[go: up one dir, main page]

JPS6255121B2 - - Google Patents

Info

Publication number
JPS6255121B2
JPS6255121B2 JP56199538A JP19953881A JPS6255121B2 JP S6255121 B2 JPS6255121 B2 JP S6255121B2 JP 56199538 A JP56199538 A JP 56199538A JP 19953881 A JP19953881 A JP 19953881A JP S6255121 B2 JPS6255121 B2 JP S6255121B2
Authority
JP
Japan
Prior art keywords
line sensor
fiber
bundle
optical fiber
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56199538A
Other languages
Japanese (ja)
Other versions
JPS58100105A (en
Inventor
Yoshito Narimatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56199538A priority Critical patent/JPS58100105A/en
Publication of JPS58100105A publication Critical patent/JPS58100105A/en
Publication of JPS6255121B2 publication Critical patent/JPS6255121B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【発明の詳細な説明】 本発明は放射計用のラインセンサ素子数を増大
させるためのラインセンサ組合せ方式に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a line sensor combination method for increasing the number of line sensor elements for a radiometer.

従来のこの種の方式は、第1図a,b,cに示
すようなものであつた。
Conventional systems of this kind were as shown in FIGS. 1a, b, and c.

aに示す方式は、ラインセンサ1が2のような
パツケージに入つているために、位置をずらして
組合せる方式であるから、ラインセンサ全部が直
線的に並ばないという欠点があり、連続した直線
画像が取得できなかつた。
The method shown in a has the disadvantage that all the line sensors are not lined up in a straight line, as line sensor 1 is housed in a package like 2, and is combined by shifting their positions. Image could not be obtained.

bに示す方式は、ハーフプリズム3により入射
光を2方向に分割し、1個置きに直角方向に配置
されたラインセンサ1により連続した直線画像が
取得できるが、ラインセンサ1の取付け位置が互
に離れていることから、温度の変化等の影響を受
け易いこと、及びハーフプリズム3を使用するこ
とにより光学系のバツクフオーカスがaやcに示
す方式の場合より長い必要があり、分光系等との
組合せが行いにくいこと等の欠点があつた。
In the method shown in b, the incident light is divided into two directions by a half prism 3, and a continuous straight line image can be obtained by every other line sensor 1 arranged at right angles. Because it is far away, it is easily affected by changes in temperature, etc., and because the half prism 3 is used, the back focus of the optical system needs to be longer than in the methods shown in a and c. There were drawbacks such as difficulty in combining.

cに示す方式は、オプテイカルフアイバ6を使
用する方法であるが、高精度に多数並べることが
困難なことから、各センサごとに並べたものを組
合せる方式である。cに示す方式はaに示す方式
ほどラインセンサ1を組合せる場合の直線のずれ
が大きくないが、基本的にはaに示す方式と同じ
であり、連続した直線画像が取得できなかつた。
cに示す方式のフアイバオプテイツクスの先端4
の部分を拡大すると第2図に示すようになつてお
り、フアイバオプテイツクス4の部分はオプテイ
カルフアイバ6がすき間なしに並んでいるが、先
端4から離れた位置ではライン方向に広がつてお
り、従つて第2図に示すフアイバアセンブリを複
数個組立てる場合にはcのような方式にする必要
があつた。
The method shown in c is a method of using optical fibers 6, but since it is difficult to arrange a large number of them with high precision, it is a method of combining those arranged for each sensor. Although the method shown in c does not have as large a deviation of the straight line when the line sensors 1 are combined as the method shown in a, it is basically the same as the method shown in a, and continuous straight line images could not be obtained.
Tip 4 of fiber optics of the method shown in c.
When the part is enlarged, it becomes as shown in Fig. 2. In the part of the fiber optics 4, the optical fibers 6 are lined up without any gaps, but at a position away from the tip 4, they spread out in the line direction. Therefore, when assembling a plurality of fiber assemblies shown in FIG. 2, it was necessary to use the method shown in c.

