[go: up one dir, main page]

JPS6255593B2 - - Google Patents

Info

Publication number
JPS6255593B2
JPS6255593B2 JP39980A JP39980A JPS6255593B2 JP S6255593 B2 JPS6255593 B2 JP S6255593B2 JP 39980 A JP39980 A JP 39980A JP 39980 A JP39980 A JP 39980A JP S6255593 B2 JPS6255593 B2 JP S6255593B2
Authority
JP
Japan
Prior art keywords
temperature
evaporator
expansion valve
refrigerant
hot gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP39980A
Other languages
Japanese (ja)
Other versions
JPS5697757A (en
Inventor
Hiroshi Yoshimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP39980A priority Critical patent/JPS5697757A/en
Publication of JPS5697757A publication Critical patent/JPS5697757A/en
Publication of JPS6255593B2 publication Critical patent/JPS6255593B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Defrosting Systems (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、フロン冷媒を用い、冷凍サイクル中
に感温筒を有する温度式の膨張弁を備えた冷凍装
置の除霜機構に関し、特に除霜運転時に圧縮機か
らのホツトガスをバイパスして直接蒸発器に流入
すると共に、受液器に流入して加圧することでそ
この液冷媒も蒸発器に流入させ、除霜作用するよ
うに構成した場合の除霜時間の短縮化を図るもの
に関する。
The present invention relates to a defrosting mechanism for a refrigeration system that uses a fluorocarbon refrigerant and is equipped with a temperature-type expansion valve that has a temperature-sensitive tube in the refrigeration cycle. The present invention relates to a method for shortening the defrosting time when the liquid refrigerant is configured to flow into the evaporator and to defrost by flowing into the liquid receiver and pressurizing the liquid refrigerant there.

【従来の技術】[Conventional technology]

この種の冷凍装置は、冷凍サイクル中に感温筒
を有する温度式の膨張弁を設け、この感温筒で蒸
発器出口の冷媒ガス温度を検知して、温度が高い
場合は膨張弁を開いて冷媒流量を増し、温度が低
くなると膨張弁と閉じて冷媒流量を少なくするこ
とで過熱度を一定に保つようにしている。 また、除霜機構として除霜運転時に圧縮機から
のホツトガスを蒸発器に直接流入して循環するだ
けでは、冷媒量が少なくて外気温度が低い場合は
除霜時間が長くかかるため、上記ホツトガスを受
液器にも流入して受液器中の液冷媒の膨張弁を経
て蒸発器に合流させ、冷媒量を多くして除霜時間
の短縮化を図るようにしたものが考えられる。 なお先行技術として特開昭53−22644号公報が
ある。
This type of refrigeration equipment is equipped with a temperature-type expansion valve having a temperature-sensing cylinder during the refrigeration cycle.The temperature-sensing cylinder detects the refrigerant gas temperature at the evaporator outlet, and if the temperature is high, the expansion valve is opened. When the temperature drops, the expansion valve closes and reduces the refrigerant flow rate to maintain a constant degree of superheat. In addition, if the defrosting mechanism simply circulates the hot gas from the compressor by directly flowing it into the evaporator during defrosting operation, it will take a long time to defrost when the amount of refrigerant is small and the outside temperature is low. It is conceivable that the liquid refrigerant also flows into the receiver and joins the evaporator through an expansion valve for the liquid refrigerant in the receiver to increase the amount of refrigerant and shorten the defrosting time. As a prior art, there is Japanese Patent Application Laid-Open No. 53-22644.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

