JPS6253422A - Carbon fiber manufacturing method - Google Patents
Carbon fiber manufacturing methodInfo
- Publication number
- JPS6253422A JPS6253422A JP19301885A JP19301885A JPS6253422A JP S6253422 A JPS6253422 A JP S6253422A JP 19301885 A JP19301885 A JP 19301885A JP 19301885 A JP19301885 A JP 19301885A JP S6253422 A JPS6253422 A JP S6253422A
- Authority
- JP
- Japan
- Prior art keywords
- fibers
- tension
- strength
- fiber
- carbon fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920000049 Carbon (fiber) Polymers 0.000 title claims description 20
- 239000004917 carbon fiber Substances 0.000 title claims description 20
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims description 9
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000000835 fiber Substances 0.000 claims description 43
- 238000000034 method Methods 0.000 claims description 19
- 239000011295 pitch Substances 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 10
- 239000012298 atmosphere Substances 0.000 claims description 9
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 claims description 8
- 239000002994 raw material Substances 0.000 claims description 5
- 239000003245 coal Substances 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 claims 1
- 239000003208 petroleum Substances 0.000 claims 1
- 238000003763 carbonization Methods 0.000 description 14
- 230000007547 defect Effects 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 238000005087 graphitization Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000006482 condensation reaction Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000006356 dehydrogenation reaction Methods 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011300 coal pitch Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000012691 depolymerization reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000002074 melt spinning Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000011301 petroleum pitch Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 241000218202 Coptis Species 0.000 description 1
- 235000002991 Coptis groenlandica Nutrition 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000010035 extrusion spinning Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- -1 sliding members Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Inorganic Fibers (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は石油系および石炭系ピッチを原料とする炭素繊
維の製造工程において、緊張を加えながら炭素化を行う
ことにより高伸度、中強度の優れた材料特性を有する炭
素繊維の製造方法に関するものである。Detailed Description of the Invention (Industrial Application Field) The present invention is a carbon fiber manufacturing process using petroleum-based or coal-based pitch as a raw material. The present invention relates to a method for producing carbon fibers having excellent material properties.
(従来の技術)
一般に、石油系または石炭系ピッチを原料とする炭素繊
維の製造方法としては、原料ピッチを溶融紡糸して得ら
れたピッチ繊維を250〜400℃の空気などの酸化性
雰囲気中で熱処理し、不融化繊維に転化させた後、80
0〜1600″Cの窒素などの不活性雰囲気中で加熱し
て炭化し、必要に応じて更に高温の不活性雰囲気中で加
熱して黒鉛繊維とする方法が採用されている。不融化以
後の熱処理過程で張力をかけると得られる炭素繊維の物
性の向上することが知られている。特開昭59−144
624号公報にはピッチ繊維に張力を加えながら不融化
処理すnば、炭素繊維の強度および弾性率が顕著に改善
されることが記載されている。また、不融化処理を終っ
て1000℃までの処理過程で7〜/デニ一ル以上の加
重を加えておくことによって物性の改善がみられること
が報告すしている( S、 0tan、ほかI−App
lied PolymerSymposiaJ & 9
、 P 255 (1969)参照)。(Prior art) Generally, as a method for manufacturing carbon fiber using petroleum-based or coal-based pitch as a raw material, pitch fibers obtained by melt-spinning raw material pitch are placed in an oxidizing atmosphere such as air at a temperature of 250 to 400°C. After heat treatment to convert into infusible fiber, 80
The method used is to carbonize by heating in an inert atmosphere such as nitrogen at 0 to 1600"C, and if necessary, further heat in a high temperature inert atmosphere to form graphite fibers. After infusibility. It is known that the physical properties of carbon fibers obtained can be improved by applying tension during the heat treatment process. JP-A-59-144
Publication No. 624 describes that the strength and elastic modulus of carbon fibers are significantly improved by infusibility treatment while applying tension to pitch fibers. In addition, it has been reported that physical properties can be improved by applying a load of 7~/denier or more during the treatment process up to 1000 °C after the infusibility treatment (S, Tan, et al. App
Lied Polymer Symposia J & 9
, P 255 (1969)).
