[go: up one dir, main page]

JPS6253037A - Variable speed communication system - Google Patents

Variable speed communication system

Info

Publication number
JPS6253037A
JPS6253037A JP60194331A JP19433185A JPS6253037A JP S6253037 A JPS6253037 A JP S6253037A JP 60194331 A JP60194331 A JP 60194331A JP 19433185 A JP19433185 A JP 19433185A JP S6253037 A JPS6253037 A JP S6253037A
Authority
JP
Japan
Prior art keywords
speed
signal
circuit
modulation
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60194331A
Other languages
Japanese (ja)
Other versions
JPH0453336B2 (en
Inventor
Yukitsuna Furuya
之綱 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60194331A priority Critical patent/JPS6253037A/en
Publication of JPS6253037A publication Critical patent/JPS6253037A/en
Publication of JPH0453336B2 publication Critical patent/JPH0453336B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Radio Relay Systems (AREA)

Abstract

PURPOSE:To change the transmission speed of information by applying speed conversion to input information into a high speed signal at a constant speed, applying primary modulation to the high speed signal by a predetermined code series and secondary modulation to the result by a modulator so as to sent the modulated result. CONSTITUTION:A data inputted from an input terminal 100 is converted into a data string outputted at a prescribed speed by a speed conversion circuit 10. Then the output of the circuit 10 is given to an M-series generator 12 gener ating an M-series being a predetermined code series and multiplied by a multi plier circuit 11 applying primary modulation. Further,the output of the circuit 11 is modulated by a modulator 13 applying the secondary modulation and the result is outputted from an antenna 101. A base band signal demodulated by a demodulate 20 is converted into a digital signal by an A/D converter 21 and the primary modulation of the M-series is demodulated by a digital multiplier 22,the information rate is added by an adder 23 and the decision output is obtained from a terminal 103.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は大小とりまぜた地球局を同一の衛星通信ネット
ワークに収容するような場合に地球局の大きさに応じて
情報の伝送速度を変更する可変速度通信方式に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention changes the information transmission speed according to the size of the earth station when earth stations of various sizes are accommodated in the same satellite communication network. Related to variable speed communication system.

(従来の技術) 衛星通信においては多数の地球局が互いに通信を行って
おり同時に複数の地球局が衛星を利用している。このよ
うな複数の局からの信号を受信する場合に従来用いられ
ている周波数分割多重アクセス方式ではそれぞれの局に
対応して受信のための復調器を用意する必要があり装置
が大きくなっていた。これに対して時分割多重マルチ・
アクセス方式においては単一の復調器で全ての局からの
信号を受信できるため、装置規模が小さくて良いという
長所がある。
(Prior Art) In satellite communications, a large number of earth stations communicate with each other, and a plurality of earth stations simultaneously use a satellite. In the conventional frequency division multiple access method used to receive signals from multiple stations, it was necessary to prepare a demodulator for each station, making the equipment large. . In contrast, time division multiplexing
In the access method, signals from all stations can be received with a single demodulator, so the advantage is that the equipment size can be small.

しかしながら時分割多重マルチ・アクセス方式において
は全ての局が同じ速度で信号を送出しなくてはならず、
アンテナの小さな小型地球局では送信パワーが充分にと
れないため通信できないという欠点があった。  ゛ (発明が解決しようとする問題点) 本発明においては土堤の従来のTDMAシステムの欠点
をなくし、アンテナの大きさが異るような地球局との通
信も単一の変復調器で実現できるような可変速度通信方
式を提供することを目的とする。
However, in the time division multiple access system, all stations must transmit signals at the same speed.
Small earth stations with small antennas had the disadvantage of not being able to communicate because they did not have enough transmission power. (Problems to be solved by the invention) The present invention eliminates the drawbacks of the conventional TDMA system using earthen embankments, and enables communication with earth stations with different antenna sizes using a single modulator/demodulator. The purpose is to provide a variable speed communication system.

(問題点を解決するための手段) 本発明においては入力情報を速度変換して一定速度の高
速信号に変換し、該高速信号を予め定められた符号系列
で一次変調した後変調器で2次変調を行って送信し、受
信側では復調器で前記2次変調を復調してベースバンド
信号に変換し該ベースバンド信号をサンプルしてデジタ
ル信号に変換した後前記符号系列で逆変調し情報速度で
判定を行うことを特徴とした可変速度通信方式によって
上記問題点を解決する。
(Means for Solving the Problems) In the present invention, input information is speed-converted into a high-speed signal at a constant speed, the high-speed signal is firstly modulated with a predetermined code sequence, and then a modulator is used to secondly modulate the high-speed signal. It is modulated and transmitted, and on the receiving side, a demodulator demodulates the secondary modulation and converts it to a baseband signal, samples the baseband signal, converts it to a digital signal, and then inversely modulates it with the code sequence to increase the information rate. The above-mentioned problem is solved by a variable speed communication system characterized by making a determination.