本発明は従来の上記諸欠点を解決する為になさ
れたものであり、従つて本発明の目的は、従来の
c方式の各フアイバアセンブリ(第2図参照)を
第3図に示すように切断及び研磨し、複数個のフ
アイバアセンブリを並べることにより先端4を一
直線上に並べることを可能にしたラインセンサの
新規な組合せ方式を提供することにある。
The present invention has been made in order to solve the above-mentioned drawbacks of the conventional method, and therefore, an object of the present invention is to cut each fiber assembly of the conventional c-type (see FIG. 2) as shown in FIG. 3. It is an object of the present invention to provide a new combination method of a line sensor that makes it possible to align the tips 4 in a straight line by polishing and arranging a plurality of fiber assemblies.

本発明の上記目的は、ラインセンサのエレメン
トサイズに一致した太さの複数個のオプテイカル
フアイバの各側面を固定手段によりすき間なく一
直線に並べて束状に固定し、該束状に固定された
オプテイカルフアイバ束を複数個用意し、前記オ
プテイカルフアイバ束の一端を前記ラインセンサ
のエレメントに対応するように固定し、前記オプ
テイカルフアイバ束の他端および該他端に隣接す
る前記固定手段の側面を斜めに切断し、互いに隣
接する2個のオプテイカルフアイバ束の斜めに切
断された前記他端の端面と前記切断された側面と
のなす角α,βが、α+β≦180゜を満足するフ
アイバ束同士を前記他端で一直線上に並べて固定
することを特徴とした放射計用ラインセンサ組合
せ方式、によつて達成される。
The above object of the present invention is to arrange each side surface of a plurality of optical fibers having a thickness matching the element size of a line sensor in a straight line without any gaps and fix them in a bundle, and to fix the optical fibers fixed in the bundle in a bundle. A plurality of optical fiber bundles are prepared, one end of the optical fiber bundle is fixed so as to correspond to the element of the line sensor, and the other end of the optical fiber bundle and a side surface of the fixing means adjacent to the other end is cut diagonally, and the angles α and β formed by the end face of the other diagonally cut end of two adjacent optical fiber bundles and the cut side face satisfy α+β≦180°. This is achieved by a radiometer line sensor combination system characterized in that the bundles are aligned and fixed at the other end in a straight line.

以下、本発明はその良好な一実施例について第
3図を参照しながら詳細に説明する。
Hereinafter, a preferred embodiment of the present invention will be explained in detail with reference to FIG.

第3図a,bは本発明の一実施例を説明する為
の図であり、aは複数個(実施例では4個)のオ
プテイカルフアイバ束の切断方法及び角度を示す
平面図、端面図、bはaに示すように切断した4
個のオプテイカルフアイバ束を一線上に並べて固
定した状態を示す端面図である。図において、参
照番号7,8,9,10は切断、研磨等により加
工したフアイバアセンブリ(フアイバ束)の先端
面、11,12,13はその切断、研磨角度であ
る。
Figures 3a and 3b are diagrams for explaining one embodiment of the present invention, and a is a plan view and an end view showing the cutting method and angle of a plurality of optical fiber bundles (four in the embodiment). , b is 4 cut as shown in a
FIG. 3 is an end view showing a state in which several optical fiber bundles are arranged and fixed in a line. In the figure, reference numbers 7, 8, 9, and 10 are the end faces of the fiber assembly (fiber bundle) processed by cutting, polishing, etc., and 11, 12, and 13 are the cutting and polishing angles.

本方式を実現する為には、フアイバアセンブリ
の先端面7,8の1端の角度11が90゜以下にな
るように先端面7,8および側面7′,8′を加工
し、他端の角度12が可能な限り小さくなるよう
加工する。この際、フアイバアセンブリ先端4で
は両端がフアイバの両端に一致するよう加工し、
ガラスカバー5が両端に飛び出さないようにす
る。
In order to realize this method, the tip surfaces 7, 8 and side surfaces 7', 8' of the fiber assembly are machined so that the angle 11 at one end of the fiber assembly is 90 degrees or less, and the other end is Machining is done so that the angle 12 is as small as possible. At this time, the fiber assembly tip 4 is machined so that both ends coincide with both ends of the fiber,
To prevent the glass cover 5 from popping out at both ends.