しかるに、上記除霜運転時には、蒸発器に流入
するホツトガスが着霜の融解熱で冷却されて湿り
状態になり、これにより温度式の膨張弁の感温筒
は、過熱度が零で冷媒の流し過ぎを検知して膨張
弁を閉じ、受液器からの液冷媒の流れを著しく制
限してしまう。このため、実質的には受液器から
蒸発器への冷媒の補給がなされなくなつて冷媒が
不足し、除霜時間は単に圧縮機からのホツトガス
のみを蒸発器に流入した場合と略同じように長く
なる。 本発明は、このような事情に鑑みてなされたも
ので、除霜運転時に圧縮機からのホツトガスを直
接蒸発器に流入すると共に、受液器に流入して加
圧することで、この液冷媒を感温筒を有する温度
式の膨張弁を経て蒸発器に流入する際に、感温筒
はホツトガスの管に接しホツトガス温度を検知し
て膨張弁を開き、受液器の加温された液冷媒を迅
速に蒸発器に流入させて冷媒量を確実に増し、除
霜時間を短縮するようにした冷凍装置の除霜機構
を提供することを目的とする。
However, during the above-mentioned defrosting operation, the hot gas flowing into the evaporator is cooled by the heat of melting from the frost and becomes moist, so that the temperature-sensitive cylinder of the thermostatic expansion valve stops when the degree of superheat is zero and the refrigerant does not flow. When this occurs, the expansion valve closes, significantly restricting the flow of liquid refrigerant from the receiver. As a result, refrigerant is virtually no longer supplied from the receiver to the evaporator, leading to a shortage of refrigerant, and the defrosting time is approximately the same as when only hot gas from the compressor flows into the evaporator. becomes longer. The present invention was made in view of the above circumstances, and the hot gas from the compressor flows directly into the evaporator during defrosting operation, and at the same time flows into the liquid receiver and pressurizes the liquid refrigerant. When flowing into the evaporator through a temperature-type expansion valve with a temperature-sensitive cylinder, the temperature-sensing cylinder comes into contact with the hot gas pipe, detects the temperature of the hot gas, and opens the expansion valve, allowing the heated liquid refrigerant in the receiver to flow into the evaporator. It is an object of the present invention to provide a defrosting mechanism for a refrigeration system that allows refrigerant to quickly flow into an evaporator to reliably increase the amount of refrigerant and shorten defrosting time.

【問題点を解決するための手段】[Means to solve the problem]

上記目的を達成するため、本発明は、圧縮機、
凝縮器、受液器、感温筒を有する温度式の膨張弁
および蒸発器を備える冷凍装置において、除霜運
転時に圧縮機から吐出するホツトガスを受液器へ
導く第1の除霜回路と、直接蒸発器へ導く第2の
除霜回路を設け、第2の除霜回路のホツトガス温
度によつて膨張弁の開度を増大させ、第2の除霜
回路からホツトガスを蒸発器へ流入させると共に
第1の除霜回路のホツトガスの圧力により受液器
の冷媒を、膨張弁を介して蒸発器へ圧送するよう
に構成されている。
In order to achieve the above object, the present invention provides a compressor,
In a refrigeration system including a condenser, a liquid receiver, a temperature-type expansion valve having a temperature-sensitive tube, and an evaporator, a first defrosting circuit that guides hot gas discharged from a compressor during defrosting operation to a liquid receiver; A second defrosting circuit that leads directly to the evaporator is provided, and the opening degree of the expansion valve is increased depending on the temperature of the hot gas in the second defrosting circuit to cause the hot gas to flow into the evaporator from the second defrosting circuit. The refrigerant in the liquid receiver is forced to be sent to the evaporator via the expansion valve by the pressure of the hot gas in the first defrosting circuit.

