[go: up one dir, main page]

JPS6256923A - Optical isolator - Google Patents

Optical isolator

Info

Publication number
JPS6256923A
JPS6256923A JP19725385A JP19725385A JPS6256923A JP S6256923 A JPS6256923 A JP S6256923A JP 19725385 A JP19725385 A JP 19725385A JP 19725385 A JP19725385 A JP 19725385A JP S6256923 A JPS6256923 A JP S6256923A
Authority
JP
Japan
Prior art keywords
light
polarized light
phase plate
polarizer
optical isolator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19725385A
Other languages
Japanese (ja)
Inventor
Atsuyuki Watada
篤行 和多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP19725385A priority Critical patent/JPS6256923A/en
Publication of JPS6256923A publication Critical patent/JPS6256923A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/093Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To obtain an excellent splitting function without reference to an ellipticity angle by providing a Faraday element which rotates a plane of polarization by 45 deg. and a phase plate which has a phase difference in specific relation with the ellipticity angle. CONSTITUTION:Incident light L1 is passed through a polarizer 16 to become linear polarized light, which is incident on a Faraday rotator 10; and its plane of polarization is rotated by 45 deg. to obtain elliptic polarized light having an ellipticity angle X, which is transmitted through the phase plate 14 having a phase difference delta having relation sindelta>=sin2X with the angle X to becomes linear polarized light, which is transmitted through an analyzer 18 to obtain light L2. Return light L3 obtained by its reflection is passed through an analyzer 18 and the phase plate 14 and made into linear polarized light by the rotator 10, but it crosses the polarization direction of the polarizer 16 and is cut off by the polarizer 16. Thus, the splitting function if made invariably excellent without reference to the ellipticity angle X.

Description

【発明の詳細な説明】 (技術分野) 本発明は、光アイソレーターに関する。[Detailed description of the invention] (Technical field) The present invention relates to optical isolators.

(従来技術) 光磁気ディスク用ヘッドでは、ディスクに直線偏光う・
照射する必要があるところから、一般に、ファラデー素
子を用いた光アイソレーターが用いられる。
(Prior art) In magneto-optical disk heads, linearly polarized light is applied to the disk.
Generally, an optical isolator using a Faraday element is used because of the need for irradiation.

ところで、ファラデー素子は、偏’/l in1’;x
回転させると同時に、直線偏光を楕円偏光とする性能を
もっている。上記Ift円偏光の楕円、異を大ぎくする
ファラデー素子を光アイソレーターに使用すると、分離
機能(アイソレーア:Iン)が悪くなり、ノイズ増加の
原因となる。
By the way, the Faraday element has a polarization '/l in1';x
It has the ability to rotate and simultaneously convert linearly polarized light into elliptically polarized light. If a Faraday element that greatly increases the ellipse and difference of the Ift circularly polarized light is used in an optical isolator, the separation function (isolaire: In) will deteriorate, causing an increase in noise.

このため、従来は、楕円率角Xのなるべく示さいファラ
デー素子が要請され、ファラデー素子の材料選択の余地
がせまかった。
For this reason, in the past, a Faraday element with an ellipticity angle X as large as possible was required, and there was limited room for selecting the material of the Faraday element.

(目  的) 本発明は、上述した事情に鑑みてなされたものであって
、その目的とするところは、楕円率角X()O)の如何
に拘らず、分離機能の優れた、新規な光アイソレーター
の提供にある。
(Purpose) The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a novel method with excellent separation function regardless of the ellipticity angle X()O). Providing optical isolators.

(構 成) 以下、本発明を説明する。(composition) The present invention will be explained below.

本発明の光アイソレーターは、ファラデー素子と、位相
板と、を有する。
The optical isolator of the present invention includes a Faraday element and a phase plate.

ファラデー素子は、偏光面を45度回転させるようにフ
ァラデー回転角を設定される。
The Faraday rotation angle of the Faraday element is set to rotate the plane of polarization by 45 degrees.