9,10はそれぞれフアイバアセンブリの先端
面7,8に接する一端の角度(先端面9と側面
9′のなす角及び先端面10と側面10′のなす
角)13が(角度12)+(角度13)≦180゜を満
足するよう加工されたフアイバアセンブリの先端
面である。この場合にも先端面7,8と同様、フ
アイバアセンブリ先端4では角度13がフアイバ
端より飛び出さないよう加工されている。
9 and 10 are the angles of the ends that contact the tip surfaces 7 and 8 of the fiber assembly (the angle between the tip surface 9 and the side surface 9' and the angle between the tip surface 10 and the side surface 10') 13 is (angle 12) + (angle 13) This is the end surface of the fiber assembly processed to satisfy ≦180°. In this case as well, like the tip surfaces 7 and 8, the fiber assembly tip 4 is processed so that the angle 13 does not protrude beyond the fiber end.

第3図bは、aに示した7〜10のフアイバア
センブリの先端面を直線的に並べた状態を示した
ものである。フアイバアセンブリの先端面7,8
と9,10とは、フアイバアセンブリの切断角度
が異なるために、第3図bのようにフアイバの先
端4での形状が異なるが、フアイバの先端を一直
線上に連続して並べることが可能となる。
FIG. 3b shows a state in which the end surfaces of the 7 to 10 fiber assemblies shown in FIG. 3a are lined up in a straight line. Fiber assembly tip faces 7, 8
9 and 10, the shapes at the tips 4 of the fibers are different as shown in FIG. Become.

従つて、本方式によりフアイバアセンブリ複数
個を直線的に並べることが可能となり、広画角の
放射計においても画角全域で連続した画像を得る
ことが可能となる。
Therefore, with this method, it is possible to line up a plurality of fiber assemblies in a straight line, and even in a radiometer with a wide field of view, it is possible to obtain continuous images over the entire field of view.

以上説明したように、ラインセンサの素子数よ
り多数の連続したセンサアセンブリが必要な場合
で、かつフアイバアセンブリが精度等の問題で必
要数並べられない場合でも、本発明のアセンブリ
により、センサを複数個直線的に並べることが可
能となり、より広画角の放射計でも連続した画像
が得られる利点がある。
As explained above, even when a number of continuous sensor assemblies is required than the number of line sensor elements, and even when the required number of fiber assemblies cannot be lined up due to accuracy etc., the assembly of the present invention can be used to connect multiple sensors. It is now possible to line up individual units in a straight line, which has the advantage of allowing continuous images to be obtained even with a radiometer with a wider field of view.

以上本発明をその良好な一実施例について説明
したが、それは単なる例示的なものであり、ここ
で説明された実施例によつてのみ本願発明が限定
されるものでないことは勿論である。
Although the present invention has been described above with reference to one preferred embodiment thereof, this is merely an illustrative example, and it goes without saying that the present invention is not limited only to the embodiment described herein.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,b,cは従来のラインセンサ組合せ
方式を示す図、第2図はフアイバアセンブリ先端
の拡大図、第3図a,bは本発明におけるライン
センサ組合せ方式の一実施例を示す図である。 1……ラインセンサ、2……ラインセンサパツ
ケージ、3……ハーフプリズム、4……フアイバ
オプテイツクスの先端、5……ガラスカバー、6
……フアイバ、7〜10……フアイバアセンブリ
の先端面(加工例)、7′〜10′……側面、11
〜13……フアイバアセンブリの加工角度。
Figures 1a, b, and c show a conventional line sensor combination system, Figure 2 is an enlarged view of the tip of the fiber assembly, and Figures 3a and b show an embodiment of the line sensor combination system of the present invention. It is a diagram. DESCRIPTION OF SYMBOLS 1... Line sensor, 2... Line sensor package, 3... Half prism, 4... Tip of fiber optics, 5... Glass cover, 6
...Fiber, 7-10...Tip surface of fiber assembly (processing example), 7'-10'...Side surface, 11
~13... Machining angle of fiber assembly.