【実施例】【Example】

以下、図面を参照して本発明の一実施例を具体
的に説明すると、第1図において符号1は圧縮機
であり、この圧縮機1の吐出側が吐出管2により
凝縮器3に接続され、凝縮器3は弁4を有する管
5により密閉式の受液器6に接続される。受液器
6からの液冷媒を導く管7が温度式の膨張弁8に
接続され、膨張弁8は管9により蒸発器10に接
続され、更に蒸発器10が上記圧縮機1の吸入管
11に接続されて閉じた冷凍サイクルを構成して
いる。 また、膨張弁8の感温筒12が蒸発器10の出
口側の吸入管11に接して取付けられ、この感温
筒12からのキヤピラリ管13と吸入管11から
の外部均圧管14が膨張弁8の動作部に対向して
接続される。感温筒12は通常同じ冷媒が封入し
てあり、吸入管11により温められてそれに応じ
た圧力を生じることで蒸発器10の出口のガス温
度を検出するもので、この圧力と外部均圧管14
により導かれる蒸発温度に対応した圧力を平衡さ
せて、蒸発器10の冷凍能力が最大になるような
過熱度を一定に保つべく冷媒量を自動的に調節す
るようになつている。 このような冷凍装置において本発明による除霜
機構は、圧縮機1からの吐出管2に切換弁15が
設けられて、この切換弁15から除霜用のホツト
ガスの管16が上記蒸発器10の入口側の管9に
接続され、管16から分岐する管17が上記受液
器6に逆止弁18を介して加圧すべく接続され
る。そして上記管16は更に途中を上記感温筒1
2に接するように配管して、管16のホツトガス
で感温筒12を温めて膨張弁8を動作するように
してある。 本発明は、このように構成されているから、通
常の冷凍運転時には切換弁15により管16が遮
断され、かつ弁4が開くことで、圧縮機1からの
高温高圧の冷媒ガスが凝縮器3に入り、ここで冷
却して液化した冷媒が受液器6に溜まり、この液
冷媒が膨張弁8で膨張して圧力と共に温度が下げ
られる。そしてこの低温低圧の冷媒が蒸発器10
に入つて蒸発気化し、この時の蒸発潜熱により冷
凍作用が行なわれるものであり、蒸発した冷媒ガ
スは再び圧縮機1に吸入され、以下このような動
作を繰返して行う。 一方、このとき感温筒12により蒸発器10の
出口のガス温度が検知され、これと外部均圧管1
4による蒸発温度との圧力平衡により、温度が高
い場合は膨張弁8を開き低くなると膨張弁8を閉
じて冷媒量を調節し、このようにして過熱度が一
定に保持され、蒸発器10で常に最大の冷凍能力
を得る。 次いで除霜運転時には、切換弁15を管16の
方に切換え弁4を閉じる。そこで圧縮機1からの
高温高圧の冷媒ガスであるホツトガスは、切換弁
15により管16を経て蒸発器10に流入し、同
時に管17による受液器6に入り、弁4で漏洩防
止されて加圧することでその受液器6内の液冷媒
が押し出されるようになる。 ところで上記管16は、感温筒12に接しホツ
トガスでその感温筒12を温めるため、吸入管1
1の蒸発器10の出口のガス温度が低くても過熱
度が高過ぎると判断して膨張弁8を開くようにな
り、上記ホツトガスで加圧されている受液器6か
ら一度に多量の液冷媒が膨張弁8を経て蒸発器1
0に流入する。 こうして、除霜運転初期の段階より受液器6に
溜つていた冷媒も合流し、圧縮機1からホツトガ
スになつて蒸発器10との間を循環し、この多量
のホツトガスで蒸発器10に付着する霜が短時間
で溶解除去される。 なお、除霜運転後冷凍運転に戻されると、切換
弁15の切換えで管16に冷媒ガスが入らなくな
り、これにより感温筒12は、自動的に管16よ
り高温の吸入管11の方の温度検知を行つて、膨
張弁8を再び上述のように開閉制御する。 ところで本発明は、上記実施例のみに限定され
るものではなく、第2図に示されるように、ホツ
トガスの管16を吸入管11に近接することなく
配管し、かつの管16に更にもう1つの感温筒1
2′を設けて、両感温筒12,12′を切換弁19
により膨張弁8のキヤピラリ管13に接続する。
そして除霜運転時に切換弁19を感温筒12′の
方へ切換え、その感温筒12′で膨張弁8を開閉
することで上記実施例と全く同様に動作する。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In FIG. 1, reference numeral 1 is a compressor, and the discharge side of the compressor 1 is connected to a condenser 3 through a discharge pipe 2. The condenser 3 is connected by a pipe 5 with a valve 4 to a closed liquid receiver 6 . A pipe 7 leading the liquid refrigerant from the liquid receiver 6 is connected to a temperature-type expansion valve 8, and the expansion valve 8 is connected to an evaporator 10 by a pipe 9, and the evaporator 10 is connected to the suction pipe 11 of the compressor 1. are connected to form a closed refrigeration cycle. Further, the temperature-sensitive tube 12 of the expansion valve 8 is attached in contact with the suction pipe 11 on the outlet side of the evaporator 10, and the capillary tube 13 from the temperature-sensing tube 12 and the external pressure equalization tube 14 from the suction tube 11 connect to the expansion valve 8. It is connected opposite to the operating section of No. 8. The temperature sensing cylinder 12 is usually filled with the same refrigerant, and is heated by the suction pipe 11 to generate a corresponding pressure to detect the gas temperature at the outlet of the evaporator 10. This pressure and the external pressure equalizing pipe 14
The amount of refrigerant is automatically adjusted to maintain a constant degree of superheating so that the refrigerating capacity of the evaporator 10 is maximized by balancing the pressure corresponding to the evaporation temperature derived by the evaporation temperature. In the defrosting mechanism according to the present invention in such a refrigeration system, a switching valve 15 is provided in the discharge pipe 2 from the compressor 1, and a defrosting hot gas pipe 16 is connected from the switching valve 15 to the evaporator 10. A pipe 17 connected to the inlet pipe 9 and branched from the pipe 16 is connected to the liquid receiver 6 via a check valve 18 so as to pressurize it. Then, the tube 16 further extends along the middle of the temperature sensing cylinder 1.
