JPS6254907A - sputtering device - Google Patents
sputtering deviceInfo
- Publication number
- JPS6254907A JPS6254907A JP19392585A JP19392585A JPS6254907A JP S6254907 A JPS6254907 A JP S6254907A JP 19392585 A JP19392585 A JP 19392585A JP 19392585 A JP19392585 A JP 19392585A JP S6254907 A JPS6254907 A JP S6254907A
- Authority
- JP
- Japan
- Prior art keywords
- base material
- magnetic field
- permanent magnet
- film
- sputtering apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Physical Vapour Deposition (AREA)
- Thin Magnetic Films (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明はスパッタ装置に係り、特に磁気異方性をもつ磁
性体膜を形成するための基材表面への平行磁場付与に関
する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a sputtering apparatus, and particularly to applying a parallel magnetic field to the surface of a substrate for forming a magnetic film having magnetic anisotropy.
薄膜磁気ヘッドのコア材料の表面等にスパッタ装置で磁
性体膜を形成する際に、磁性体膜に一軸異方性を与える
ために、成膜中に成膜すべきコア材料等の基材表面に平
行磁場を与えることが行われている。この平行磁場は電
磁石を用いる方式と永久磁石を用いる方式があるが、ス
パッタ装置をコンパクト化するには永久磁石方式が有利
である。When forming a magnetic film on the surface of the core material of a thin film magnetic head using a sputtering device, in order to give the magnetic film uniaxial anisotropy, the surface of the base material such as the core material to be deposited during film formation. A parallel magnetic field is applied to the There are two methods for generating this parallel magnetic field, one using an electromagnet and the other using a permanent magnet, but the permanent magnet method is advantageous for making the sputtering apparatus more compact.
一方、成膜磁性材料により高磁束密度材料を使用してよ
り優れた一軸異方性の磁性体膜を得ることが要望されて
いるが、従来のスパッタ装置では、平行磁場発生磁石の
均質性やプラズマ収束用磁界の影響等で平行磁場に不均
一(歪)が生じており、従って高磁束密度材料を使用す
る程この平行磁場の不均一性の影響が顕著になって均質
な一軸異方性をもつ磁性体膜が得られないことがわかっ
た。On the other hand, it is desired to obtain a magnetic film with better uniaxial anisotropy by using a high magnetic flux density material, but with conventional sputtering equipment, the homogeneity of the parallel magnetic field generating magnet Non-uniformity (distortion) occurs in the parallel magnetic field due to the influence of the magnetic field for plasma convergence, etc. Therefore, the higher the magnetic flux density material is used, the more pronounced the effect of the non-uniformity of the parallel magnetic field becomes, resulting in homogeneous uniaxial anisotropy. It was found that it was not possible to obtain a magnetic film with .
なお、この種のスパッタ装置は、特開昭58−2547
5号公報や特開昭58−147560号公報に開示され
ている。Note that this type of sputtering equipment is disclosed in Japanese Patent Application Laid-Open No. 58-2547.
This method is disclosed in Japanese Patent Publication No. 58-147560 and Japanese Patent Application Laid-open No. 147560/1983.
従って本発明の目的は、成膜すべき基材の表面に与える
平行磁場の歪による悪影響を軽減し、より優れた磁性体
膜を形成できるスパッタ装置を提供することにある。Therefore, an object of the present invention is to provide a sputtering apparatus that can reduce the adverse effects of distortion caused by a parallel magnetic field on the surface of a substrate to be deposited, and can form a more excellent magnetic film.
本発明は、成膜すべき基材の表面に与える平行磁場の極
性を成膜途中で反転させることにより基材表面に作用す
る平行磁場の歪の影響を軽減し、以って磁性体膜の一軸
異方性の均質性を高めるものである。The present invention reduces the influence of distortion of the parallel magnetic field acting on the surface of the substrate by reversing the polarity of the parallel magnetic field applied to the surface of the substrate to be deposited during film formation. This improves the homogeneity of uniaxial anisotropy.