Claims (1)

【特許請求の範囲】[Claims] 1 ラインセンサのエレメントサイズに一致した
太さの複数個のオプテイカルフアイバの各側面を
固定手段によりすき間なく一直線に並べて束状に
固定し、該束状に固定されたオプテイカルフアイ
バ束を複数個用意し、前記オプテイカルフアイバ
束の一端を前記ラインセンサのエレメントに対応
するように固定し、前記オプテイカルフアイバ束
の他端および該他端に隣接する前記固定手段の側
面を斜めに切断し、互いに隣接する2個のオプテ
イカルフアイバ束の斜めに切断された前記他端の
端面と前記切断された側面とのなす角α,βが、
α+β≦180゜を満足するフアイバ束同士を前記
他端で一直線上に並べて固定することを特徴とし
た放射計用ラインセンサ組合せ方式。
1. Each side surface of a plurality of optical fibers having a thickness that matches the element size of the line sensor is arranged in a straight line without any gaps and fixed in a bundle, and the plurality of optical fiber bundles fixed in the bundle are fixed. preparing one end of the optical fiber bundle so as to correspond to the element of the line sensor, and diagonally cutting the other end of the optical fiber bundle and the side surface of the fixing means adjacent to the other end; The angles α and β formed between the obliquely cut end surfaces of the other ends of two mutually adjacent optical fiber bundles and the cut side surfaces are:
A line sensor combination method for a radiometer, characterized in that fiber bundles satisfying α+β≦180° are aligned and fixed in a straight line at the other end.
JP56199538A 1981-12-10 1981-12-10 Combination system for line sensor for radiometer Granted JPS58100105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56199538A JPS58100105A (en) 1981-12-10 1981-12-10 Combination system for line sensor for radiometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56199538A JPS58100105A (en) 1981-12-10 1981-12-10 Combination system for line sensor for radiometer

Publications (2)

Publication Number Publication Date
JPS58100105A JPS58100105A (en) 1983-06-14
JPS6255121B2 true JPS6255121B2 (en) 1987-11-18

Family

ID=16409494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56199538A Granted JPS58100105A (en) 1981-12-10 1981-12-10 Combination system for line sensor for radiometer

Country Status (1)

Country Link
JP (1) JPS58100105A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661838A (en) * 1995-08-25 1997-08-26 Illumination Technologies, Inc. Multiple fiber optic light line unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4835491U (en) * 1971-08-30 1973-04-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4835491U (en) * 1971-08-30 1973-04-27

Also Published As

Publication number Publication date
JPS58100105A (en) 1983-06-14

Similar Documents

Publication Publication Date Title
US5568578A (en) Gradient index rod collimation lens devices for enhancing optical fiber line performance where the beam thereof crosses a gap in the line
US5404247A (en) Telecentric and achromatic f-theta scan lens system and method of use
EP0222293B1 (en) Optical beam splitter prism
DK403184A (en) RETRECT REFLECTING ARTICLES WITH DICE BRAINS AND WITH A WIDE ANGLE POSITION IN MANY VISION PLANES
EP0484801A2 (en) Optical system for partitioning a real image
JPH0723931B2 (en) Dual magnification telescope
JPH04253B2 (en)
US6301054B1 (en) Optical element for multiple beam separation control
JPS6255121B2 (en)
US4469404A (en) Image posture converting optical system
JPH04234013A (en) Super-braod-band achromatic lens
JPS59177506A (en) Lens holder
CA2043978A1 (en) Polarization diffraction element and polarization detector employing the same
JPS5912414A (en) Optical deflector
JPH01102515A (en) Optical fiber connector
JP2554629B2 (en) Optical fiber collimator
US3320019A (en) Scanning prism utilizing four roof prism components
GB2092854A (en) Focus detecting system
JPH0324428A (en) Interferometer equipment of proceed system particularly by multiple fourier transform and spectral imagescope composed of the same
JPS6330604B2 (en)
US6998003B2 (en) Optical element and its manufacturing process
JPS60184215A (en) Optical multiplexer/demultiplexer
US3013471A (en) Periscope
GB2188769A (en) Laser reflector adjustment
EP0823646A3 (en) Multiple fiber optic light line unit