更に、米国特許第3454862号明細書には高強度、
高弾性率の炭素繊維の糸を作るときに、炭素質の糸を伸
度が少なくとも1チになるまで縦方向に引張りをかけて
焼成する方法について規定している。特公昭47−10
254号公報には高弾性の炭素繊維の製造方法として5
50〜850℃および/または1350〜2800℃の
温度において応力を加えることが記載している。また、
1800℃以上の黒鉛化温度領域において塑性変形をも
たらす緊張黒鉛化処理を施すことによりポリマーの選択
的配向性や結晶の成長の特性が明らかに変り、物性も改
善される(近代編集社出版、大釜・木村著「炭素繊維」
第147〜150頁参照)。Furthermore, U.S. Patent No. 3,454,862 describes high strength,
When making carbon fiber yarn with a high elastic modulus, it stipulates a method in which the carbonaceous yarn is stretched in the longitudinal direction and fired until the elongation reaches at least 1 inch. Tokuko Sho 47-10
No. 254 discloses 5 as a method for producing highly elastic carbon fiber.
It is described that stress is applied at a temperature of 50-850°C and/or 1350-2800°C. Also,
By applying stress graphitization treatment that causes plastic deformation in the graphitization temperature range of 1800°C or higher, the selective orientation of the polymer and the characteristics of crystal growth are clearly changed, and the physical properties are also improved (Kindai Editorial Publishing, Okama・“Carbon Fiber” by Kimura
(See pages 147-150).
一方、PAN系炭素炭素繊維前嘔体繊維に配向性を付与
するために延伸操作が不可欠となっている。On the other hand, a stretching operation is essential in order to impart orientation to the PAN-based carbon fibers.
原糸の紡糸過程で延伸により配向性を高めるか、紡糸工
程での配向性付与がさほど完全ではないときには安定化
工程で過度の緊張を与えて配向完成に近づけるか、更に
必要ならば高温処理過程で延伸することを考慮しており
、現実にはこれら諸要素を適宜組み合わせて製品化して
いる。ピッチ系の糸と比較して分子サイズのそろった高
分子であるために、原糸〜中間工程までの糸の引張強度
はかなり大きく、延伸操作も容易となる。ピッチ繊維お
よび不融化繊維の強度はせいぜい5 kg / tj、
伸びも1チ未満と極めて脆弱である。従って、この段階
での緊張処理には極めて正確な張力制御が必要となり、
工業的には不利であり、実用化されていない。Either increase the orientation by stretching the raw yarn during the spinning process, or if the orientation is not completely imparted during the spinning process, apply excessive tension in the stabilization process to bring the orientation to completion, or if necessary, perform a high-temperature treatment process. In reality, these various elements are appropriately combined to create a product. Since it is a polymer with a uniform molecular size compared to pitch-based yarn, the tensile strength of the yarn from the original yarn to the intermediate process is considerably high, and the stretching operation is easy. The strength of pitch fibers and infusible fibers is at most 5 kg/tj,
The elongation is less than 1 inch, making it extremely fragile. Therefore, tension processing at this stage requires extremely accurate tension control.
It is industrially disadvantageous and has not been put to practical use.
繊維軸の結晶配向性と結晶化度が直接、弾性率に反映す
るものと考えらnている。事実、2500〜8000℃
で処理した黒鉛化繊維の弾性率は700 GPaを達成
するものが出現し、黒鉛の理論弾性率1020 GPa
の約70チの値を示している。It is believed that the crystal orientation and crystallinity of the fiber axis directly reflect the elastic modulus. In fact, 2500-8000℃
The elastic modulus of graphitized fibers treated with
It shows a value of about 70chi.
黒鉛のLaおよびLc配向角に近づけるほど弾性率も増
加することが知らnており、この点からすると繊維の緊
張処理は配向性を改善できるので有利である。It is known that the elastic modulus increases as the La and Lc orientation angles of graphite get closer, and from this point of view, tension treatment of the fibers is advantageous because it can improve the orientation.