従って本発明のスパッタ装置は、平行磁場極性反転手段
を備えている。この平行磁場極性反転手段は、平行磁場
発生手段が電磁石である場合にはその励磁電流の方向を
反転する切換えスイッチによって実現されるが、永久磁
石を用いる場合には永久磁石または成膜すべき基材を回
転させる回転機構によって実現される。Therefore, the sputtering apparatus of the present invention is equipped with parallel magnetic field polarity reversal means. When the parallel magnetic field generation means is an electromagnet, this parallel magnetic field polarity reversal means is realized by a changeover switch that reverses the direction of the excitation current, but when a permanent magnet is used, it is realized by a changeover switch that reverses the direction of the excitation current. This is achieved by a rotating mechanism that rotates the material.
以下、図面を参照して本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.
第2図は本発明になるスパッタ装置の縦断側面図で、真
空容器1内にターゲット部2と基材部3が配置される。FIG. 2 is a longitudinal sectional side view of the sputtering apparatus according to the present invention, in which a target section 2 and a base material section 3 are arranged in a vacuum vessel 1.
真空容器1内は排気口4から排気装置(図示せず)によ
って10−’Torr程度の超真空度に排気され、その
後、給気口5からガス供給系(図示せず)によってアル
ゴンガス等が供給されて一定の雰囲気ガス圧に保たれる
。この実施例のスパッタ装置はマグネトロン方式のもの
であって、ターゲット部2は絶縁物6によって真空容器
1から絶縁された容器7と、この容器7内に収容されて
マグネトロン磁場を発生する環状の永久磁石8a、8b
と、この永久磁石3a、8bから出る磁束に帰路を与え
る鉄心9と、真空容器lと同電位のアースシールド10
を備え、成膜材から成るターゲット11は容器7および
永久磁石Ha。The inside of the vacuum container 1 is evacuated to an ultra-vacuum level of about 10-'Torr through an exhaust port 4 by an exhaust device (not shown), and then argon gas or the like is pumped through an air supply port 5 by a gas supply system (not shown). is supplied and maintained at a constant atmospheric gas pressure. The sputtering apparatus of this embodiment is of the magnetron type, and the target section 2 includes a container 7 insulated from the vacuum container 1 by an insulator 6, and a permanent annular member housed within the container 7 that generates a magnetron magnetic field. Magnets 8a, 8b
, an iron core 9 that provides a return path for the magnetic flux emitted from the permanent magnets 3a and 8b, and an earth shield 10 that has the same potential as the vacuum vessel l.
A target 11 made of a film-forming material includes a container 7 and a permanent magnet Ha.
8bの上に真空容器1から絶縁状態で保持される。It is held on top of the vacuum container 8b in an insulated state from the vacuum container 1.
基材部3は、真空容器1に気密に保持されて成膜すべき
基材2を前記ターゲットllに対抗させて保持する基材
ホルダー13と、この基材ホルダー13の水平方向両側
に配置されて前記基材12の表面に平行磁場を与える一
対の永久磁石14a。The base material part 3 includes a base material holder 13 that is airtightly held in the vacuum container 1 and holds the base material 2 to be formed into a film in opposition to the target 11, and a base material holder 13 arranged on both sides of the base material holder 13 in the horizontal direction. a pair of permanent magnets 14a that apply a parallel magnetic field to the surface of the base material 12.
14bと、真空容器1に対して気密に保持されて前記永
久磁石14a、14bを前記状態に保持すると共に上下
動および回転可能な磁石ホルダー15a、15bと、こ
の磁石ホルダー15a、15bを上下動および回転する
磁石駆動機構162,16bとを備えている。前記永久
磁石14a、14bは紙面と直角方向に長軸の長方形磁
性材で構成され、短軸方向に着磁され、この着磁面が基
材12と対向している。前記磁石ホルダー15a、15
bは、この永久磁石14a、14bを長軸および短軸方
向中心を軸にして支持するもので、前記磁石駆動機構1
63.16bは永久磁石14a、14bを上下動するた
めに軸合体を上下動または伸縮する機構と永久磁石14
a、14bに水平回転を与える軸回転機構を備える。14b, magnet holders 15a, 15b which are held airtight with respect to the vacuum vessel 1 to hold the permanent magnets 14a, 14b in the above state and are movable up and down and rotatable; It includes rotating magnet drive mechanisms 162 and 16b. The permanent magnets 14a and 14b are made of rectangular magnetic material whose long axis is perpendicular to the plane of the paper, and are magnetized in the short axis direction, with the magnetized surfaces facing the base material 12. The magnet holders 15a, 15
b supports the permanent magnets 14a and 14b with the centers in the long axis and short axis directions as axes, and the magnet drive mechanism 1
63.16b is a mechanism for vertically moving or expanding/contracting the shaft combination in order to vertically move the permanent magnets 14a and 14b, and a permanent magnet 14.
