズ, インコーポレイテッド Foreskin food

Also Published As

Publication number Publication date
JPS61139624A (en) 1986-06-26

Similar Documents

Publication Publication Date Title
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
WO2019131853A1 (en) Low-iron-loss grain-oriented electrical steel sheet and production method for same
JPH05171280A (en) Production of nonoriented silicon steel sheet having superior magnetic property and excellent in external surface appearance
JPH06136449A (en) Production of low iron loss grain-oriented silicon steel sheet
JP2003171718A (en) Manufacturing method of magnetic steel sheet of excellent mean magnetic characteristic in rolled surface
JP4268042B2 (en) Method for producing (110) [001] grain-oriented electrical steel using strip casting
JPS6257689B2 (en)
JP2001303261A (en) Low core loss, grain-oriented silicon steel sheet having tension-applied anisotropic film
JPH0768580B2 (en) High magnetic flux density grain-oriented electrical steel sheet with excellent iron loss
JP2679928B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH01100223A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density and low iron loss
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film
JP2762105B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with good iron loss characteristics
JP3067164B2 (en) Manufacturing method of ultra-low iron loss unidirectional ultra-thin silicon steel sheet
JPH02259016A (en) Manufacturing method of unidirectional electrical steel sheet without surface swelling defects
JPH03287725A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JPH03260022A (en) Method for radiating linear eb
JPH0663037B2 (en) Method for producing grain-oriented electrical steel sheet with low iron loss
JP2560090B2 (en) Non-oriented electrical steel sheet manufacturing method
JP3485475B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPS63186825A (en) Production of grain-orientated silicon steel plate having high magnetic flux density and low iron loss
JPH0798976B2 (en) Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss
JPH03104823A (en) Production of grain-oriented silicon steel sheet with superlow iron loss
JPH0353022A (en) Manufacture of low core loss-high magnetic flux density nonoriented silicon steel sheet
JPH0257125B2 (en)