位相板は、位相差δを有するが、この位°相士δは、フ
ァラデー素子の与える楕円半角をXとすると、このXに
対し、sinδ≧sin 2X なる関係を満足する。
The phase plate has a phase difference δ, and this phase shifter δ satisfies the relationship sin δ≧sin 2X with respect to X, where X is the ellipse half angle provided by the Faraday element.

直線偏光は、光アイソレーターのファラデー素子に入射
する。
The linearly polarized light is incident on the Faraday element of the optical isolator.

すると、光アイソレーターを透過した光は、その偏光面
が45度向回転るとともに、楕円率角Xを有する楕円偏
光となる。この楕円偏光はついで、位相板を透過する。
Then, the light transmitted through the optical isolator has its plane of polarization rotated by 45 degrees and becomes elliptically polarized light having an ellipticity angle X. This elliptically polarized light then passes through a phase plate.

位相板の位相差δと上記楕円率角Xとの間の関係sin
δ≧5in2XKより、位相板?透過した光は、再び直
線偏光となる。
The relationship sin between the phase difference δ of the phase plate and the above ellipticity angle X
From δ≧5in2XK, phase plate? The transmitted light becomes linearly polarized light again.

以下、図面を参照しながら、説明する。Description will be given below with reference to the drawings.

J□ 1図は、本発明を実施した光アイソレーターの1
例f/説明図的に示している。
J□ Figure 1 shows one of the optical isolators implementing the present invention.
Example f/Illustrated diagrammatically.

この光アイソレーターは、ファラデー回転子10と、磁
界発生手段たる永久磁石12A、  12Bと、位相板
14と、偏光子16と検光子18とによって構成されて
いる。
This optical isolator includes a Faraday rotator 10, permanent magnets 12A and 12B serving as magnetic field generating means, a phase plate 14, a polarizer 16, and an analyzer 18.

ファラデー回転子10と、永久磁石12A、  12B
とはファラデー素子を構成する。
Faraday rotator 10 and permanent magnets 12A and 12B
constitutes a Faraday element.

ファラデー回転角10としては、例えば、ビスマス置換
ガドリウム鉄ガーネットの単結晶を、ファラデー回転角
が45度になるように研摩したものを用いることができ
る。また、永久磁石12A、  12Bとしては、Sm
Co  磁石が好適である。ツーアラデー回転子10と
して、上記単結晶を用いる場合には、ファラデー回転子
10に、2にエルステッド極度の磁界が作用するように
する。
As the Faraday rotation angle 10, for example, a single crystal of bismuth-substituted gadolinium iron garnet polished so that the Faraday rotation angle becomes 45 degrees can be used. Moreover, as the permanent magnets 12A and 12B, Sm
Co magnets are preferred. When the above-mentioned single crystal is used as the Faraday rotator 10, an extreme Oersted magnetic field is applied to the Faraday rotator 10.

位相板18としては、2枚の水晶板を張り合せたものを
用いることができる。もちろん、その位相差δは、ファ
ラデー素子の与える楕円率角XVc対し、関係sinδ
≧5in2X  を満足しなければならない。
As the phase plate 18, one made by laminating two crystal plates together can be used. Of course, the phase difference δ has the relationship sin δ with respect to the ellipticity angle XVc given by the Faraday element.
≧5in2X must be satisfied.

また、偏光子16.検光子18としては、2色性偏光フ
ィルターな用いることができる。
In addition, polarizer 16. As the analyzer 18, a dichroic polarizing filter can be used.