A and 14b are provided with an axial rotation mechanism that provides horizontal rotation.
このスパッタ装置は、真空容器1が接地電位にされ、タ
ーゲット11にはグロー放電を維持する電圧を与える電
源17が接続される。この実施例では基材部3を真空容
器1と同じ接地電位にしているが、バイアススパッタ等
の目的で数十ボルト程度の負電位または高周波電位を与
える場合もある。In this sputtering apparatus, the vacuum vessel 1 is set to a ground potential, and the target 11 is connected to a power source 17 that provides a voltage for maintaining glow discharge. In this embodiment, the base material portion 3 is set at the same ground potential as the vacuum vessel 1, but a negative potential or high frequency potential of several tens of volts may be applied for purposes such as bias sputtering.
以上の構成において、ターゲット11に電源17から電
圧が与えられるとターゲット11と基材12および真空
容器1の間にグロー放電が生じプラズマが生成される。In the above configuration, when a voltage is applied to the target 11 from the power source 17, glow discharge occurs between the target 11, the base material 12, and the vacuum vessel 1, and plasma is generated.
ターゲット11の前面には永久磁石8a、3bによって
マグネトロン磁場が発生しており、従ってここには局部
的に高密度のプラズマが生じ、これによりスパッタされ
たターゲット11の磁性体粒子は基材12の表面に付着
して磁性体の薄膜を形成する。このとき、基材12の表
面には永久磁石14a、14bによって平行磁場が与え
られているので、基材12の表面に付着する磁性体粒子
はこの平行磁場に沿って整列され磁性体膜には磁気異方
性が与えられる。A magnetron magnetic field is generated in front of the target 11 by permanent magnets 8a and 3b, and therefore a high-density plasma is generated locally, and the sputtered magnetic particles of the target 11 are transferred to the base material 12. It adheres to the surface and forms a thin film of magnetic material. At this time, since a parallel magnetic field is applied to the surface of the base material 12 by the permanent magnets 14a and 14b, the magnetic particles adhering to the surface of the base material 12 are aligned along this parallel magnetic field, and the magnetic material film is Magnetic anisotropy is given.
この磁性体膜の磁気異方性はターゲット11に用いる磁
性体の材質および前記平行磁場の均質性に影響されるが
、平行磁場は前述のように永久磁石14a、14bの材
質や着磁の不均一あるいはマグネトロン磁場の影響で歪
んでいる。The magnetic anisotropy of this magnetic film is influenced by the material of the magnetic material used for the target 11 and the homogeneity of the parallel magnetic field. It may be uniform or distorted due to the influence of the magnetron magnetic field.
この実施例はこの平行磁場の歪の影響を軽減するために
、成膜途中で磁石駆動機構162.16bを働かせて、
第1図のように磁石ホルダー15a、15bを下降させ
て基材ホルダー13および基材12と非対向状態にして
衝突をさけると共に基材12に対する永久磁石14a、
14bの影響が少なくなるようにし、該位置において磁
石ホルダー15a、15bを水平方向に180度回転さ
せて平行磁場の極性を反転し、しかる後に磁石ホルダー
15a、’15bを上昇させて元の位置に戻す。In this embodiment, in order to reduce the influence of distortion of this parallel magnetic field, the magnet drive mechanism 162.16b is activated during film formation.
As shown in FIG. 1, the magnet holders 15a and 15b are lowered to a state where they do not face the base material holder 13 and the base material 12 to avoid collision, and the permanent magnet 14a is placed against the base material 12.
14b, rotate the magnet holders 15a and 15b horizontally by 180 degrees in the corresponding position to reverse the polarity of the parallel magnetic field, and then raise the magnet holders 15a and 15b to their original positions. return.
