JPS6256416B2 - - Google Patents
Info
- Publication number
- JPS6256416B2 JPS6256416B2 JP4623481A JP4623481A JPS6256416B2 JP S6256416 B2 JPS6256416 B2 JP S6256416B2 JP 4623481 A JP4623481 A JP 4623481A JP 4623481 A JP4623481 A JP 4623481A JP S6256416 B2 JPS6256416 B2 JP S6256416B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature side
- evaporator
- side evaporator
- low
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000007788 liquid Substances 0.000 claims description 61
- 238000002347 injection Methods 0.000 claims description 35
- 239000007924 injection Substances 0.000 claims description 35
- 239000003507 refrigerant Substances 0.000 description 49
- 238000005057 refrigeration Methods 0.000 description 24
- 238000001816 cooling Methods 0.000 description 15
- 230000006835 compression Effects 0.000 description 8
- 238000007906 compression Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000007710 freezing Methods 0.000 description 7
- 230000008014 freezing Effects 0.000 description 7
- 238000010257 thawing Methods 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000010721 machine oil Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/23—Separators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2511—Evaporator distribution valves
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
Description
【発明の詳細な説明】
本発明は冷凍冷蔵庫に係り、特に多効サイクル
を用いた二温度蒸発式の冷凍冷蔵庫に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigerator-freezer, and more particularly to a refrigerator-freezer of a two-temperature evaporation type using a multi-effect cycle.
従来の家庭用冷凍冷蔵庫は、一般に1個の蒸発
器により、冷凍室と冷蔵室の空気を冷却してい
た。このため、冷蔵室内のように比較的温度レベ
ルの高い空気も、冷凍室のように低い温度レベル
まで冷却できる低い温度の蒸発器で冷却している
ので、効率の悪い運転をせざるをえなかつた。 Conventional household refrigerator-freezers generally cool the air in the freezer compartment and refrigerator compartment using one evaporator. For this reason, air at a relatively high temperature level, such as in a refrigerator room, is cooled by a low-temperature evaporator that can be cooled down to a low temperature level, such as in a freezer room, which forces inefficient operation. Ta.
これを改善するため、理論的に効率のよい多効
サイクルが知られている。 To improve this, a theoretically efficient multi-effect cycle is known.
第1図は、従来の多効サイクルを用いた二温度
蒸発式の冷凍冷蔵庫のサイクル構成図である。こ
の第1図において、1は圧縮機、12は圧縮機1
のシリンダ、13は圧縮機1のローラ、19はロ
ーラ13の回転摺動にともなつて上下動し、シリ
ンダ12内を圧縮室と吸入室との2室に区分する
ベーン、18は、このベーン19に押圧力を負荷
するベーン押えばねである。 FIG. 1 is a cycle configuration diagram of a two-temperature evaporative refrigerator-freezer using a conventional multi-effect cycle. In this FIG. 1, 1 is a compressor, 12 is a compressor 1
13 is a roller of the compressor 1; 19 is a vane that moves up and down as the roller 13 rotates and slides and divides the inside of the cylinder 12 into two chambers, a compression chamber and a suction chamber; 18 is a vane; 19 is a vane pressing spring that applies a pressing force.
25は、シリンダ12の圧縮行程中の中間圧力
付近で、ローラ13の摺動位置が逃げて開口する
インジエクシヨンポートである。 Reference numeral 25 denotes an injection exit port that opens when the sliding position of the roller 13 escapes near an intermediate pressure during the compression stroke of the cylinder 12.
2は吐出管、3は凝縮器、4は第1絞り、5は
第1絞り4の後に設けられた気液分離器、6は、
その入口6a、出口6bをそれぞれ、気液分離器
5の液側出口5c,ガス側出口5bに接続した高
温側蒸発器で、この高温側蒸発器6により冷蔵室
(図示せず)の空気を冷却する。7は気液分離器
5の後に設けられた第2絞り、8は低温側蒸発器
で、この低温側蒸発器8により冷凍室(図示せ
ず)の空気を冷却する。なお、9は戻り管であ
る。 2 is a discharge pipe, 3 is a condenser, 4 is a first throttle, 5 is a gas-liquid separator provided after the first throttle 4, 6 is a
A high-temperature side evaporator whose inlet 6a and outlet 6b are respectively connected to the liquid-side outlet 5c and gas-side outlet 5b of the gas-liquid separator 5, and the high-temperature side evaporator 6 evaporates air from a refrigerator compartment (not shown). Cooling. 7 is a second throttle provided after the gas-liquid separator 5; 8 is a low-temperature side evaporator; the low-temperature side evaporator 8 cools the air in the freezer compartment (not shown). Note that 9 is a return pipe.
このように構成した、従来の多効サイクルを用
いた二温度蒸発式の冷凍冷蔵庫の冷却作用につい
て、第2図を参照しながら説明する。 The cooling effect of the conventional two-temperature evaporative refrigerator-freezer using a multi-effect cycle constructed as described above will be explained with reference to FIG.
第2図は、多効サイクルのモリエル線図であ
る。この第2図において、AB間は低温側蒸発器
8側冷媒の断熱圧縮、CD間は低温側および高温
側蒸発器8,6から戻つた混合冷媒の断熱圧縮、
DE間は凝縮器3による放熱、EF間は第1絞り4
による第1次膨張、GH間は第2絞り7による第
2次膨張、GC間は高温側蒸発器6による吸熱作
用、HA間は低温側蒸発器8による吸熱作用を、
それぞれ示すものである。 FIG. 2 is a Mollier diagram of a multi-effect cycle. In FIG. 2, between AB is adiabatic compression of the refrigerant on the low-temperature side evaporator 8, and between CD is adiabatic compression of the mixed refrigerant returned from the low-temperature side and high-temperature side evaporators 8 and 6.
Heat is dissipated by condenser 3 between DE and first throttle 4 between EF
The first expansion due to
They are shown below.