さ℃、第1図において、光アイソレーターの左方から、
光L1  が入射すると、この光L1ハ、偏光子16を
透過すると、直線偏光となって、ファラデー回転子10
に入射し、これを透過すると、偏光面が45度(ロ)転
し、同時に、楕円率角Xの楕円偏光となる。この楕円偏
光は次いで、位相板14を透過し、再び直線偏光となる
。すなわち、位相板140角は、位相板14からの右方
への射出光が、直線偏光となるように調整される。この
とき、位相板14の光軸方向と入射楕円偏光光の楕円偏
光の長軸方向との角ψが、sib 2cp = sin
 2X / sinδなる関係を満足する。
From the left side of the optical isolator in Figure 1,
When the light L1 is incident, this light L1 passes through the polarizer 16, becomes linearly polarized light, and is transferred to the Faraday rotator 10.
When the light is incident on and transmitted through it, the plane of polarization is rotated by 45 degrees, and at the same time it becomes elliptically polarized light with an ellipticity angle of X. This elliptically polarized light then passes through the phase plate 14 and becomes linearly polarized light again. That is, the angle of the phase plate 140 is adjusted so that the light emitted to the right from the phase plate 14 becomes linearly polarized light. At this time, the angle ψ between the optical axis direction of the phase plate 14 and the major axis direction of the elliptically polarized light of the incident elliptically polarized light is sib 2cp = sin
The relationship 2X/sin δ is satisfied.

かくして得られる直線偏光は検光子18Vc入射する。The linearly polarized light thus obtained is incident on the analyzer 18Vc.

検光子18は、この入射直線偏光の偏光面の方向に偏光
方向を訓1整されており、従って、上記直線偏光は、光
L2  となって、光アイソレーターの右方へと仮軸し
ていく。
The analyzer 18 has its polarization direction aligned in the direction of the polarization plane of this incident linearly polarized light, and therefore, the linearly polarized light becomes light L2 and tentatively pivots to the right of the optical isolator. .

光L2  の、反射による戻り光L6  が、光アイソ
レーターに右方から入射すると、この光は、検光子18
、位相板14を透過し、楕円偏光となってファラデー回
転子10に入射する。そしてファラデー回転子10ケ左
方へ透過すると、直線偏光となるが、その偏光方向は、
偏光子16の偏光方向と直交する方向となっ℃おり、従
って、この戻り光は、偏光子16によって遮断され、光
アイソレーターの左方へ仮軸することはない。
When the reflected light L6 of the light L2 enters the optical isolator from the right, this light passes through the analyzer 18.
, passes through the phase plate 14, becomes elliptically polarized light, and enters the Faraday rotator 10. Then, when it passes through 10 Faraday rotators to the left, it becomes linearly polarized light, but the polarization direction is
The direction is perpendicular to the polarization direction of the polarizer 16, and therefore, this returned light is blocked by the polarizer 16 and will not be tentatively oriented to the left of the optical isolator.

ところで、本発明の光アイソレーターに必要かくべから
ざる要素は、ファラデー素子と、位相板である。1・1
図に示す実施例では、このほかlで、偏光子、検光子が
付加されている。
Incidentally, the essential elements for the optical isolator of the present invention are a Faraday element and a phase plate. 1・1
In the embodiment shown in the figure, a polarizer and an analyzer are also added at l.

以下、上記偏光子、検光子なしでも、光アイソレーター
として機能が可能であることを説明する。
Hereinafter, it will be explained that it is possible to function as an optical isolator even without the polarizer and analyzer described above.

ます、検光子18についてのべると、3・1図の実施例
において、検光子18は、磁気光学的な効果により、戻
り光L6  の偏光面が、光L2  の偏光面の方向か
ら回転しているような場合に、回転した成分を遮断する
ため、また、他の光学素子による偏光への影響を除去す
るために用いられている。このような成分や影響は、一
般VC彼弱なもので−あるから、さほどの精度を要求さ
れない場合には、この検光子は不要である。
Regarding the analyzer 18, in the embodiment shown in Figure 3.1, the analyzer 18 rotates the polarization plane of the return light L6 from the direction of the polarization plane of the light L2 due to magneto-optical effects. In such cases, it is used to block the rotated component and to eliminate the influence of other optical elements on polarization. Since such components and influences are weak in general VC, this analyzer is not necessary if very high accuracy is not required.