このように永久磁石14a、14bを回転させ平行磁場
の極性を反転させると、例えば永久磁石14a、14b
から発生する磁場そのものに歪がある場合にはその歪が
解消されあるいは歪が反転して相殺され、またマグネト
ロン磁場による影響も相対的に反転してそれまでの影響
を相殺する方向になるので、平行磁場の歪による磁性体
膜の磁気異方性の局部的な乱れがなくなり、基材12の
表面に均質性の高い磁性体膜を形成することができる。When the permanent magnets 14a, 14b are rotated in this way and the polarity of the parallel magnetic field is reversed, for example, the permanent magnets 14a, 14b
If there is any distortion in the magnetic field itself generated by the magnetron, that distortion will be canceled or reversed and canceled out, and the influence of the magnetron magnetic field will also be relatively reversed and cancel out the previous influence. Local disturbances in the magnetic anisotropy of the magnetic film due to distortion of the parallel magnetic field are eliminated, and a highly homogeneous magnetic film can be formed on the surface of the base material 12.
第3図に示す実施例は、磁石ホルダー15a。The embodiment shown in FIG. 3 is a magnet holder 15a.
15bが基材12よりも上方に上昇した後に回転するよ
うに構成されている点で先に述べた実施例と相違する。This embodiment differs from the previous embodiment in that it is configured to rotate after the 15b rises above the base material 12.
このようにすると、永久磁石14a。In this way, the permanent magnet 14a.
14bと磁石ホルダー153.15bは基材ホルダー1
3の背後で回転するようになるので、回転中の永久磁石
14a、14bからの磁界が基材12に与える影響の程
度は更に軽減し、またプラズマへの影響も少なくなる。14b and magnet holder 153.15b are base material holder 1
3, the degree of influence of the magnetic field from the rotating permanent magnets 14a and 14b on the base material 12 is further reduced, and the influence on the plasma is also reduced.
なお何れの実施例においても成膜所要時間に対して平行
磁場極性反転所要時間は極めて短時間であるので、この
平行磁場の極性反転中の磁場の乱れが磁性体膜の磁気異
方性に及ぼす影響は実用上無視し得る程度に少ない。In any of the examples, the time required for reversing the polarity of the parallel magnetic field is extremely short compared to the time required for film formation, so the disturbance of the magnetic field during the reversal of the polarity of the parallel magnetic field has no effect on the magnetic anisotropy of the magnetic film. The effect is so small that it can be ignored in practical terms.
第4図および第5図は先に述べた実施例における基材1
2と永久磁石14a、14bの関係を平面的にみたもの
で、第4図は平行磁場極性反転前の状態、第5図は平行
磁場極性反転後の状態である。そしてこのような平行磁
場の極性反転は、1回だけでなく、1つの基材12に対
する成膜の途中で複数回行えばより均質な磁性体膜が得
られる。FIGS. 4 and 5 show the base material 1 in the embodiment described above.
2 and the permanent magnets 14a and 14b, as seen in plan, FIG. 4 shows the state before the polarity of the parallel magnetic field is reversed, and FIG. 5 shows the state after the polarity of the parallel magnetic field is reversed. A more homogeneous magnetic film can be obtained by reversing the polarity of the parallel magnetic field not only once but multiple times during film formation on one base material 12.
以上に述べた実施例は、基材ホルダー13に保持されて
成膜される基材12は1つであったが、第6図に示すよ
うに、永久磁石14a、14bの長軸方向に2つ(複数
個)の基材12a、12bを並べて保持して同時に成膜
するようにすることもできる。このようにした場合には
、当然に、永久磁石14a、14bの長軸方向の寸法を
大きくとらなければならない。このような場合、2つの
永久磁石14a、14bを同一水平レベルで回転させる
と回転途中で両者が接触して回転不能になる恐れがある
。従ってこのような構成の場合には、第7図に示すよう
に、磁石ホルダー15a、15bの下降量に相違を与え
、回転中に永久磁石14゛a、14bおよび磁石ホルダ
ー153.15bが相互干渉しないようにするのがよい
。In the embodiment described above, the number of substrates 12 held by the substrate holder 13 and deposited is one, but as shown in FIG. It is also possible to hold two (plural) base materials 12a and 12b side by side and form a film at the same time. In this case, it is natural that the permanent magnets 14a, 14b must be made larger in the long axis direction. In such a case, if the two permanent magnets 14a and 14b are rotated at the same horizontal level, there is a risk that they will come into contact with each other during rotation and become unable to rotate. Therefore, in the case of such a configuration, as shown in FIG. 7, the lowering amounts of the magnet holders 15a and 15b are made different, and the permanent magnets 14a and 14b and the magnet holders 153 and 15b interfere with each other during rotation. It is best to avoid doing so.