まず、圧縮機1に入力すると、圧縮機1のシリ
ンダ12内の冷媒は回転偏芯軸14の駆動で回転
するローラ13により圧縮され、吐出口15から
Pdなる高圧力で吐出弁17を押し上げて、高
温・高エンタルピーの過熱蒸気冷媒Dが密閉容器
16内に吐出され、密閉容器吐出口20、吐出管
2を経て凝縮器3に導びかれる。この冷媒は凝縮
器3で放熱して高圧・低エンタルピーの液冷媒E
になり、第1絞り4により減圧され中間圧Pnの
低エンタルピーの機液混合冷媒Fとなり、入口5
aから気液分離器5に入り、液冷媒とガス冷媒と
に分離される。分離された液冷媒Gの一部は液出
口パイプ22を経て、入口6aから高温側蒸発器
6に入つて蒸発されたのち、気液分離器5によつ
て分離されガス出口パイプ21を経て合流管26
に流れるガス冷媒と一緒になつて、インジエクシ
ヨンパイプ23,インジエクシヨン入口24を経
て、圧縮行程中にあるシリンダ12に開口するイ
ンジエクシヨンポート25からシリンダ12内へ
中間圧,高エンタルピーのガス冷媒Cとなつて吸
い込まれる。また分離された液冷媒の残りの部分
は、第2絞り7により更に減圧されて低圧Psの
低エンタルピーの気液混合冷媒Hとなつて低温側
蒸発器8に導びかれて、そこで吸熱して戻り管
9,吸い込み管10,吸い込み口11を経て圧縮
機1の吸入行程中のシリンダ12内に低圧高エン
タルピーのガス冷媒Aとして吸い込まれ、再び圧
縮行程に入り循環する。 First, when the refrigerant is input to the compressor 1, the refrigerant in the cylinder 12 of the compressor 1 is compressed by the roller 13 which rotates driven by the rotary eccentric shaft 14, and pushes up the discharge valve 17 from the discharge port 15 with a high pressure of Pd . Then, the high-temperature, high-enthalpy superheated vapor refrigerant D is discharged into the closed container 16 and guided to the condenser 3 via the closed container discharge port 20 and the discharge pipe 2. This refrigerant radiates heat in the condenser 3 and becomes a high-pressure, low-enthalpy liquid refrigerant E.
, the pressure is reduced by the first throttle 4, and it becomes a low enthalpy machine liquid mixed refrigerant F with an intermediate pressure P n , which flows into the inlet 5.
The refrigerant enters the gas-liquid separator 5 from a and is separated into liquid refrigerant and gas refrigerant. A part of the separated liquid refrigerant G passes through the liquid outlet pipe 22, enters the high temperature side evaporator 6 from the inlet 6a and is evaporated, is separated by the gas-liquid separator 5, and is merged through the gas outlet pipe 21. tube 26
The medium-pressure, high-enthalpy gas refrigerant flows into the cylinder 12 from the injection exit port 25, which opens into the cylinder 12 during the compression stroke, through the injection exit pipe 23 and the injection exit inlet 24. It becomes C and is sucked in. The remaining part of the separated liquid refrigerant is further reduced in pressure by the second throttle 7, becomes a gas-liquid mixed refrigerant H with low pressure Ps and low enthalpy, and is led to the low-temperature side evaporator 8, where it absorbs heat. The refrigerant A is sucked into the cylinder 12 of the compressor 1 during the suction stroke through the return pipe 9, suction pipe 10, and suction port 11 as a low-pressure, high-enthalpy gas refrigerant A, and then enters the compression stroke again and is circulated.
このサイクルは、圧縮機1の駆動源の電源が高
温側蒸発器6により冷却される冷蔵室(図示せ
ず)内、あるいは低温側蒸発器8により冷却され
る冷凍室内に設置された温度検知器(図示せず)
で遮断されるまで連続運転される。 In this cycle, the power source for the drive source of the compressor 1 is connected to a temperature sensor installed in a refrigerator compartment (not shown) that is cooled by the high-temperature side evaporator 6 or in a freezing compartment that is cooled by the low-temperature side evaporator 8. (not shown)
It will run continuously until it is shut off.
上記したような多効サイクルを冷凍冷蔵庫に利
用することにより、比較的温度の高い冷蔵室の空
気は高温側蒸発器6により、また温度の低い冷凍
室の空気は低温側蒸発器8により、それぞれ最適
に設定された蒸発温度で冷却できるために、前記
した1個の蒸発器で冷凍室と冷蔵室を冷却する冷
凍サイクルを利用した冷凍冷蔵庫に比べて効率は
改善される。 By using the multi-effect cycle as described above in a refrigerator-freezer, the air in the relatively high temperature refrigerator compartment is transferred to the high temperature side evaporator 6, and the air in the freezer compartment, which is low in temperature, is transferred to the low temperature side evaporator 8. Since cooling can be performed at an optimally set evaporation temperature, the efficiency is improved compared to the refrigerator-freezer that uses a refrigeration cycle that cools a freezer compartment and a refrigerator compartment with one evaporator.
しかし、第1図に係る従来の多効サイクルを用
いた二温度蒸発式の冷凍冷蔵庫には次の(イ)〜(チ)の
欠点があるので、製品化に到つていないのが現状
である。 However, the conventional two-temperature evaporative refrigerator-freezer using a multi-effect cycle shown in Figure 1 has the following drawbacks (a) to (h), so it has not yet been commercialized. be.
(イ) 高温側蒸発器6には、圧縮機1の吐出側冷媒
循環量の一部分しか流れず、流量が少ないた
め、この高温側蒸発器6の管内の熱伝達率が低
く、その分だけ大きな蒸発器を必要とした。(b) Only a part of the circulating refrigerant on the discharge side of the compressor 1 flows into the high temperature side evaporator 6, and the flow rate is small, so the heat transfer coefficient in the pipes of the high temperature side evaporator 6 is low, and the heat transfer coefficient is correspondingly large. Required evaporator.
(ロ) 気液分離器5と高温側蒸発器6の配設位置の
上下関係が性能に大きく影響し、気液分離器5
に対して高温側蒸発器6が低すぎると、その中
に液冷媒が入り過ぎて蒸発しきれず、圧縮機1
に液戻りを生ずる。逆に、高温側蒸発器6が高
すぎると、そこに入る液冷媒が少なくなり、冷
媒スーパーヒートして冷却能力が低下する。こ
のため、気液分離器5と高温側蒸発器6を適切
な位置関係を保ちながら、庫内の狭いスペース
に収納することは困難であつた。(b) The vertical relationship between the installation positions of the gas-liquid separator 5 and the high-temperature side evaporator 6 has a great effect on performance.
However, if the high temperature side evaporator 6 is too low, too much liquid refrigerant enters it and cannot be completely evaporated, causing the compressor 1
This causes liquid to return. Conversely, if the high temperature side evaporator 6 is too high, less liquid refrigerant will enter there, and the refrigerant will be superheated, reducing the cooling capacity. For this reason, it has been difficult to accommodate the gas-liquid separator 5 and the high-temperature side evaporator 6 in a narrow space inside the refrigerator while maintaining an appropriate positional relationship.