次に偏光子16について見ると、この偏光子16は、フ
ァラデー回転子10に入射する光L1  を直線偏光と
するための機能と、戻り光L6  を遮断して、その、
光アイソレーター左方への伝幡を防止する(表能とを有
している。
Next, looking at the polarizer 16, this polarizer 16 has the function of linearly polarizing the light L1 incident on the Faraday rotator 10, and blocking the returning light L6.
Optical isolator prevents propagation to the left (has a surface function).

ところで、光アイソレーターの一般的な使用態様では、
光アイソレーターは、半導体レーザーに対して用いられ
、半導体レーザーに戻り光が入射して、レーザー発振に
ノイズとして作用するのを防止する。
By the way, in the general usage of optical isolators,
Optical isolators are used for semiconductor lasers to prevent returning light from entering the semiconductor laser and acting as noise on laser oscillation.

しかるに、周知の如く、ソングルモードの半導体レーザ
ーでは、射出光は当初から直@ 1ii6光しており、
しかも、この射出光と直交する方向の偏光成分が入射し
ても、レーザー発振は影−pl受けない。そこで、光W
たる半導体レーザーとともに、不発明の光アイソレータ
ー?用いる場合には、偏光子16を除去しても、半専体
!/−サーに尿る戻り光は、同レーザーの射出光とif
i元方同方向交し℃おり、レーザー発振に何ら影響を与
えない。
However, as is well known, in the songle mode semiconductor laser, the emitted light is a direct @ 1ii6 light from the beginning.
Moreover, even if a polarized light component in a direction perpendicular to this emitted light is incident, the laser oscillation is not affected by the shadow -pl. Therefore, light W
An uninvented optical isolator along with a solid semiconductor laser? When used, even if the polarizer 16 is removed, it is only semi-dedicated! /-The return light that enters the laser is the same as the emitted light of the same laser if
The two sides intersect in the same direction and have no effect on laser oscillation.

従って、ンングルモードの半導体レーザーとともに用い
る場合、ファラデー素子と位相板のみで構成された光ア
イソレーターで、十分光アイソレーターとしての機能ケ
全うできるのである。
Therefore, when used in conjunction with a single mode semiconductor laser, an optical isolator consisting only of a Faraday element and a phase plate can sufficiently function as an optical isolator.

〕・2図は、本発明の光アイソレーターを用いた、光M
M気気ディスクヘッドの要部を説明図的に示している。
]・Figure 2 shows the optical M using the optical isolator of the present invention.
The main parts of the M air disk head are shown in an explanatory diagram.

光源たる半導体レーザー20から放射されたレーザー光
はコリメータレンズ22で平行光束化され、ビームスプ
リッタ−26,全反射ミラー28ケ介して対物レンズ6
0ニ入射し、同レンズ30VCよって、光磁気ディスク
1uUの記録面に向って集束する。
Laser light emitted from a semiconductor laser 20 serving as a light source is collimated by a collimator lens 22, and passes through a beam splitter 26 and a total reflection mirror 28 to an objective lens 6.
The light is incident on the magneto-optical disk 1uU and focused by the same lens 30VC toward the recording surface of the magneto-optical disk 1uU.

光磁気ディスク100による反射光は、対物レンズ60
.全反射ミラー2Bヲへて、ビームスプリッタ−26に
入射し、一部は戻り光として同スプリッター26?透過
して光アイフレーター24ニ入射するが、光アイソレー
ター24の作用により、半導体L/ −f−20のレー
ザー発振が影響を受けることはない。
The light reflected by the magneto-optical disk 100 is reflected by the objective lens 60.
.. It goes through the total reflection mirror 2B and enters the beam splitter 26, and a part of the light is returned to the beam splitter 26? Although the light passes through and enters the optical eye inflator 24, due to the action of the optical isolator 24, the laser oscillation of the semiconductor L/-f-20 is not affected.