第8図は永久磁石14a、14bを磁石ホルダー15a
、t5bによって開門的に保持し、基材ホルダー13を
回転させる基材駆動機構18を設けた実施例である。こ
の実施例における基材駆動機構18は、基材ホルダー1
3を高速に180度回転させる機能をもち、上下動させ
る機能はもたない。すなわち、この実施例は、平行磁場
極性反転のための基材ホルダー13の回転所要時間が成
膜所要時間に比較して極端に短く、この間に基材12に
作用する磁場は形成される磁性体膜の磁気異方性の乱れ
が無視できる程度に少ないことを利用するものである。FIG. 8 shows permanent magnets 14a and 14b in a magnet holder 15a.
, t5b in an open manner and holds the substrate holder 13 in an open manner, and is provided with a substrate drive mechanism 18 that rotates the substrate holder 13. The substrate drive mechanism 18 in this embodiment includes the substrate holder 1
It has the function of rotating 3 at high speed 180 degrees, but does not have the function of moving it up and down. That is, in this embodiment, the time required to rotate the substrate holder 13 for reversing the polarity of the parallel magnetic field is extremely short compared to the time required for film formation, and the magnetic field acting on the substrate 12 during this period is This method takes advantage of the fact that the disturbance in the magnetic anisotropy of the film is negligible.
そしてこの実施例は、基材駆動機構18が基材ホルダー
13を回転させるだけの単純な構成で足りる効果がある
。This embodiment has the advantage that a simple configuration in which the substrate drive mechanism 18 only rotates the substrate holder 13 is sufficient.
第9図は第8図に示した実施例を改良したもので、基材
ホルダー13を回転させるときに基材12に対して永久
磁石14a、14bの磁界が作用しないように構成し、
磁性体膜により優れた磁気異方性を与るものである。こ
の実施例における磁石ホルダー158.15bは真空容
器1の側壁から水平方向に伸びて永久磁石14a、14
bを基材12の両側に保持している。そして磁石駆動機
構162.16bは磁石ホルダー15a、15bを後退
、前進させる機能だけをもち、基材ホルダー13を回転
させるときには、第10図に示すように、磁石ホルダー
152,15bを後退させて永久磁石14a、14bに
よる磁界が基材12に作用しないようにするものである
。FIG. 9 is an improved version of the embodiment shown in FIG. 8, in which the magnetic field of permanent magnets 14a and 14b does not act on the base material 12 when the base material holder 13 is rotated,
This provides superior magnetic anisotropy to the magnetic film. The magnet holder 158.15b in this embodiment extends horizontally from the side wall of the vacuum vessel 1 to hold the permanent magnets 14a, 14.
b are held on both sides of the base material 12. The magnet drive mechanism 162.16b has only the function of retracting and advancing the magnet holders 15a and 15b, and when rotating the substrate holder 13, it retracts the magnet holders 152 and 15b permanently as shown in FIG. This prevents the magnetic field from the magnets 14a and 14b from acting on the base material 12.
第11図に示す実施例は、永久磁石14a、14bを長
軸方向に伸びる回転軸19a、19bにより該永久磁石
14a、14bが該回転軸19a。In the embodiment shown in FIG. 11, the permanent magnets 14a, 14b are rotated by rotating shafts 19a, 19b extending in the longitudinal direction.
19bと共に該軸を中心に180度回転するようにした
例である。この回転軸19a、19bを回転させる回転
軸駆動機構は図示してないが、回転軸19a、19bは
真空容器1の側壁を貫通して容器外に導出され、そこで
これを180度回転させる機能をもつ回転軸駆動機構に
結合される。This is an example in which it rotates 180 degrees around the axis together with 19b. Although the rotary shaft drive mechanism for rotating the rotary shafts 19a and 19b is not shown, the rotary shafts 19a and 19b penetrate the side wall of the vacuum container 1 and are led out of the container, where they have the function of rotating them by 180 degrees. It is connected to a rotary shaft drive mechanism with a rotary shaft drive mechanism.