(ハ) 冷蔵室,冷凍室の負荷変動により、それぞれ
高温側蒸発器6,低温側蒸発器8を流れる冷媒
量が変動してアンバランスを生じる。すなわ
ち、前記いずれか一方の蒸発器の負荷が小さい
と、圧縮機1に液戻りを生ずるという欠点があ
つた。(c) Due to load fluctuations in the refrigerator and freezer compartments, the amount of refrigerant flowing through the high-temperature side evaporator 6 and the low-temperature side evaporator 8 varies, causing an imbalance. That is, if the load on either one of the evaporators is small, liquid returns to the compressor 1, which is a drawback.
(ニ) 冷凍室,冷蔵室の冷却は同期して圧縮機1の
運転中に行ない、過剰な冷却には圧縮機1を停
止するという断続運転を、一般に一時間に約2
回行なつていた。このため圧縮機1の停止の
際、凝縮器3に残溜する高温冷媒が第1絞り
4,気液分離器5,第2絞り7を通して高温
側,低温側蒸発器6,8に流れ込み、また圧縮
機1の吸い込み口11から過熱ガス冷媒および
高温冷凍機油が逆流して低温側蒸発器8に流れ
込み冷却性能を低下させる欠点があつた。(d) Cooling of the freezer compartment and refrigerator compartment is performed synchronously while the compressor 1 is operating, and in case of excessive cooling, the compressor 1 is stopped, which is an intermittent operation, generally at a rate of about 2 times per hour.
I was walking around. Therefore, when the compressor 1 is stopped, the high-temperature refrigerant remaining in the condenser 3 flows into the high-temperature side and low-temperature side evaporators 6 and 8 through the first throttle 4, the gas-liquid separator 5, and the second throttle 7. There was a drawback that the superheated gas refrigerant and high temperature refrigerating machine oil flowed back from the suction port 11 of the compressor 1 and flowed into the low temperature side evaporator 8, degrading the cooling performance.
(ホ) また冷凍室,冷蔵室の冷却を同期して圧縮機
1の運転中に行なうため、高温側,低温側蒸発
器6,8に同時に冷媒を流すことができる押し
のけ量の大きなシリンダー内容積を必要とし
た。(E) In addition, since the freezing and refrigerating compartments are cooled synchronously while the compressor 1 is operating, the cylinder has a large internal volume with a large displacement that allows refrigerant to flow simultaneously to the high-temperature side and low-temperature side evaporators 6 and 8. required.
(ヘ) 冷凍室,冷蔵室の同時冷却は、1時間中に約
2回の運転・停止という断続運転を行なうた
め、圧縮機1の起動時,停止時に異音が生じ耳
ざわりとなつていた。(F) Simultaneous cooling of the freezer and refrigerator compartments was performed intermittently, starting and stopping approximately twice in an hour, which caused an unpleasant noise when the compressor 1 was started and stopped.
(ト) 冷凍室内の低温側蒸発器8の除霜を行なうさ
い、圧縮機1を停止して蒸発器密着の除霜ヒー
タに通電して行なうが、この低温側蒸発器8内
には液冷媒が残存するので、この液冷媒と霜と
を合せて加熱する必要があるため、多大なヒー
タ電力を必要とした。(G) When defrosting the low-temperature side evaporator 8 in the freezer compartment, the compressor 1 is stopped and the defrost heater attached to the evaporator is energized. remains, and it is necessary to heat this liquid refrigerant and frost together, which requires a large amount of heater power.
(チ) 冷蔵庫は夏期の周囲温度30℃,冬期の周囲温
度15℃と温度変化があつても最大負荷基準とし
て冷凍サイクルが設計され、特に圧縮機1のシ
リンダ内容積が定められる。このため冬期は冷
凍能力が余り、断続回数が非常に多くなつて、
前記した(ニ)の欠点がますます増大することにな
る。(H) The refrigeration cycle of a refrigerator is designed based on the maximum load even if the ambient temperature changes from 30°C in the summer to 15°C in the winter, and the internal cylinder volume of the compressor 1 is determined in particular. For this reason, there is excess refrigeration capacity in the winter, and the number of interruptions becomes extremely high.
The above-mentioned drawback (d) will further increase.
本発明は、上記した従来技術の欠点を除去し
て、高温側蒸発器の熱伝達率を向上するととも
に、この高温側蒸発器と気液分離器との位置関係
の制約をなくして冷凍冷蔵庫の小形化を可能に
し、高温側蒸発器と低温側蒸発器の冷媒流量のア
ンバランスを改善することにより圧縮機への液戻
りを防止し、かつ周囲温度による熱負荷の変化に
適応した冷凍サイクル構成にすることにより大幅
な省電力を図つた、冷凍冷蔵庫の提供を、その目
的とするものである。 The present invention eliminates the drawbacks of the prior art described above, improves the heat transfer coefficient of the high temperature side evaporator, and eliminates restrictions on the positional relationship between the high temperature side evaporator and the gas-liquid separator. A refrigeration cycle configuration that enables downsizing, prevents liquid from returning to the compressor by improving the imbalance in refrigerant flow between the high-temperature side evaporator and the low-temperature side evaporator, and adapts to changes in heat load due to ambient temperature. The objective is to provide a refrigerator-freezer that achieves significant power savings.
本発明に係る冷凍冷蔵庫の構成は、圧縮機の吐
出口から、凝縮器,第1絞り,気液分離器へと順
次接続し、高温側蒸発器、第2絞り、低温側蒸発
器を備えた二温度蒸発式の冷凍冷蔵庫において、
気液分離器のガス側出口と高温側蒸発器の入口を
接続するガス出口パイプを設け、前記高温側蒸発
器の出口側を圧縮機のインジエクシヨンポートに
接続し、前記気液分離器の液側出口に、一方のみ
および他方のみへ流れる弁部を設け、その一方を
前記高温側蒸発器の入口に、他方を第2絞りに接
続し、この第2絞りの出口を低温側蒸発器の入口
側に接続し、この低温側蒸発器の出口側に、一方
のみおよび他方のみへ流れる弁部を設け、その一
方を前記圧縮機の吸い込み口に、他方を該圧縮機
のインジエクシヨンポートに接続したものであ
る。 The refrigerator-freezer according to the present invention has a configuration in which the discharge port of the compressor is connected to a condenser, a first throttle, and a gas-liquid separator in sequence, and is equipped with a high-temperature side evaporator, a second throttle, and a low-temperature side evaporator. In a two-temperature evaporative refrigerator-freezer,
A gas outlet pipe is provided to connect the gas side outlet of the gas-liquid separator and the inlet of the high-temperature side evaporator, and the outlet side of the high-temperature side evaporator is connected to the injection exit port of the compressor. The liquid side outlet is provided with a valve part that allows flow to only one side and the other side, one of which is connected to the inlet of the high temperature side evaporator, the other to a second throttle, and the outlet of this second throttle is connected to the low temperature side evaporator. A valve part connected to the inlet side and flowing only to one side and the other side is provided on the outlet side of the low-temperature side evaporator, one of which is connected to the suction port of the compressor, and the other is connected to the injection exit port of the compressor. It is connected.