一方、繊維の引張強度は、せいぜい5 GPaと黒鉛の
理論強度180 GPaの3%程度にしか過ぎない。こ
れほど期待される引張強度と現実の値との開きが大きい
ということは、ミクロな構造の問題であるよりも、もつ
とマクロな、例えば表面や内部のきずおよび欠陥がa維
の強度を弱めている可能性が強いと考えられている。従
って、熱処理過程での緊張は繊維の配向性を改善すると
いう点からは有利であるが、設定条件を誤れば欠陥の発
生を助長し、強度の低下を招くことになるので留意しな
けnばならない。On the other hand, the tensile strength of fibers is at most 5 GPa, which is only about 3% of the theoretical strength of graphite, 180 GPa. The fact that the difference between the expected tensile strength and the actual value is so large means that rather than a microstructural problem, it is more likely that macroscopic defects such as surface and internal flaws and defects weaken the strength of the a-fibers. It is thought that there is a strong possibility that Therefore, tension during the heat treatment process is advantageous in terms of improving the orientation of the fibers, but care must be taken because if the setting conditions are incorrect, it will encourage the occurrence of defects and cause a decrease in strength. No.
上述するように不融化工程での緊張は処理繊維が極めて
脆弱であるために実用化には大きな困難を伴う。また、
炭化工程で処理温度が600℃以上はなると9.維は収
縮しながら炭化し、緻密な組織を形成するが、張力を加
えることにより緻密な構造の発現を阻害し、マクロ欠陥
を十分に埋め切れず、結果として強度の低下を招きやす
い。黒鉛化の場合も同様で繊維の収縮を伴うので、緊張
下の黒鉛化では弾性率の上昇に比べ強度の増加は十分で
なく、破断伸度が小さくなり、満足すべき物性は得られ
ていない。As mentioned above, the tension in the infusibility process makes the treated fibers extremely brittle, making it difficult to put it into practical use. Also,
9. If the treatment temperature exceeds 600°C during the carbonization process. The fibers carbonize as they contract, forming a dense structure, but applying tension inhibits the development of a dense structure, making it impossible to sufficiently fill in macroscopic defects, which tends to result in a decrease in strength. Similarly, graphitization involves shrinkage of the fibers, so graphitization under tension does not increase strength enough compared to the increase in elastic modulus, and the elongation at break decreases, making it impossible to obtain satisfactory physical properties. .
(発明が解決しようとする問題点)
本発明は上述する問題点に着目し、張力制御が容易で、
しかも強度を損うことなく処理を行い高伸度および中強
度の汎用性の高い材料物性を備えたピッチ系炭素繊維の
製造方法を達成することを目的とする。(Problems to be Solved by the Invention) The present invention focuses on the above-mentioned problems, and provides easy tension control.
Moreover, it is an object of the present invention to achieve a method for producing pitch-based carbon fibers that can be processed without losing strength and have versatile material properties such as high elongation and medium strength.
(問題点を解決するための手段)
本発明者らは前記目的を達成すべく繊維の炭化挙動に関
して鋭意研究の結果、繊維の配向性を改善し、強度と伸
びの両特性を向上させる炭化方法において、以下の結論
を見出した:
光学的に等方性を示す石油系および石炭系ピッチを原料
として紡糸したピッチ繊維を公知の方法により不融化し
た後、不活性雰囲気の緊張下で650℃まで熱処理を行
い、更に不活性雰囲気中で緊張を加えずに900〜11
00″Cまで熱処理を行うことによ抄高伸度および中強
度の炭素繊維を得ることができた。(Means for Solving the Problems) In order to achieve the above object, the present inventors conducted extensive research on the carbonization behavior of fibers, and found that a carbonization method that improves the orientation of fibers and improves both strength and elongation properties. found the following conclusion: Pitch fibers spun using optically isotropic petroleum- and coal-based pitches as raw materials were made infusible by a known method, and then heated to 650°C under tension in an inert atmosphere. 900-11 without applying any tension in an inert atmosphere after heat treatment.
By performing heat treatment to 00''C, carbon fibers with high elongation and medium strength could be obtained.
この場合、張力を加える温度範囲は300〜650℃が
適当であり好ましくは500〜650℃である。繊維に
加える張力は60g/−以上が好ましく、および炭化処
理に用いる不融化繊維はo、o a o≦010(原子
数比)<0.100で、かつ40≦QI (キノリン不
溶分、チ)≦70が望ましい。In this case, the appropriate temperature range for applying tension is 300 to 650°C, preferably 500 to 650°C. The tension applied to the fibers is preferably 60 g/- or more, and the infusible fibers used in the carbonization treatment are o, o a o ≦ 010 (atomic ratio) < 0.100, and 40 ≦ QI (quinoline insoluble content, ≦70 is desirable.