ビームスプリッター26vcより、3・2図下方へ反射
された光は、ビームスプリンター32VCより2分され
、一方は、集光レンズ46とナイフェツジ48とを介し
て分割フォトダイオード50へ入射し、同ダイオード5
0の出力は増幅器5ンで増幅処理されてフォーカシング
信号Fとなる。図示されないアクチュエーターは、この
フォーカシング信号FKより、対物レンズ60を光軸方
向へサーボ駆動して、フォー力/ング操作を行う。
The light reflected downward from the beam splitter 26vc in Figures 3 and 2 is split into two by the beam splitter 32vc, and one enters the splitting photodiode 50 via the condenser lens 46 and the knife lens 48,
The output of 0 is amplified by an amplifier 5 to become a focusing signal F. An actuator (not shown) servo-drives the objective lens 60 in the optical axis direction based on the focusing signal FK to perform a focusing operation.

一方、ビームスプリッタ−32を透過した光は、検光子
34と集光レンズ66を介し℃、2分割フォトダイオー
ド4uVC入射し、同ダイオード40の出力は、一方に
おいて増幅器42により、他方に−おいて増幅器44g
より、それぞれ有幅処理されてトラッキング信号T、R
F  信号RF  となる。
On the other hand, the light transmitted through the beam splitter 32 passes through an analyzer 34 and a condensing lens 66 and enters a two-split photodiode (4uVC) at a temperature of 4 uV. amplifier 44g
Therefore, the tracking signals T and R are each subjected to width processing.
The F signal becomes RF.

(効 果) 以上、本発明によれば、新規な光アイソレーターを提供
できる。この光アイソレーターは、上記の如く構成され
ているため、ファラデー素子の楕円率角Xの如何に拘ら
ず、常に′良好な分離機能を美男できる。従って、ファ
ラデー回転子として広範な材料選択の自由度が与えられ
る。
(Effects) As described above, according to the present invention, a novel optical isolator can be provided. Since this optical isolator is constructed as described above, regardless of the ellipticity angle X of the Faraday element, it can always provide a good separation function. Therefore, a wide range of freedom in material selection is provided for the Faraday rotator.

なお、この発明の光アイソレーターは、磁界党生手段と
して電磁石?用いれば、光スィッチとしても使用できる
ことを付記しておく。
Furthermore, does the optical isolator of this invention use an electromagnet as a magnetic field generation means? It should be noted that it can also be used as an optical switch.

【図面の簡単な説明】[Brief explanation of the drawing]

3・1図は、本発明の1実施例?説明するための図1.
M−2図は、本発明の元アインレーターを用いた、光磁
気ディスク用へノドの1例を要部のみ示す図である。 10・・・ファラデー回転子、14・・・位相板、12
A。
Is Figure 3.1 an embodiment of the present invention? Figure 1 for explanation.
FIG. M-2 is a diagram showing only the essential parts of an example of a hennode for a magneto-optical disk using the original inulator of the present invention. 10... Faraday rotator, 14... Phase plate, 12
A.

Claims (1)

【特許請求の範囲】[Claims] 偏光面を45度回転させるファラデー素子と、このファ
ラデー素子の与える楕円率角Xに対してsinδ≧si
n2Xなる関係を満足する位相差δを有する位相板とを
有し、上記ファラデー素子の側から直線偏光を入射させ
るようにしたことを特徴とする、光アイソレーター。
A Faraday element that rotates the plane of polarization by 45 degrees, and sin δ≧si for the ellipticity angle X given by this Faraday element.
An optical isolator comprising: a phase plate having a phase difference δ that satisfies the relationship n2X, and linearly polarized light is incident from the Faraday element side.
JP19725385A 1985-09-06 1985-09-06 Optical isolator Pending JPS6256923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19725385A JPS6256923A (en) 1985-09-06 1985-09-06 Optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19725385A JPS6256923A (en) 1985-09-06 1985-09-06 Optical isolator