さらに詳しくは、次の通りである。 More details are as follows.
少くとも圧縮機、凝縮器、第1絞り、気液分離
器、高温側蒸発器、第2絞り、低温側蒸発器を備
えた二温度蒸発式の冷凍冷蔵庫において、凝縮器
の出口と気液分離器の入口とを第1絞りを介して
接続し、前記気液分離器のガス側出口と高温側蒸
発器の入口を接続し、前記気液分離器の液側出口
に分流管を設け、その一方の分岐を電磁開閉弁を
介して前記高温側蒸発器の入口に接続し、他方の
分岐を第2絞りを介して低温側蒸発器に接続す
る。さらに、この低温側蒸発器の出口側に分流管
を設け、その一方の分岐を電磁開閉弁を介してイ
ンジエクシヨンパイプに接続し、他方の分岐を電
磁開閉弁を介して戻り管に接続するようにしたも
のである。 In a two-temperature evaporative refrigerator-freezer equipped with at least a compressor, a condenser, a first throttle, a gas-liquid separator, a high-temperature side evaporator, a second throttle, and a low-temperature side evaporator, the outlet of the condenser and the gas-liquid separation The inlet of the gas-liquid separator is connected to the inlet of the gas-liquid separator through a first throttle, the gas-side outlet of the gas-liquid separator is connected to the inlet of the high-temperature side evaporator, and a branch pipe is provided at the liquid-side outlet of the gas-liquid separator. One branch is connected to the inlet of the high temperature side evaporator via an electromagnetic shut-off valve, and the other branch is connected to the low temperature side evaporator via a second throttle. Furthermore, a branch pipe is provided on the outlet side of this low-temperature side evaporator, one branch of which is connected to the injection exit pipe via an electromagnetic on-off valve, and the other branch is connected to the return pipe via an electromagnetic on-off valve. This is how it was done.
これにより、高温側蒸発器を通りインジエクシ
ヨンパイプを経て圧縮機の圧縮行程の途中で開口
するシリンダにつながるインジエクシヨン冷凍サ
イクルと、低温側蒸発器を通り圧縮機の吸い込み
口よりシリンダにつながる主冷凍サイクルと、さ
らに低温側蒸発器を通りインジエクシヨンパイプ
を経て圧縮機の圧縮行程の途中で開口するシリン
ダにつながる低温側蒸発器経由のインジエクシヨ
ン冷凍サイクルを形成することができるので、電
磁開閉弁の切替えにより、外気温度による負荷に
応じて低温側蒸発器の冷却を、2系路の冷凍サイ
クル(主冷凍サイクルもしくは低温側蒸発器経由
のインジエクシヨン冷凍サイクル)を選択して行
ない、かつ電磁開閉弁の切替えにより交互に高温
側蒸発器および低温側蒸発器を冷却することがで
きる。 This creates an in-jet refrigeration cycle that passes through the high-temperature side evaporator, an in-die extension pipe, and connects to the cylinder that opens in the middle of the compression stroke of the compressor, and a main refrigeration cycle that passes through the low-temperature evaporator and connects to the cylinder from the compressor suction port. It is possible to form an injection refrigeration cycle that passes through the evaporator on the low temperature side, and then the evaporator on the low temperature side, which connects to the cylinder that opens in the middle of the compression stroke of the compressor via the injection pipe and the evaporator on the low temperature side. By switching, the low-temperature side evaporator is cooled by selecting a two-path refrigeration cycle (main refrigeration cycle or injection refrigeration cycle via the low-temperature side evaporator) according to the load caused by the outside temperature, and the electromagnetic on-off valve is By switching, the high temperature side evaporator and the low temperature side evaporator can be cooled alternately.
以下本発明を実施例によつて説明する。 The present invention will be explained below with reference to Examples.
第3図は、本発明の一実施例に係る冷凍冷蔵庫
のサイクル構成図である。 FIG. 3 is a cycle configuration diagram of a refrigerator-freezer according to an embodiment of the present invention.
この第3図において、第1図と同一番号を付し
たものは同一部分である。 In FIG. 3, the same parts as in FIG. 1 are denoted by the same numbers.
この冷凍冷蔵庫は、圧縮機1の吐出口15か
ら、凝縮器3,第1絞り4,気液分離器5へと順
次接続し、高温側蒸発器6、第2絞り7、低温側
蒸発器8を備えた二温度蒸発式の冷凍冷蔵庫であ
つて、前記気液分離器5の容器底部に設けた液側
出口5cに、一方のみおよび他方のみへ流れる弁
部に係る、分流管31,第1電磁開閉弁28,第
2電磁開閉弁27が設けられており、液側出口5
cに取り付けられた分流管31の一方の分岐は第
1電磁開閉弁28,合流管30を介して高温側蒸
発器6の入口に、他方の分岐は第2電磁開閉弁2
7を介して第2絞り7に接続されている。そし
て、この第2絞り7の出口は、低温側蒸発器8の
入口側に接続されている。一方、気液分離器5の
ガス側出5bと高温側蒸発器6の入口手前にある
合流管3とはガス出口パイプ29によつて接続さ
れている。そして、高温側蒸発器6の出口側は、
インジエクシヨンパイプ23,合流管35,イン
ジエクシヨン入口24を経て、圧縮機1のインジ
エクシヨンポート25に接続されている。 In this refrigerator-freezer, a discharge port 15 of a compressor 1 is connected to a condenser 3, a first throttle 4, and a gas-liquid separator 5 in sequence, and a high-temperature side evaporator 6, a second throttle 7, and a low-temperature side evaporator 8. It is a two-temperature evaporation type refrigerator-freezer equipped with a liquid-side outlet 5c provided at the bottom of the container of the gas-liquid separator 5, and a first branch pipe 31, which is connected to a valve part that flows only to one side and only to the other side. An electromagnetic on-off valve 28 and a second electromagnetic on-off valve 27 are provided, and the liquid side outlet 5
One branch of the branch pipe 31 attached to c is connected to the inlet of the high temperature side evaporator 6 via the first electromagnetic on-off valve 28 and the merging pipe 30, and the other branch is connected to the second electromagnetic on-off valve 2.