(作用) 一般に異った速度で情報を伝送する変復調器を実現する
には波形整形回路、同期回路に異った帯域を有するフィ
ルタを必要とし、複数の回路を要する。本発明において
は情報伝送速度に対応してベースバンドで速度変換を行
ない、変復調器への入力速度は一定になるようにしてお
いて送出する。こうすることにより変復調器は常に一定
速度で動作するようになり同一のもので実現できる。
(Function) Generally, in order to realize a modulator/demodulator that transmits information at different speeds, a waveform shaping circuit and a synchronization circuit require filters having different bands, and a plurality of circuits are required. In the present invention, speed conversion is performed in the baseband corresponding to the information transmission speed, and the input speed to the modem is kept constant before transmission. By doing this, the modulator/demodulator always operates at a constant speed and can be implemented with the same device.

受信側では復調器出力から情報を復号する。その場合に
変調信号が一定の帯域を有し、また情報ビットの同期が
容易になるように、送信側の速度変換回路の出力を疑似
ランダム系列で変調し、また受信側で復調器出力を一定
周期でサンプルしてん0変換器によってデジタル信号に
変換した後疑似ランダム系列で復調し積分検出すること
で送信情報を判定することができる。このような疑似ラ
ンダム系列による変調、復調および積分検出は全てデジ
タル処理で実現できるため、情報伝送速度の変更に対し
て対処することができる。
On the receiving side, information is decoded from the demodulator output. In that case, the output of the speed conversion circuit on the transmitting side is modulated with a pseudo-random sequence so that the modulated signal has a certain band and the synchronization of information bits is easy, and the output of the demodulator on the receiving side is kept constant. Transmitted information can be determined by sampling the signal periodically, converting it into a digital signal using a zero converter, demodulating it with a pseudo-random sequence, and performing integral detection. Since modulation, demodulation, and integral detection using such a pseudo-random sequence can all be realized by digital processing, it is possible to cope with changes in the information transmission rate.

(実施例) 第1図は本発明を実施するための送信機および受信機の
一実施例を示す図である。入力端子100から入力され
たデータは速度変換回路10で一定速度(以後チップレ
ートと呼ぶ)で出力されるデータ列に変換される。この
速度変換回路は単純に情報を高速クロックで読み出すも
ので、例えば情報レートがチップレートの115である
場合には(1,0)という入力に対して(1,1,1,
1,1,0,0,0,0,0)という系列を出力するよ
うなものである。この速度変換回路10の出力は予め定
められた符号系列であるM系列を発生するM系列発生5
12と、−次変調を行なう乗算回路11で乗算される。
(Embodiment) FIG. 1 is a diagram showing an embodiment of a transmitter and a receiver for implementing the present invention. Data input from the input terminal 100 is converted by the speed conversion circuit 10 into a data string that is output at a constant speed (hereinafter referred to as a chip rate). This speed conversion circuit simply reads information using a high-speed clock. For example, when the information rate is 115 of the chip rate, for an input of (1, 0), (1, 1, 1,
1, 1, 0, 0, 0, 0, 0). The output of this speed conversion circuit 10 is an M-sequence generator 5 that generates an M-sequence that is a predetermined code sequence.
12 and a multiplication circuit 11 that performs -order modulation.

乗算回路11は排他的論理和回路で実現される。乗算回
路11の出力は2次変調を行なう変調器13で変調され
アンテナ101から出力される。この場合どのような2
次変調方式を採用するかは本発明の目的とは特に関係し
ないので詳細な説明は省略するが、どのような変調方式
でも良い。
The multiplication circuit 11 is realized by an exclusive OR circuit. The output of the multiplier circuit 11 is modulated by a modulator 13 that performs secondary modulation and output from the antenna 101. In this case what 2
Whether the next modulation method is adopted is not particularly related to the purpose of the present invention, so a detailed explanation will be omitted, but any modulation method may be used.

次に受信機の動作を説明する。Next, the operation of the receiver will be explained.