第12図は第11図に示す実施例における永久磁石14
a、14bの反転機構の改良例で、一方の永久磁石14
aの反転機構を図示したものである。永久磁石14aは
回転軸19aに対してクランクロッド20aを介して保
持される。クランクロフト20aは回転軸19aに対し
て一体的に結合されるが、永久磁石14aはクランクロ
ッド20aの回転に対して水平状態を保つように取付け
られる。そして永久磁石14aはクランクロッド20a
が垂直位置まで回転(公転)したときに回転ビン21a
に当接してその反力で180度回転(自転)するように
構成される。この実施例も永久磁石14a、14bの回
転を基材12から遠く離れた位置で行うことができ、従
って回転中の悪影響がなくなる効果をもつ。FIG. 12 shows the permanent magnet 14 in the embodiment shown in FIG.
This is an improved example of the reversing mechanism of a and 14b, with one permanent magnet 14
Fig. 3 illustrates the reversing mechanism of Fig. a. Permanent magnet 14a is held with respect to rotating shaft 19a via crank rod 20a. The crank loft 20a is integrally connected to the rotating shaft 19a, and the permanent magnet 14a is attached so as to maintain a horizontal state with respect to the rotation of the crank rod 20a. And the permanent magnet 14a is the crank rod 20a.
When the rotating bin 21a rotates (revolutions) to the vertical position,
It is configured to rotate (rotate) 180 degrees by the reaction force when it comes into contact with the object. This embodiment also has the effect that the permanent magnets 14a, 14b can be rotated at a position far away from the base material 12, thereby eliminating any adverse effects during rotation.
以上のように本発明のスパッタ装置は、成膜すべき基材
の表面に与える平行磁場の極性を成膜途中で反転させる
ようにしたので、基材表面に作用する平行磁場の歪の影
響を軽減して、均質性の高い磁気異方性の磁性体膜を形
成することができる。As described above, in the sputtering apparatus of the present invention, the polarity of the parallel magnetic field applied to the surface of the base material to be deposited is reversed during film formation, so that the effect of distortion of the parallel magnetic field acting on the base material surface is reduced. It is possible to form a magnetic film with high homogeneity and magnetic anisotropy by reducing the amount of heat generated.
図面は本発明の実施例を示すもので、第1図および第2
図は本発明の一実施例を示すスパッタ装置の縦断側面図
、第3図は他の実施例を示す縦断側面図、第4図〜第6
図は基材と永久磁石の関係を示す下面図、第7図〜第1
1図は更に他の4つの実施例を示す縦断側面図、第12
図は更に他の実施例における永久磁石反転機構の側面図
である。
1・・・・・・真空容器、2・・・・・・ターゲット部
、3・・・・・・基材部、3a、3b・・・・・・マグ
ネトロン磁場用の永久磁石、11・・・・・・ターゲッ
ト、12・・・・・・基材、13・・・・・・基材ホル
ダー、14a、14b・・・・・・平行磁場用の永久磁
石、15a、15b・・・・・・磁石ホルダー、16a
、16b・・・・・・磁石駆動機構。
第1図
第2図
第31!1
第4図 第5−
第6Z 第711
第8図
第9図
第to II
第11図
第12国The drawings show embodiments of the present invention, and include FIGS. 1 and 2.
The figure is a longitudinal side view of a sputtering apparatus showing one embodiment of the present invention, FIG. 3 is a longitudinal side view showing another embodiment, and FIGS.
The figures are bottom views showing the relationship between the base material and permanent magnets, and Figures 7 to 1.