It is connected to the second diaphragm 7 via 7. The outlet of the second throttle 7 is connected to the inlet of the low-temperature side evaporator 8. On the other hand, the gas side outlet 5b of the gas-liquid separator 5 and the confluence pipe 3 located before the inlet of the high temperature side evaporator 6 are connected by a gas outlet pipe 29. The outlet side of the high temperature side evaporator 6 is
It is connected to an injection exit port 25 of the compressor 1 via an injection exit pipe 23, a merging pipe 35, and an injection exit inlet 24.
また、低温側蒸発器8の出口側に、一方のみお
よび他方のみへ流れる弁部に係る、分流管36,
第3電磁開閉弁33,第4電磁開閉弁34が設け
られており、前記低温側蒸発器8の出口側に取り
付けられた分流管36の一方の分岐は第3電磁開
閉弁33,戻り管9を経て圧縮機1の吸い込み口
11に、他方の分岐は第4電磁開閉弁34を介し
て合流管35,インジエクシヨン入口24を経て
圧縮機1のインジエクシヨンポート25に接続さ
れている。 Further, on the outlet side of the low-temperature side evaporator 8, there are branch pipes 36, which are connected to valve parts that flow only to one side and only to the other side.
A third electromagnetic on-off valve 33 and a fourth electromagnetic on-off valve 34 are provided, and one branch of a branch pipe 36 attached to the outlet side of the low-temperature side evaporator 8 is connected to the third electromagnetic on-off valve 33 and a return pipe 9. The other branch is connected to the suction port 11 of the compressor 1 via a fourth electromagnetic on-off valve 34, a merging pipe 35, and an injection exit port 25 of the compressor 1 via an injection exit inlet 24.
このようにして、高温側蒸発器6、インジエク
シヨンパイプ23、合流管35、インジエクシヨ
ン入口24、インジエクシヨンポート25をつな
ぐインジエクシヨン冷凍サイクルと、低温側蒸発
器8、分流管36、第3電磁開閉弁33、戻り管
9、吸い込み管10、吸い込み口11をつなぐ主
冷凍サイクルと、低温側蒸発器8、分流管36、
第4電磁開閉弁34、合流管35、インジエクシ
ヨン入口24、インジエクシヨンポート25をつ
なぐ低温側蒸発器経由のインジエクシヨン冷凍サ
イクルが形成される。 In this way, the injection refrigeration cycle that connects the high temperature side evaporator 6, injection extraction pipe 23, merge pipe 35, injection exit inlet 24, and injection exit port 25, the low temperature side evaporator 8, the branch pipe 36, and the third electromagnetic A main refrigeration cycle connecting the on-off valve 33, the return pipe 9, the suction pipe 10, and the suction port 11, the low-temperature side evaporator 8, the branch pipe 36,
An injection refrigerating cycle is formed via the low-temperature side evaporator that connects the fourth electromagnetic on-off valve 34, the merging pipe 35, the injection exit inlet 24, and the injection exit port 25.
上記のように構成することにより、まず夏期の
熱負荷の大きいときには、第3電磁開閉弁33を
開、第4電磁開閉弁34を閉にし、インジエクシ
ヨン冷凍サイクルと主冷凍サイクルとの2系路を
形成する。そして、第1電磁開閉弁28を閉、第
2電磁開閉弁27を開として圧縮機1により冷媒
を循環させると、その冷媒は吐出管2から凝縮器
3を経て第1絞り4により絞られたのち、気液分
離器5の入口5aから入つて気液分離される。分
離されたガス冷媒は、ガス側出口5bから出てガ
ス出口パイプ29,合流管30を経て高温側蒸発
器6に流れる。ここで高温側蒸発器6を前記ガス
冷媒のみによつて少し冷却(予冷)して、そのガ
ス冷媒はインジエクシヨンパイプ23,合流管3
5,インジエクシヨン入口24,インジエクシヨ
ンポート25を通つてシリンダ12内に入る。 By configuring as described above, first, when the heat load is large in summer, the third solenoid on-off valve 33 is opened and the fourth solenoid on-off valve 34 is closed, and the two systems of the injection refrigeration cycle and the main refrigeration cycle are closed. Form. Then, when the first electromagnetic on-off valve 28 is closed and the second electromagnetic on-off valve 27 is opened to circulate the refrigerant by the compressor 1, the refrigerant passes through the discharge pipe 2, the condenser 3, and is throttled by the first throttle 4. Thereafter, the gas enters the gas-liquid separator 5 through the inlet 5a and is separated into gas and liquid. The separated gas refrigerant exits from the gas side outlet 5b and flows to the high temperature side evaporator 6 via the gas outlet pipe 29 and the merging pipe 30. Here, the high-temperature side evaporator 6 is slightly cooled (pre-cooled) only by the gas refrigerant, and the gas refrigerant is supplied to the injection exit pipe 23 and the confluence pipe 3.
5, enters the cylinder 12 through the injection exit inlet 24 and injection exit port 25.
一方、気液分離された液冷媒は、気液分離器5
の液側出口5cから分流管31,第2電磁開閉弁
27を経て第2絞り7により絞られたのち、低温
側蒸発器8で蒸発して、主冷凍サイクルにより低
温側蒸発器8を冷却し、分流管36,第3電磁開
閉弁33,戻り管9,吸い込み管10,圧縮機1
の吸い込み口11を経てシリンダ12内へ吸い込
まれる。 On the other hand, the liquid refrigerant separated into gas and liquid is transferred to the gas-liquid separator 5.
After passing through the liquid side outlet 5c of the liquid side through the branch pipe 31 and the second electromagnetic on-off valve 27 and being throttled by the second throttle 7, it is evaporated in the low temperature side evaporator 8, and the low temperature side evaporator 8 is cooled by the main refrigeration cycle. , branch pipe 36, third electromagnetic on-off valve 33, return pipe 9, suction pipe 10, compressor 1
is sucked into the cylinder 12 through the suction port 11.
次に、低温側蒸発器8を有する冷凍室(図示せ
ず)が十分に冷却したときには、冷凍室の温度感
知器により第1電磁開閉弁28を開、第2電磁開
閉弁27を閉に切り替える。これにより、冷却能
力が小さかつた高温側蒸発器6に液冷媒を流し、
蒸発してインジエクシヨン冷凍サイクルにより高
温側蒸発器6が冷却される。この冷蔵室(図示せ
ず)が十分に冷却されると、冷蔵室の温度感知器
により、圧縮機1が停止する。ただし、冷蔵室の
冷却中に冷凍室の温度が上昇して冷却を必要とす
るときは、圧縮機1は停止せずに運転を継続し、
冷凍室の温度感知器により第1,2電磁開閉弁2
8,27を切り替えて前の状態に戻して冷却を行
なう。 Next, when the freezing compartment (not shown) having the low-temperature side evaporator 8 is sufficiently cooled, the temperature sensor in the freezing compartment opens the first electromagnetic on-off valve 28 and switches the second electromagnetic on-off valve 27 to close. . This allows the liquid refrigerant to flow into the high temperature side evaporator 6, which has a small cooling capacity.