一般に、ピッチは多種の縮合芳香族化合物からなる混合
物であり、溶融紡糸後のピッチ繊維は酸化性雰囲気中で
熱処理することにより構造単位分子間の三次元架橋反応
の生成および側鎖または芳香環への含酸素官能基の導入
が促進されてピッチの有する加熱溶融性が失わnる。引
続く炭化過程では不融化過程で導入された含酸素官能基
がco。In general, pitch is a mixture consisting of various types of condensed aromatic compounds, and pitch fibers after melt spinning are heat-treated in an oxidizing atmosphere to generate three-dimensional crosslinking reactions between structural unit molecules and to form side chains or aromatic rings. The introduction of oxygen-containing functional groups is promoted, and pitch loses its heat-melting properties. In the subsequent carbonization process, the oxygen-containing functional group introduced in the infusibility process becomes co.
Co2として脱離しながら単位分子間の重合が進み、6
00℃以上になると脱メタン、および脱水素を伴う縮合
反応が進行し、炭素平面が成長し、炭素繊維固有の物性
が発現してくる。繊維の炭化挙動について鋭意研究の結
果、炭化領域が大きく2つに分けられることを見出した
。Polymerization between unit molecules progresses while desorbing as Co2, and 6
When the temperature reaches 00° C. or higher, a condensation reaction accompanied by demethanization and dehydrogenation progresses, carbon planes grow, and physical properties specific to carbon fibers are developed. As a result of extensive research into the carbonization behavior of fibers, we discovered that the carbonization region can be broadly divided into two.
すなわち、第1図に示すように炭化処理温度を変化させ
ると弾性率は600℃まで殆んど変化せず、600℃以
上で急激に増加する一方、引張強度は1500℃付近か
ら増加し、900℃以上ではほぼ一定の値を示している
。このために、破断伸度は600’Cでシャープなピー
クを有している。That is, as shown in Fig. 1, when the carbonization temperature is changed, the elastic modulus hardly changes up to 600°C and increases rapidly above 600°C, while the tensile strength increases from around 1500°C and reaches 900°C. At temperatures above ℃, the value remains almost constant. For this reason, the elongation at break has a sharp peak at 600'C.
第2図は繊径の変化を示しており、700℃以上で急激
に収縮していることがわかる。Figure 2 shows the change in fiber diameter, and it can be seen that the fiber shrinks rapidly at temperatures above 700°C.
また、炭化処理時の発生ガス分析結果から、400℃〜
650”Cまでに不融化により導入された含酸素官能基
がCOおよびC02として脱離し、700〜900℃に
かけて脱水素および脱メタンを伴う縮合反応が進行する
ことがわかる(第3図参照)。また、500〜600℃
にかけてオレンジ色のタール状物質が生成することを確
認した。In addition, from the analysis results of the gas generated during carbonization treatment, it was found that
It can be seen that the oxygen-containing functional groups introduced by infusibilization are eliminated as CO and CO2 up to 650''C, and a condensation reaction accompanied by dehydrogenation and demethanization proceeds from 700 to 900°C (see Figure 3). Also, 500~600℃
It was confirmed that an orange tar-like substance was produced.
すなわち、600℃を基準として低温領域では主として
含虐素基の脱離を伴う重合反応と熱分解によるタール状
物質の生成を伴う解重合反応が進行し、系の均質化が進
み、より高温領域では脱水素および脱メタンを伴う縮合
反応が進行し、鷹維内の欠陥を埋めて緻密な構造を形成
すると同時に、結晶自体も成長してゆくので、結果的に
繊維は収縮しながら固有特注が発現してくる。In other words, in the low-temperature region based on 600°C, a polymerization reaction accompanied by the elimination of bromine-containing groups and a depolymerization reaction accompanied by the generation of tar-like substances due to thermal decomposition proceed, and the homogenization of the system progresses. The condensation reaction that involves dehydrogenation and demethanization progresses, filling the defects in the fibers and forming a dense structure, while the crystals themselves grow, resulting in the fibers shrinking and creating a uniquely custom-made structure. It will emerge.
従って、繊維が収縮しながら緻密な組織を形成する温度
領域で張力を加えれば配向性は改善されるが欠陥の発生
を助長し、強度はかえって低下する可能性が強くなる。Therefore, if tension is applied in a temperature range where the fibers contract and form a dense structure, the orientation will be improved, but this will encourage the occurrence of defects and there is a strong possibility that the strength will decrease instead.