FIG. 1 is a longitudinal cross-sectional side view showing four other embodiments;
The figure is a side view of a permanent magnet reversal mechanism in yet another embodiment. DESCRIPTION OF SYMBOLS 1... Vacuum container, 2... Target part, 3... Base material part, 3a, 3b... Permanent magnet for magnetron magnetic field, 11... ...Target, 12...Base material, 13...Base material holder, 14a, 14b...Permanent magnet for parallel magnetic field, 15a, 15b... ...Magnet holder, 16a
, 16b... Magnet drive mechanism. Figure 1 Figure 2 Figure 31!1 Figure 4 Figure 5- 6Z 711 Figure 8 Figure 9 to II Figure 11 Figure 12 Country
Claims (1)
ゲットを保持する手段と、成膜すべき基材を保持する基
材保持台と、前記基材表面に平行磁場を与えこの基材表
面に形成される磁性膜に磁気異方性を与える磁石装置と
を備えたスパッタ装置において、前記基材表面に与えら
れる平行磁場の極性を反転する平行磁場極性反転手段を
設けたことを特徴とするスパッタ装置。 2、特許請求の範囲第1項において、前記磁石装置は、
前記基材保持台の両側に配置される永久磁石と、この永
久磁石を保持する永久磁石保持台とを備え、前記平行磁
場極性反転手段は、前記基材保持台または前記永久磁石
を回転させて基材と永久磁石の対向極性を反転させる回
転機構を有することを特徴とするスパッタ装置。 3、特許請求の範囲第2項において、前記平行磁場極性
反転手段は、更に、前記基材保持台と永久磁石を非対向
状態に移動する非対向移動手段を備え、基材保持台また
は永久磁石は非対向状態に移動した後に反転してその後
に対向状態に戻されることを特徴とするスパッタ装置。 4、特許請求の範囲第3項において、前記回転機構は前
記基材保持台と永久磁石保持台の一方に結合され、前記
非対向移動手段は前記基材保持台と永久磁石保持台の他
方に結合されることを特徴とするスパッタ装置。 5、特許請求の範囲第2項において、前記永久磁石は短
軸方向に着磁されて対向する長方形磁性材で構成され、
前記回転機構はこの永久磁石を長軸方向の中心軸を中心
に回転させることを特徴とするスパッタ装置。[Claims] 1. A vacuum container, means for holding a target made of a film-forming material in the vacuum container, a base material holding table for holding a base material to be film-formed, and a means for holding a target made of a film-forming material in the vacuum container, a base material holding table that holds a base material to be film-formed, and a means for holding a target made of a film-forming material in the vacuum container, A sputtering apparatus equipped with a magnet device that applies a magnetic field to impart magnetic anisotropy to a magnetic film formed on the surface of the base material, comprising a parallel magnetic field polarity reversing means for reversing the polarity of the parallel magnetic field applied to the surface of the base material. A sputtering device characterized in that: 2. In claim 1, the magnet device comprises:
The parallel magnetic field polarity reversing means includes permanent magnets disposed on both sides of the substrate holder and a permanent magnet holder that holds the permanent magnets, and the parallel magnetic field polarity reversing means rotates the substrate holder or the permanent magnet. A sputtering apparatus characterized by having a rotation mechanism that reverses the opposing polarities of a base material and a permanent magnet. 3. In claim 2, the parallel magnetic field polarity reversing means further includes non-opposing moving means for moving the substrate holder and the permanent magnet to a non-opposing state, and the substrate holder or the permanent magnet A sputtering apparatus characterized in that after moving to a non-opposed state, the sputtering apparatus is reversed and then returned to a facing state. 4. In claim 3, the rotation mechanism is coupled to one of the substrate holder and the permanent magnet holder, and the non-opposed moving means is coupled to the other of the substrate holder and the permanent magnet holder. A sputtering apparatus characterized in that: 5. In claim 2, the permanent magnet is composed of rectangular magnetic materials magnetized in the short axis direction and facing each other,
The sputtering apparatus is characterized in that the rotation mechanism rotates the permanent magnet around a central axis in the longitudinal direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19392585A JPS6254907A (en) | 1985-09-04 | 1985-09-04 | sputtering device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19392585A JPS6254907A (en) | 1985-09-04 | 1985-09-04 | sputtering device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6254907A true JPS6254907A (en) | 1987-03-10 |
JPH0564846B2 JPH0564846B2 (en) | 1993-09-16 |
Family
ID=16316020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19392585A Granted JPS6254907A (en) | 1985-09-04 | 1985-09-04 | sputtering device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6254907A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63307272A (en) * | 1987-06-05 | 1988-12-14 | Hitachi Ltd | Ion beam sputtering device |