It evaporates and the high temperature side evaporator 6 is cooled by the injection refrigeration cycle. When this refrigerator compartment (not shown) is sufficiently cooled, the compressor 1 is stopped by a temperature sensor in the refrigerator compartment. However, if the temperature of the freezer compartment rises during cooling of the refrigerator compartment and cooling is required, the compressor 1 will continue to operate without stopping.
The first and second electromagnetic on-off valves 2 are activated by the temperature sensor in the freezer compartment.
8 and 27 to return to the previous state and perform cooling.
また、冬期の熱負荷の小さい条件のときには、
第3電磁開閉弁33閉じ、第4電磁開閉弁34を
開けて、高温側蒸発器6を通るインジエクシヨン
冷凍サイクルと低温側蒸発器経由のインジエクシ
ヨン冷凍サイクルを形成する。そして、冷凍室の
温度感知器により第1電磁開閉弁28と第2電磁
開閉弁27とを交互に開閉し、高温側蒸発器6も
しくは低温側蒸発器8へ液冷媒を流して、冷蔵室
および冷凍室とを前記のとおり冷却する。 In addition, when the heat load is low in winter,
The third electromagnetic on-off valve 33 is closed and the fourth electromagnetic on-off valve 34 is opened to form an injection refrigeration cycle passing through the high temperature side evaporator 6 and an injection refrigeration cycle passing through the low temperature side evaporator. Then, the first electromagnetic on-off valve 28 and the second electromagnetic on-off valve 27 are alternately opened and closed by the temperature sensor in the freezer compartment, and the liquid refrigerant flows to the high-temperature side evaporator 6 or the low-temperature side evaporator 8. Cool the freezer compartment as described above.
冷凍室内の低温側蒸発器8の除霜は、冷凍室の
温度感知器が予め設した除霜開始温度を検知した
とき、第1電磁開閉弁28を開、第2電磁開閉弁
27を閉、第3電磁開閉弁33を開、第4電磁開
閉弁34を閉にし、低温側蒸発器8内の液冷媒を
圧縮機1で吸い出し、かつ高温側蒸発器6を冷却
しながら、前記低温側蒸発器8に取り付けられた
除霜ヒータ(図示せず)に通電して行なう。 Defrosting of the low-temperature side evaporator 8 in the freezer compartment is performed by opening the first electromagnetic on-off valve 28 and closing the second electromagnetic on-off valve 27 when the temperature sensor in the freezing room detects a preset defrosting start temperature. The third electromagnetic on-off valve 33 is opened, the fourth electromagnetic on-off valve 34 is closed, the liquid refrigerant in the low-temperature side evaporator 8 is sucked out by the compressor 1, and while the high-temperature side evaporator 6 is being cooled, the low-temperature side evaporation is performed. This is done by energizing a defrosting heater (not shown) attached to the container 8.
第4図は、本発明の他の実施例に係る冷凍冷蔵
庫のサイクル構成図である。 FIG. 4 is a cycle configuration diagram of a refrigerator-freezer according to another embodiment of the present invention.
この第4図において、第3図と同一番号を付し
たものは同一部分である。そして32,37は、
それぞれ、一方のみおよび他方のみへ流れる弁部
に係る、第1電磁開閉三方弁、第2電磁開閉三方
弁であり、これらの第1電磁開閉三方弁32,第
2電磁開閉三方弁37は、それぞれ第3図に係る
実施例の分流管31,36の位置に設けられてい
る。 In FIG. 4, the same parts as in FIG. 3 are denoted by the same numbers. And 32 and 37 are
They are a first electromagnetic on-off three-way valve and a second electromagnetic on-off three-way valve, respectively, which relate to valve parts that flow only to one side and only to the other. It is provided at the position of the flow branch pipes 31 and 36 in the embodiment shown in FIG.
この実施例の作用は、前記した第3図に係る実
施例と全く同様である。 The operation of this embodiment is exactly the same as that of the embodiment shown in FIG. 3 described above.
なお、前記第3,4図に係る実施例は、気液分
離器5のガス側出口5bと高温側蒸発器6の入口
手前にある合流管30とをガス出口パイプ29で
接続したが、気液分離器5のガス側出口5bと高
温側蒸発器6の入口を直接、ガス出口パイプ29
で接続してもよい。 In the embodiment shown in FIGS. 3 and 4, the gas outlet 5b of the gas-liquid separator 5 and the confluence pipe 30 in front of the inlet of the high-temperature side evaporator 6 are connected by the gas outlet pipe 29. The gas side outlet 5b of the liquid separator 5 and the inlet of the high temperature side evaporator 6 are connected directly to the gas outlet pipe 29.
You can also connect with
以上説明した各実施例の冷凍サイクル構成を持
つ冷凍冷蔵庫は、次のような効果がある。 The refrigerator-freezer having the refrigeration cycle configuration of each of the embodiments described above has the following effects.
(1) 低温側蒸発器8と高温側蒸発器6は交互に液
冷媒を流せるし、高温側蒸発器6のみ流れてい
るときは、圧縮機1はインジエクシヨンパイプ
23系路の冷媒のみ吸い込むので冷媒循環量が
多くとれる。また低温側蒸発器8側に液冷媒を
流しているときも、ガス冷媒で高温側蒸発器6
を予冷しつづけることができるので、総合的に
高温側蒸発器6の冷却能力が増大する。したが
つて高温側蒸発器6を小形化することができ
る。(1) Liquid refrigerant can alternately flow through the low-temperature side evaporator 8 and the high-temperature side evaporator 6, and when only the high-temperature side evaporator 6 is flowing, the compressor 1 sucks only the refrigerant from the injection extraction pipe 23 system. Therefore, a large amount of refrigerant can be circulated. Also, when liquid refrigerant is flowing to the low temperature side evaporator 8 side, gas refrigerant is used to flow to the high temperature side evaporator 6.
can continue to be pre-cooled, the cooling capacity of the high-temperature side evaporator 6 is increased overall. Therefore, the high temperature side evaporator 6 can be downsized.