The expansion valve 8 is operated by heating the temperature sensing tube 12 with hot gas from the tube 16. Since the present invention is configured as described above, during normal refrigeration operation, the pipe 16 is shut off by the switching valve 15 and the valve 4 is opened, so that the high temperature and high pressure refrigerant gas from the compressor 1 is transferred to the condenser 3. The cooled and liquefied refrigerant is collected in the liquid receiver 6, and this liquid refrigerant is expanded by the expansion valve 8 and its pressure and temperature are lowered. This low-temperature, low-pressure refrigerant is then used in the evaporator 10.
The evaporated refrigerant gas is sucked into the compressor 1 again, and this operation is repeated thereafter. On the other hand, at this time, the gas temperature at the outlet of the evaporator 10 is detected by the temperature sensing tube 12, and this and the external pressure equalizing tube 1
4, the expansion valve 8 is opened when the temperature is high and the expansion valve 8 is closed when the temperature is low to adjust the amount of refrigerant. In this way, the degree of superheat is maintained constant, and the evaporator 10 Always get maximum refrigeration capacity. Then, during defrosting operation, the switching valve 15 is switched to the pipe 16, and the switching valve 4 is closed. Therefore, hot gas, which is a high temperature and high pressure refrigerant gas, from the compressor 1 flows into the evaporator 10 via a pipe 16 by a switching valve 15, and at the same time enters the liquid receiver 6 through a pipe 17, where it is prevented from leaking by a valve 4 and is heated. By applying pressure, the liquid refrigerant in the liquid receiver 6 is pushed out. By the way, the tube 16 is in contact with the temperature sensing tube 12 and warms the temperature sensing tube 12 with hot gas, so the suction tube 1
Even if the gas temperature at the outlet of the evaporator 10 of No. 1 is low, it is determined that the degree of superheat is too high and the expansion valve 8 is opened, and a large amount of liquid is released at once from the liquid receiver 6 pressurized with the hot gas. The refrigerant passes through the expansion valve 8 and enters the evaporator 1.
Flows into 0. In this way, the refrigerant that had been accumulated in the liquid receiver 6 from the initial stage of the defrosting operation joins together, becomes hot gas from the compressor 1, and circulates between the evaporator 10 and the evaporator 10 with this large amount of hot gas. Adhering frost is dissolved and removed in a short time. Note that when the refrigerating operation is returned to after the defrosting operation, the refrigerant gas no longer enters the pipe 16 due to switching of the switching valve 15, and as a result, the temperature sensing tube 12 automatically switches to the suction pipe 11, which has a higher temperature than the pipe 16. The temperature is detected and the expansion valve 8 is again controlled to open and close as described above. However, the present invention is not limited to the above-mentioned embodiment, but as shown in FIG. Two temperature sensing tubes 1
2' is provided, and both temperature sensing cylinders 12, 12' are connected to the switching valve 19.
It is connected to the capillary pipe 13 of the expansion valve 8 by.
During the defrosting operation, the switching valve 19 is switched to the temperature sensing cylinder 12', and the expansion valve 8 is opened and closed by the temperature sensing cylinder 12', thereby operating in exactly the same manner as in the above embodiment.