JPH03191060A (en) * | 1989-12-19 | 1991-08-21 | Internatl Business Mach Corp <Ibm> | Sputtering device |
JP2009138277A (en) * | 2009-01-27 | 2009-06-25 | Canon Anelva Corp | Magnetron sputtering equipment |
JP5149285B2 (en) * | 2009-03-02 | 2013-02-20 | キヤノンアネルバ株式会社 | Magnetic device manufacturing apparatus and magnetic device manufacturing method for film formation by sputtering |
JP2015183264A (en) * | 2014-03-25 | 2015-10-22 | Tdk株式会社 | Sputtering film deposition apparatus |
WO2019011161A1 (en) * | 2017-07-14 | 2019-01-17 | 北京北方华创微电子装备有限公司 | Magnetic thin film deposition chamber and thin film deposition device |
EP3438323A4 (en) * | 2016-03-29 | 2019-11-06 | ULVAC, Inc. | Film-forming apparatus and film-forming method |
US11476099B2 (en) * | 2018-02-13 | 2022-10-18 | Evatec Ag | Methods of and apparatus for magnetron sputtering |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58100411A (en) * | 1981-12-11 | 1983-06-15 | Matsushita Electric Ind Co Ltd | Method of forming ferromagnetic film |
JPS6039157A (en) * | 1983-08-12 | 1985-02-28 | Hitachi Ltd | Manufacturing method of amorphous magnetic alloy |
-
1985
- 1985-09-04 JP JP19392585A patent/JPS6254907A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58100411A (en) * | 1981-12-11 | 1983-06-15 | Matsushita Electric Ind Co Ltd | Method of forming ferromagnetic film |
JPS6039157A (en) * | 1983-08-12 | 1985-02-28 | Hitachi Ltd | Manufacturing method of amorphous magnetic alloy |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63307272A (en) * | 1987-06-05 | 1988-12-14 | Hitachi Ltd | Ion beam sputtering device |
JPH03191060A (en) * | 1989-12-19 | 1991-08-21 | Internatl Business Mach Corp <Ibm> | Sputtering device |
JP2009138277A (en) * | 2009-01-27 | 2009-06-25 | Canon Anelva Corp | Magnetron sputtering equipment |
JP5149285B2 (en) * | 2009-03-02 | 2013-02-20 | キヤノンアネルバ株式会社 | Magnetic device manufacturing apparatus and magnetic device manufacturing method for film formation by sputtering |
JP2015183264A (en) * | 2014-03-25 | 2015-10-22 | Tdk株式会社 | Sputtering film deposition apparatus |
EP3438323A4 (en) * | 2016-03-29 | 2019-11-06 | ULVAC, Inc. | Film-forming apparatus and film-forming method |
WO2019011161A1 (en) * | 2017-07-14 | 2019-01-17 | 北京北方华创微电子装备有限公司 | Magnetic thin film deposition chamber and thin film deposition device |
US11476099B2 (en) * | 2018-02-13 | 2022-10-18 | Evatec Ag | Methods of and apparatus for magnetron sputtering |
US11848179B2 (en) | 2018-02-13 | 2023-12-19 | Evatec Ag | Methods of and apparatus for magnetron sputtering |
Also Published As
Publication number | Publication date |
---|---|
JPH0564846B2 (en) | 1993-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11302839A (en) | Sputtering system | |
JPS6254907A (en) | sputtering device | |
JPWO2010073330A1 (en) | Sputtering equipment | |
JPH02210636A (en) | Production of magneto-optical recording medium | |
JPS6151410B2 (en) | ||
JPS61288067A (en) | Sputtering device | |
JPS6365069A (en) | Sputtering device | |
US5290416A (en) | Unidirectional field generator | |
JP3920955B2 (en) | Sputtering equipment | |
JP3211458B2 (en) | Magnetic film forming equipment | |
JPS61179864A (en) | Sputtering device | |
JPH0641736A (en) | Sputtering electrode | |
JP2002069631A (en) | Sputtering method and apparatus | |
JPH10130835A (en) | Device for executing film deposition on substrate | |
JP2906163B2 (en) | Sputtering equipment | |
JPH0243824B2 (en) | SUPATSUTARINGUSOCHI | |
JP2980266B2 (en) | Sputtering apparatus for forming a laminated film of a magnetic thin film and a non-magnetic thin film | |
JPH0375368A (en) | Sputtering device | |
JPH035643B2 (en) | ||
JPH04218668A (en) | Magnetron sputtering equipment | |
JPH06264218A (en) | Sputtering target | |
JPS618737A (en) | Method for manufacturing perpendicular magnetic recording media | |
JPH04116154A (en) | Sputtering equipment for magnetic film formation | |
JPH03100171A (en) | Sputtering device | |
JPH0379760A (en) | Sputtering device |