(2) 冷媒は強制的に高温側蒸発器6を流れるため
に、従来の欠点であつた高温側蒸発器6と気液
分離器5との位置関係の制約も解消する。した
がつて、冷凍冷蔵庫の庫内の狭いスペースに、
これらを収納するのに適している。(2) Since the refrigerant is forced to flow through the high-temperature side evaporator 6, the restriction on the positional relationship between the high-temperature side evaporator 6 and the gas-liquid separator 5, which was a conventional drawback, is also resolved. Therefore, in the narrow space inside the refrigerator-freezer,
Suitable for storing these items.
(3) 高温側蒸発器6、低温側蒸発器8を流れる冷
媒量のアンバランスも解消される。すなわち、
いずれか一方の蒸発器の負荷が減少すると、冷
凍室内の温度検知により第1,第2電磁開閉弁
28,27が切り替えられて負荷大の蒸発器に
液冷媒が流されるので、圧縮機1への液戻りは
ない。また、両蒸発器とも負荷が減少した場合
は、従来の冷凍サイクルと同様に、圧縮機1が
停止するので、この場合も液戻りがない。(3) The imbalance in the amount of refrigerant flowing through the high-temperature side evaporator 6 and the low-temperature side evaporator 8 is also eliminated. That is,
When the load on one of the evaporators decreases, the first and second electromagnetic on-off valves 28 and 27 are switched by detecting the temperature inside the freezing chamber, and the liquid refrigerant flows to the evaporator with a large load, so that it flows into the compressor 1. There is no liquid return. Further, when the load on both evaporators is reduced, the compressor 1 is stopped as in the conventional refrigeration cycle, so there is no liquid return in this case as well.
(4) 冷凍室と冷蔵室の冷却が交互に連続して行な
われるので、圧縮機1の運転時間が長くなる。
このため断続回数が従来よりも1/2少くなるの
で、圧縮機停止直後に吸い込み口11から低温
側蒸発器8方向に高温冷媒が逆流し蒸発器温度
を上昇させて冷却能力を低下することを減少さ
せることができる。(4) Since the freezing and refrigerating compartments are alternately and continuously cooled, the operating time of the compressor 1 becomes longer.
As a result, the number of intermittent cycles is reduced by 1/2 compared to the conventional method, which prevents high-temperature refrigerant from flowing back from the suction port 11 toward the low-temperature side evaporator 8 immediately after the compressor stops, increasing the evaporator temperature and reducing the cooling capacity. can be reduced.
(5) また、低温側蒸発器8と高温側蒸発器6とを
交互に冷媒を循環して冷却するので、圧縮機1
の押しのけ量を負荷の大きい低温側蒸発器8に
必要な冷媒循環量に合せることができるので、
従来の押しのけ量よりも大幅に小さくすること
ができる。(5) Also, since the refrigerant is alternately circulated through the low-temperature side evaporator 8 and the high-temperature side evaporator 6, the compressor 1
The amount of displacement can be matched to the amount of refrigerant circulation required for the low-temperature side evaporator 8, which has a large load.
The displacement amount can be significantly smaller than the conventional displacement amount.
(6) 上記のように圧縮機1の仕事量が少く、かつ
運転時間が長くなるので、圧縮機1の起動,停
止時の異音が小さくなり、耳にする回数が少な
くなる。(6) As mentioned above, since the amount of work of the compressor 1 is small and the operating time is long, the abnormal noises made when the compressor 1 starts and stops becomes smaller, and the number of times you hear it is reduced.
(7) 冷凍室の低温側蒸発器8内の液冷媒を圧縮機
1で吸い出し、高温側蒸発器6を冷却しながら
除霜ができるので、効率のよい除霜ができる。(7) Since the liquid refrigerant in the low-temperature side evaporator 8 of the freezer compartment can be sucked out by the compressor 1 and defrosting can be performed while cooling the high-temperature side evaporator 6, efficient defrosting can be performed.
(8) 夏期,冬期の周囲温度条件に応じ、低温側蒸
発器8の冷却を、主冷凍サイクルもしくは低温
側蒸発器経由のインジエクシヨン冷凍サイクル
のいずれかを選択して行なうことができ、特に
冬期において吸い込み圧力が低下して入力アツ
プをきたすときには、低温側蒸発器経由のイン
ジエクシヨン冷凍サイクルに切替えて低入力運
転を行なうことができるので、前記(4),(5)とも
相いまつて、大幅な省電力効果をもたらす。(8) Depending on the ambient temperature conditions in summer and winter, the low-temperature side evaporator 8 can be cooled by selecting either the main refrigeration cycle or the injection refrigeration cycle via the low-temperature side evaporator, especially in winter. When the suction pressure decreases and the input increases, it is possible to switch to the injection refrigeration cycle via the low-temperature side evaporator and perform low input operation, which together with (4) and (5) above result in significant savings. Brings power effect.
以上詳細に説明したように本発明によれば、高
温側蒸発器の熱伝達率を向上するとともに、この
高温側蒸発器と気液分離器との位置関係の制約を
なくして冷凍冷蔵庫の小形化を可能にし、高温側
蒸発器と低温側蒸発器の冷媒流量のアンバランス
を改善することにより圧縮機への液戻りを防止
し、かつ周囲温度による熱負荷の変化に適応した
冷凍サイクル構成にすることにより大幅な省電力
を図つた、冷凍冷蔵庫を提供することができる。 As explained in detail above, according to the present invention, the heat transfer coefficient of the high-temperature side evaporator is improved, and the restriction on the positional relationship between the high-temperature side evaporator and the gas-liquid separator is eliminated, thereby reducing the size of the refrigerator-freezer. By improving the unbalance of refrigerant flow between the high-temperature side evaporator and the low-temperature side evaporator, liquid returns to the compressor are prevented, and the refrigeration cycle is configured to adapt to changes in heat load due to ambient temperature. This makes it possible to provide a refrigerator-freezer that achieves significant power savings.