Publications (1)

Publication Number Publication Date
JPS6256923A true JPS6256923A (en) 1987-03-12

Family

ID=16371390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19725385A Pending JPS6256923A (en) 1985-09-06 1985-09-06 Optical isolator

Country Status (1)

Country Link
JP (1) JPS6256923A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208421A (en) * 1988-02-16 1989-08-22 Nippon Steel Corp Manufacture of unidirectional electrical sheet having high magnetic flux density and excellent iron loss
JPH02138419A (en) * 1988-11-18 1990-05-28 Nippon Steel Corp Method for manufacturing thin unidirectional electrical steel sheet with extremely high magnetic flux density
EP0472728A1 (en) * 1990-03-14 1992-03-04 Toyo Communication Equipment Co. Ltd. Optical isolator
EP0699935A1 (en) * 1994-08-29 1996-03-06 Bayer Corporation Method and apparatus for optical isolation
JP2003248193A (en) * 2001-12-20 2003-09-05 Sumitomo Electric Ind Ltd Faraday rotators, optical isolators, polarizers, and diamond-like carbon thin films
KR20210107833A (en) 2019-01-31 2021-09-01 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and iron core using same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208421A (en) * 1988-02-16 1989-08-22 Nippon Steel Corp Manufacture of unidirectional electrical sheet having high magnetic flux density and excellent iron loss
JPH02138419A (en) * 1988-11-18 1990-05-28 Nippon Steel Corp Method for manufacturing thin unidirectional electrical steel sheet with extremely high magnetic flux density
EP0472728A1 (en) * 1990-03-14 1992-03-04 Toyo Communication Equipment Co. Ltd. Optical isolator
EP0699935A1 (en) * 1994-08-29 1996-03-06 Bayer Corporation Method and apparatus for optical isolation
JP2003248193A (en) * 2001-12-20 2003-09-05 Sumitomo Electric Ind Ltd Faraday rotators, optical isolators, polarizers, and diamond-like carbon thin films
US7218447B2 (en) 2001-12-20 2007-05-15 Sumitomo Electric Industries, Ltd Diamond-like carbon film and method for qualitatively transforming diamond-like carbon film
KR20210107833A (en) 2019-01-31 2021-09-01 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and iron core using same

Similar Documents

Publication Publication Date Title
US4712880A (en) Polarization rotation compensator and optical isolator using the same
EP0054411B1 (en) Optical arrangement for optically coupling optical fibres
US5631771A (en) Optical isolator with polarization dispersion and differential transverse deflection correction
JP2815509B2 (en) Optical attenuator
JPH0746177B2 (en) Optical isolator
EP0699935B1 (en) Method and apparatus for optical isolation
US6631238B2 (en) Variable optical attenuator
JPH01134424A (en) Optical system having thin film polarization rotor and manufacture thereof
JPS6256923A (en) Optical isolator
US6278547B1 (en) Polarization insensitive faraday attenuator
EP0611980B1 (en) Optical isolator
JP2542532B2 (en) Method for manufacturing polarization-independent optical isolator
JPH07191280A (en) Optical isolator
JP3161885B2 (en) Optical isolator
JPH07191278A (en) Optical isolator
JPS61121027A (en) optical isolator
JP2567697B2 (en) Faraday rotation device
JPS6033528A (en) Semiconductor laser device with optical isolator
JPH04221922A (en) Polarization independent type optical isolator
JP4794056B2 (en) Optical device
JP2553358B2 (en) Optical isolator
JPH04102821A (en) Polarization nondependent type optical isolator
JP2818757B2 (en) Optical isolator
JP2926787B2 (en) Optical isolator
JPH08171075A (en) Optical switch