一方、重合反応と解重合反応が進行して系の均質化の進
んでいる前炭化領域では張力をかけても欠陥を形成する
ことなく配向性を改善でき、強度と伸びを向上すること
が可能となる。On the other hand, in the pre-carbonized region where polymerization and depolymerization reactions are progressing and the system is becoming more homogeneous, orientation can be improved without forming defects even when tension is applied, and strength and elongation can be improved. becomes.
以上のことから、公知の方法により不激化した繊維を緊
張下で650℃まで熱処理し、更に不活性雰囲気中で緊
張を加えずに900〜1100″C亥で熱処理すること
によって高伸度および中強度の炭素線維を得ることがで
きる。From the above, it has been found that fibers that have been de-intensified by a known method are heat-treated under tension up to 650°C, and then further heat-treated at 900-1100"C in an inert atmosphere without applying tension to achieve high elongation and medium-strength. Strong carbon fiber can be obtained.
張力を加える温度範囲は300〜650℃が適当であり
、繊維の引張強度とハンドリング性を考慮すると10〜
20辱/−の強度を有する500〜650℃で緊張させ
るのが好ましい。800℃以下では繊維自体も脆弱で、
炭化反応も進行せず、張力を加える効果が低くなる。一
方、650℃以上では繊維中の欠陥の発生を助長し、特
性の低下を招く可能性が高くなる。The appropriate temperature range for applying tension is 300 to 650°C, and considering the tensile strength and handling properties of the fibers, the temperature range is 10 to 650°C.
Preferably, it is strained at 500-650°C with a strength of 20 mm/-. At temperatures below 800℃, the fibers themselves become brittle.
The carbonization reaction does not proceed, and the effect of applying tension becomes low. On the other hand, temperatures of 650° C. or higher promote the occurrence of defects in the fibers, increasing the possibility of deterioration of properties.
fRulに加える張力は609/−以上で繊維の処理温
度における破断強度まで可能であるが、実質的には伸び
は20%以内に抑えるのがよく、60g/−以下の張力
では効力が低くなる。When the tension applied to fRul is 609 g/- or more, it is possible to reach the breaking strength at the processing temperature of the fiber, but it is practically preferable to suppress the elongation to within 20%, and the effectiveness decreases at a tension of 60 g/- or less.
本出願人が先に出願した特願昭60−2873号明細書
に不融化#J!維の不融化度を0.060≦0/C(原
子数比)≦0.100で、かつ40くQI(キノリン不
溶分、チ)≦70の範囲内に制御すれば、得られる炭化
特性のバラツキが少なく、高性能、高品質の製品が得ら
れることが記載されているが、本発明における緊張炭化
処理において上記要件を満足する不融化繊維を使用すれ
ば特性を一層向上させることができる。Infusible #J! If the degree of infusibility of the fiber is controlled within the range of 0.060≦0/C (atomic ratio)≦0.100 and within the range of 40×QI (quinoline insoluble content, Q)≦70, the obtained carbonization properties can be improved. Although it is described that a product with little variation, high performance, and high quality can be obtained, the properties can be further improved by using infusible fibers that satisfy the above requirements in the tension carbonization treatment of the present invention.
(発明の効果)
上述するように、本発明は特定の張力下650℃までの
温度範囲で熱処理することにより高伸度、中強度の炭素
繊維を製造することができ、この得られた高伸度の炭素
繊維は多様な形態に加工する際の自由度が増し、また十
分な強度を持つので構造材、摺動部材、断熱材、導電材
料など汎用性が極めて高く工業的にその利用価値は極め
て高く有用である。(Effects of the Invention) As described above, the present invention can produce carbon fibers with high elongation and medium strength by heat treatment at a temperature range of up to 650°C under a specific tension, and the resulting high elongation The degree of carbon fiber has increased flexibility when processed into various shapes, and has sufficient strength, so it is extremely versatile for use as structural materials, sliding members, insulation materials, conductive materials, etc., and its industrial value is high. Extremely high and useful.