第1図は、従来の多効サイクルを用いた二温度
蒸発式の冷凍冷蔵庫のサイクル構成図、第2図
は、多効サイクルのモリエル線図、第3図は、本
発明の一実施例に係る冷凍冷蔵庫のサイクル構成
図、第4図は、本発明の他の実施例に係る冷凍冷
蔵庫のサイクル構成図である。
1…圧縮機、3…凝縮器、4…第1絞り、5…
気液分離器、5b…ガス側出口、5c…液側出
口、6…高温側蒸発器、7…第2絞り、8…低温
側蒸発器、11…吸い込み口、25…インジエク
シヨンポート、27…第2電磁開閉弁、28…第
1電磁開閉弁、29…ガス出口パイプ、31…分
流管、32…第1電磁開閉三方弁、33…第3電
磁開閉弁、34…第4電磁開閉弁、36…分流
管、37…第2電磁開閉三方弁。
Fig. 1 is a cycle configuration diagram of a two-temperature evaporative refrigerator-freezer using a conventional multi-effect cycle, Fig. 2 is a Mollier diagram of a multi-effect cycle, and Fig. 3 is a diagram of an embodiment of the present invention. FIG. 4 is a cycle diagram of a refrigerator-freezer according to another embodiment of the present invention. 1... Compressor, 3... Condenser, 4... First throttle, 5...
Gas-liquid separator, 5b...Gas side outlet, 5c...Liquid side outlet, 6...High temperature side evaporator, 7...Second throttle, 8...Low temperature side evaporator, 11...Suction port, 25...Injection port, 27 ...Second electromagnetic on-off valve, 28...First electromagnetic on-off valve, 29...Gas outlet pipe, 31...Diversion pipe, 32...First electromagnetic on-off three-way valve, 33...Third electromagnetic on-off valve, 34...Fourth electromagnetic on-off valve , 36...Diversion pipe, 37...Second electromagnetic opening/closing three-way valve.
Claims (1)
液分離器へと順次接続し、高温側蒸発器、第2絞
り、低温側蒸発器を備えた二温度蒸発式の冷凍冷
蔵庫において、気液分離器のガス側出口と高温側
蒸発器の入口を接続するガス出口パイプを設け、
前記高温側蒸発器の出口側を圧縮機のインジエク
シヨンポートに接続し、前記気液分離器の液側出
口に、一方のみおよび他方のみへ流れる弁部を設
け、その一方を前記高温側蒸発器の入口に、他方
を第2絞りに接続し、この第2絞りの出口を低温
側蒸発器の入口側に接続し、この低温側蒸発器の
出口側に、一方のみおよび他方のみへ流れる弁部
を設け、その一方を前記圧縮機の吸い込み口に、
他方を該圧縮機のインジエクシヨンポートに接続
したことを特徴とする冷凍冷蔵庫。 2 一方のみおよび他方のみへ流れる弁部のいず
れをも、1個の分流管と2個の電磁開閉弁で構成
したものである特許請求の範囲第1項記載の冷凍
冷蔵庫。 3 一方のみおよび他方のみへ流れる弁部のいず
れをも、電磁開閉三方弁にしたものである特許請
求の範囲第1項記載の冷凍冷蔵庫。[Claims] 1. A two-temperature evaporator that is connected sequentially from the discharge port of the compressor to a condenser, a first throttle, and a gas-liquid separator, and is equipped with a high-temperature side evaporator, a second throttle, and a low-temperature side evaporator. In the type refrigerator-freezer, a gas outlet pipe is provided to connect the gas side outlet of the gas-liquid separator and the inlet of the high-temperature side evaporator.
The outlet side of the high-temperature side evaporator is connected to the injection exit port of the compressor, and the liquid-side outlet of the gas-liquid separator is provided with a valve portion that allows flow to only one side and the other side, and one of the valve portions is connected to the high-temperature side evaporator. The inlet of the evaporator is connected to the second throttle, the outlet of the second throttle is connected to the inlet of the low-temperature evaporator, and the outlet of the low-temperature evaporator is provided with a valve that allows flow to only one side and only to the other. and one of which is connected to the suction port of the compressor,
A refrigerator-freezer characterized in that the other end is connected to an injection port of the compressor. 2. The refrigerator-freezer according to claim 1, wherein both of the valve portions that flow only to one side and the valve portions that flow only to the other side are constituted by one branch pipe and two electromagnetic on-off valves. 3. The refrigerator-freezer according to claim 1, wherein both of the valve portions that allow flow only to one side and only to the other side are electromagnetic opening/closing three-way valves.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4623481A JPS57161454A (en) | 1981-03-31 | 1981-03-31 | Freezer/refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4623481A JPS57161454A (en) | 1981-03-31 | 1981-03-31 | Freezer/refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57161454A JPS57161454A (en) | 1982-10-05 |
JPS6256416B2 true JPS6256416B2 (en) | 1987-11-25 |
Family
ID=12741422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4623481A Granted JPS57161454A (en) | 1981-03-31 | 1981-03-31 | Freezer/refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57161454A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105004087A (en) * | 2014-04-16 | 2015-10-28 | 法雷奥热系统公司 | Coolant circuit |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6017664A (en) * | 1983-07-11 | 1985-01-29 | 株式会社デンソー | Air-cooling refrigerator |
CN109416205B (en) * | 2016-06-17 | 2021-10-15 | 开利公司 | Hot gas bypass for cold start of battery pack |
-
1981
- 1981-03-31 JP JP4623481A patent/JPS57161454A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105004087A (en) * | 2014-04-16 | 2015-10-28 | 法雷奥热系统公司 | Coolant circuit |
Also Published As
Publication number | Publication date |
---|---|
JPS57161454A (en) | 1982-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200292224A1 (en) | Refrigerator and control method thereof | |
JP4984453B2 (en) | Ejector refrigeration cycle | |
JP3321191B2 (en) | refrigerator | |
KR100552096B1 (en) | Freezer | |
EP4006467B1 (en) | Refrigerator | |
JPH10132400A (en) | Parallel type freezer | |
JP6057871B2 (en) | Heat pump system and heat pump type water heater | |
KR20170067559A (en) | A refrigerator and a method for controlling the same | |
KR101695689B1 (en) | Refrigerator | |
JP4300712B2 (en) | refrigerator | |
CN100354586C (en) | Refrigerator | |
WO2020143629A1 (en) | Fast switching multiple evaporator system for an appliance | |
JPS6256416B2 (en) | ||
CN105909495B (en) | The Special pulse valve of compresser cylinder | |
KR102295156B1 (en) | A refrigerator | |
JPH04288454A (en) | Refrigerating device using heat transfer of capillary tube and suction line | |
JP2013096602A (en) | Refrigeration cycle device | |
JP2014149103A (en) | Refrigeration cycle device | |
WO2018147113A1 (en) | Refrigerator | |
KR100743753B1 (en) | How to control refrigerators and freezers | |
JP2005134080A (en) | Refrigerator | |
JP2001263901A (en) | refrigerator | |
JP2007315637A (en) | Refrigerating machine with standby | |
JP3723441B2 (en) | refrigerator | |
KR930004393B1 (en) | How to operate the refrigeration unit |