【発明の効果】【Effect of the invention】

このように本発明によると、感温筒12を有す
る温度式の膨張弁8を備えた冷凍装置において、
除霜運転時には、蒸発器10の出口側で冷媒が湿
り状態になつても、それに何等関係なく膨張弁8
が開かれて受液器6の冷媒がホツトガスによる加
圧で押し出されて除霜に使用されるため、冷媒量
が多くなつて除霜時間を短縮することができる。
上記膨張弁8の開動作を、ホツトガスで感温筒1
2を温めることにより行うようになつているの
で、構造が非常簡単である。更に除霜運転後の冷
凍運転時には、感温筒12が自動的に吸入管11
の方の温度検知を行い、管16には冷媒ガスが流
れずその悪影響を受けないので、正常な過熱度制
御が行われる。
As described above, according to the present invention, in a refrigeration system equipped with a temperature-type expansion valve 8 having a temperature-sensitive tube 12,
During defrosting operation, even if the refrigerant becomes wet on the outlet side of the evaporator 10, the expansion valve 8
is opened and the refrigerant in the liquid receiver 6 is pushed out under pressure by hot gas and used for defrosting, so the amount of refrigerant is increased and the defrosting time can be shortened.
The opening operation of the expansion valve 8 is controlled by the temperature sensing tube 1 using hot gas.
Since this is done by heating 2, the structure is very simple. Furthermore, during freezing operation after defrosting operation, the temperature sensing cylinder 12 automatically closes the suction pipe 11.
Since refrigerant gas does not flow through the pipe 16 and there is no adverse effect, normal superheat degree control is performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による除霜機構の一実施例を示
す系統図、第2図は他の実施例を示す要部の系統
図である。 1……圧縮機、3……凝縮器、6……受液器、
8……膨張弁、10……蒸発器、12,12′…
…感温筒、16,17……ホツトガスの管。
FIG. 1 is a system diagram showing one embodiment of the defrosting mechanism according to the present invention, and FIG. 2 is a system diagram of main parts showing another embodiment. 1...Compressor, 3...Condenser, 6...Liquid receiver,
8... Expansion valve, 10... Evaporator, 12, 12'...
...Temperature cylinder, 16, 17...Hot gas tube.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機、凝縮器、受液器、感温筒を有する温
度式の膨張弁および蒸発器を備える冷凍装置にお
いて、除霜運転時に圧縮機から吐出するホツトガ
スを受液器へ導く第1の除霜回路と、直接蒸発器
へ導く第2の除霜回路を設け、第2の除霜回路の
ホツトガス温度によつて膨張弁の開度を増大さ
せ、第2の除霜回路からホツトガスを蒸発器へ流
入させると共に第1の除霜回路のホツトガスの圧
力により受液器の冷媒を、膨張弁を介して蒸発器
へ圧送するように構成したことを特徴とする冷凍
装置の除霜機構。
1 In a refrigeration system equipped with a compressor, a condenser, a liquid receiver, a temperature-type expansion valve having a temperature-sensitive tube, and an evaporator, a first filter is used to guide hot gas discharged from the compressor to the liquid receiver during defrosting operation. A frost circuit and a second defrost circuit that leads directly to the evaporator are provided, and the opening degree of the expansion valve is increased depending on the temperature of the hot gas in the second defrost circuit, and the hot gas is transferred from the second defrost circuit to the evaporator. 1. A defrosting mechanism for a refrigeration system, characterized in that the refrigerant in the receiver is forced to flow into the evaporator via an expansion valve by the pressure of the hot gas in the first defrosting circuit.
JP39980A 1980-01-07 1980-01-07 Defrosting mechanism for refrigerator Granted JPS5697757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP39980A JPS5697757A (en) 1980-01-07 1980-01-07 Defrosting mechanism for refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP39980A JPS5697757A (en) 1980-01-07 1980-01-07 Defrosting mechanism for refrigerator

Publications (2)

Publication Number Publication Date
JPS5697757A JPS5697757A (en) 1981-08-06
JPS6255593B2 true JPS6255593B2 (en) 1987-11-20

Family

ID=11472719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP39980A Granted JPS5697757A (en) 1980-01-07 1980-01-07 Defrosting mechanism for refrigerator

Country Status (1)

Country Link
JP (1) JPS5697757A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186794U (en) * 1987-05-20 1988-11-30

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186794U (en) * 1987-05-20 1988-11-30

Also Published As

Publication number Publication date
JPS5697757A (en) 1981-08-06

Similar Documents

Publication Publication Date Title
US7028494B2 (en) Defrosting methodology for heat pump water heating system
JPH0686969B2 (en) Air-cooled heat pump type refrigeration cycle
US7168262B2 (en) Ice making machine
US20210341192A1 (en) Heat pump device
JP3418891B2 (en) Refrigeration equipment
JPS6255593B2 (en)
JPH02233953A (en) Freezing cycle of ice making machine
US2748571A (en) Defrosting system for refrigeration evaporators
US11708981B2 (en) High-pressure re-start control algorithm for microchannel condenser with reheat coil
EP4300004A1 (en) Refrigeration cycle device
JPH08313073A (en) Refrigerating apparatus
JPS592454Y2 (en) Heat pump refrigeration equipment
JPH01123966A (en) Refrigerator
JPH04217754A (en) air conditioner
JPS6325255B2 (en)
JP3349251B2 (en) Refrigeration equipment
JPH02208465A (en) Refrigerant recovery device
JP3855680B2 (en) Refrigeration equipment
JPS6055743B2 (en) Heat pump air conditioner
JPH086991B2 (en) Refrigeration equipment
KR20240051750A (en) Oil recovery system, refrigeration system including the same, and control method of the refrigeration system
JPH01179876A (en) Refrigerating device
JPS6015084Y2 (en) Refrigeration equipment
JPS6314269B2 (en)
JPS6340764Y2 (en)