(実施例1〜8)(比較例1〜8)
軟化点217℃1固定炭素85.8%、ベンゼン不溶分
(BI)57.2%および微量のキノリン不溶分(QI
)を含む光学的等方性のピッチを、直径0.2謁および
L/D−3のノズル200個を有する溶融押出紡糸機か
ら巻取速度400m/分でボビンに巻取り、しかる後解
舒装置で巻き戻しながら連続的に不融化炉中を通過させ
なから3容量のNOを含有する空気中280℃で90分
間にわたり熱処理して不融化を施し、金糸装置を介して
再びボビンに巻取った。次いで、窒素雰囲気中、表1に
示す炭化処理条件で張力を調節しながら1000゛Cま
で加熱処理して炭素繊維を得た。こnらの結果を表1に
示す。表1には本発明における処理条件の範囲で熱処理
を行った実施例1,2および8の外に、比較の目的のた
めにこれらの条件の範囲以外で試験を行った比較例1,
2および3の結果を示している。(Examples 1 to 8) (Comparative Examples 1 to 8) Softening point 217°C 1 fixed carbon 85.8%, benzene insoluble content (BI) 57.2% and trace amount of quinoline insoluble content (QI
) was wound onto a bobbin at a winding speed of 400 m/min from a melt extrusion spinning machine with 200 nozzles of diameter 0.2 and L/D-3, and then unwound. While unwinding with a device, it is continuously passed through an infusibility furnace, and then heat treated at 280°C for 90 minutes in air containing 3 volumes of NO to make it infusible, and then wound onto a bobbin again through a gold thread device. Ta. Next, in a nitrogen atmosphere, the carbon fibers were heat-treated to 1000°C under the carbonization conditions shown in Table 1 while adjusting the tension. The results are shown in Table 1. In addition to Examples 1, 2, and 8, in which heat treatment was performed within the range of treatment conditions in the present invention, Table 1 also shows Comparative Examples 1, 2, and 8, in which tests were conducted outside the range of these conditions for the purpose of comparison.
2 and 3 are shown.
上表から、繊維を60g/mm2以上の張力下300〜
650℃の温度範囲で熱処理することにより高伸度、中
強度の優れた材料物性を有する炭素繊維が得られるが、
上記条件以外では伸度、強度が劣ることがわかる。From the above table, the fibers are heated under a tension of 60 g/mm2 or more at 300~
Carbon fibers with excellent material properties such as high elongation and medium strength can be obtained by heat treatment in the temperature range of 650°C.
It can be seen that under conditions other than the above, the elongation and strength are inferior.
第1図は窒素雰囲気中で処理温度を変えて繊維の引張試
験を実施して得た炭化処理温度と繊維特性の変化を示す
グラフ、
第2図は窒素雰囲気中で処理温度を変えて得た繊維の不
融化繊維に対する重量減少率と繊維径の変化を示すグラ
フ、および
第3図は窒素雰囲気中での炭化処理時に発生したガス(
0、Co 、 OH,、H,)の分析結果を示すグラ
フである。
第1図
300400 50t) 600 77)0 800
900 1000屓イを心理61度ζて2Figure 1 is a graph showing the change in carbonization temperature and fiber properties obtained by performing a tensile test on fibers at varying treatment temperatures in a nitrogen atmosphere. Figure 2 is a graph showing changes in fiber properties as a result of varying treatment temperatures in a nitrogen atmosphere. A graph showing the weight loss rate and change in fiber diameter with respect to the infusible fiber, and Figure 3 shows the gas (
0, Co , OH,, H,) is a graph showing the analysis results. Figure 1 300400 50t) 600 77) 0 800
900 1000 degrees psychologically 61 degrees ζ 2
Claims (1)
原料とする炭素繊維の製造方法において、不融化繊維を
不活性雰囲気の緊張下で650℃まで熱処理を行い、更
に不活性雰囲気中で緊張を加えずに900〜1100℃
まで熱処理を行うことを特徴とする炭素繊維の製造方法
。 2、張力を加える温度が300〜650℃、好ましくは
500〜650℃である特許請求の範囲第1項記載の方
法。 3、繊維に60g/mm^2以上の張力を加える特許請
求の範囲第1項記載の方法。 4、不融化繊維が0.060≦O/C(原子数比)≦0
.100で、かつ40≦QI(キノリン不溶分)≦70
である特許請求の範囲第1項記載の方法。[Claims] 1. A method for producing carbon fibers using petroleum-based and coal-based pitches that exhibit optical isotropy as raw materials, in which infusible fibers are heat-treated to 650°C under tension in an inert atmosphere. , further at 900-1100℃ in an inert atmosphere without adding tension.
A method for producing carbon fiber, which is characterized by performing heat treatment up to 2. The method according to claim 1, wherein the temperature at which the tension is applied is 300 to 650°C, preferably 500 to 650°C. 3. The method according to claim 1, wherein a tension of 60 g/mm^2 or more is applied to the fiber. 4. Infusible fiber is 0.060≦O/C (atomic ratio)≦0
.. 100, and 40≦QI (quinoline insoluble matter)≦70
The method according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19301885A JPS6253422A (en) | 1985-09-03 | 1985-09-03 | Carbon fiber manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19301885A JPS6253422A (en) | 1985-09-03 | 1985-09-03 | Carbon fiber manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6253422A true JPS6253422A (en) | 1987-03-09 |
Family
ID=16300808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19301885A Pending JPS6253422A (en) | 1985-09-03 | 1985-09-03 | Carbon fiber manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6253422A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03146718A (en) * | 1989-10-30 | 1991-06-21 | Tonen Corp | Pitch-based carbon fiber having high elongation and high strength |
JPH03146720A (en) * | 1989-10-30 | 1991-06-21 | Tonen Corp | Production of pitch-based carbon fiber having high elongation and high strength |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57101025A (en) * | 1980-12-12 | 1982-06-23 | Nippon Carbon Co Ltd | Preparation of carbon fiber |
JPS59168123A (en) * | 1983-03-09 | 1984-09-21 | Showa Denko Kk | Preparation of pitch carbon yarn |
-
1985
- 1985-09-03 JP JP19301885A patent/JPS6253422A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57101025A (en) * | 1980-12-12 | 1982-06-23 | Nippon Carbon Co Ltd | Preparation of carbon fiber |
JPS59168123A (en) * | 1983-03-09 | 1984-09-21 | Showa Denko Kk | Preparation of pitch carbon yarn |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03146718A (en) * | 1989-10-30 | 1991-06-21 | Tonen Corp | Pitch-based carbon fiber having high elongation and high strength |
JPH03146720A (en) * | 1989-10-30 | 1991-06-21 | Tonen Corp | Production of pitch-based carbon fiber having high elongation and high strength |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4014725A (en) | Method of making carbon cloth from pitch based fiber | |
US3919376A (en) | Process for producing high mesophase content pitch fibers | |
US4138525A (en) | Highly-handleable pitch-based fibers | |
JPS604287B2 (en) | Method for producing carbonaceous pitch fiber | |
US4115527A (en) | Production of carbon fibers having high anisotropy | |
US3533743A (en) | Process for the manufacture of continuous high modulus carbon yarns and monofilaments | |
US4574077A (en) | Process for producing pitch based graphite fibers | |
US3716331A (en) | Process for producing carbon fibers having a high young's modulus of elasticity | |
US3652221A (en) | Process for producing carbon fibers | |
JPH0314624A (en) | Carbon fiber manufacturing method | |
JPS6253422A (en) | Carbon fiber manufacturing method | |
CA1055664A (en) | Rapid thermosetting of carbonaceous fibers produced from mesophase pitch | |
US5348719A (en) | Process for producing carbon fibers having high strand strength | |
JPS6269826A (en) | Manufacturing method of high strength and high modulus carbon fiber | |
JPH0133569B2 (en) | ||
JPH01282325A (en) | Pitch-based carbon fibersheet and production thereof | |
JPS6278220A (en) | Method for manufacturing ribbon-shaped carbon fiber | |
JP2678384B2 (en) | Pitch for carbon fiber and method of manufacturing carbon fiber using the same | |
US5643547A (en) | Process for producing carbon fibers | |
JPS62177220A (en) | Production of pitch based carbon fiber | |
JP3024320B2 (en) | Method for producing high strand strength carbon fiber | |
JPS63175122A (en) | Production of carbon fiber tow | |
JPS59168123A (en) | Preparation of pitch carbon yarn | |
JPH05247729A (en) | Method for manufacturing pitch-based carbon fiber milled | |
JPS6088125A (en) | Production of pitch based graphitized fiber |