アンテナ102から受信された信号は2次変調された信
号を復調する復調520で復調される。復調されたベー
スバンド信号はんD変換521でデジタル信号に変動さ
れ、デジタル乗算器22でM系列の一次変調が復調され
、加算!23で情報レートの加算が行なわれて判定出力
が端子103から得られる。この場合にキャリア同期、
チップタイミング同期、M系列の同期をそれぞれとる必
要がある。これらの同期をとるためのフレーム構成を第
2図(a)に示す。
The signal received from antenna 102 is demodulated at demodulation 520, which demodulates the secondary modulated signal. The demodulated baseband signal is converted into a digital signal by D conversion 521, and the M-sequence primary modulation is demodulated by digital multiplier 22, and added! At 23, the information rates are added and a judgment output is obtained from the terminal 103. In this case carrier synchronization,
It is necessary to achieve chip timing synchronization and M-sequence synchronization. The frame structure for synchronizing these is shown in FIG. 2(a).

CarrierおよびC1ockの部分でキャリア同期
およびクロック同期が復調器20の内部でとられる。そ
の後M系列の同期および情報ビットの同期をとるための
M系列が送られる。このM系列を利用して初期同期回路
25でM系列の位相およびデータシンボルの位相の同期
をとり、以後のM系列発生器24およびカウンタ26を
リセットし加算器23の加算位相を定める第2図(b)
以下には本実施例の各部での波形を示す。第2図(b)
は速度変換回路10の出力であり、信号はゆっくり変化
している。第2図(C)はM系列を示し第2図(d)は
乗算器11の出力を示す。この波形が変調器を通して送
信され復調されたベースバンド波形は第2図(e)のよ
うになる。第2図(e)は帯域制限および雑音の影響で
波形が劣化している。これを矢印の位置でサンプルして
ん0変換した波形を第2図(Oに示す。チップレートで
はT1およびT2で誤りが生じている。更に第2図(g
)には加算器23の内容を示す。情報シンボル分だけ第
2図(Oの波形を加算するとそれぞれの極性は第2図(
b)と同じになるように判定することができ、Tl、T
2における誤りは情報シンポルの判定には影響を及ぼし
ていないことがわかる。これは加算器23において6チ
ツプ分のエネルギーを積分している効果である。各チッ
プにおける雑音は独立と考えられるのに対して信号エネ
ルギーは全てのチップに対して同一であるので第2図(
b)の場合には加算器23で6チツプ加算することによ
り信号対雑音比を6倍改善することができ、小型の地球
局においても通信が可能になるのである。地球局が更に
小さいアンテナしか所有しておらず信号レベルが更に小
さい場合には第2図(b)の情報信号の送信周期を更に
長くする。例えば第2図(b)の波形を2倍の周期で送
出するようにして加算523での加算時間を12チップ
分にすると、12倍の信号対雑音比の改善が得られる。
Carrier synchronization and clock synchronization are achieved within the demodulator 20 in the Carrier and C1ock sections. Thereafter, an M sequence is sent for synchronizing the M sequence and synchronizing the information bits. Using this M sequence, the initial synchronization circuit 25 synchronizes the phase of the M sequence and the phase of the data symbol, resets the subsequent M sequence generator 24 and counter 26, and determines the addition phase of the adder 23. (b)
Waveforms at each part of this embodiment are shown below. Figure 2(b)
is the output of the speed conversion circuit 10, and the signal changes slowly. FIG. 2(C) shows the M sequence, and FIG. 2(d) shows the output of the multiplier 11. This waveform is transmitted through a modulator and the demodulated baseband waveform is as shown in FIG. 2(e). In FIG. 2(e), the waveform is degraded due to band limitation and noise. The waveform sampled at the arrow position and converted to 0 is shown in Figure 2 (O). At the chip rate, errors occur at T1 and T2. Furthermore, Figure 2 (G
) shows the contents of the adder 23. When the waveforms of Figure 2 (O) are added for the information symbols, the polarity of each is as shown in Figure 2 (
b) can be determined to be the same as Tl, T
It can be seen that the error in 2 does not affect the judgment of information symbols. This is an effect of integrating the energy of 6 chips in the adder 23. Although the noise in each chip can be considered independent, the signal energy is the same for all chips, so Figure 2 (
In case b), by adding 6 chips in the adder 23, the signal-to-noise ratio can be improved by 6 times, making it possible to communicate even with a small earth station. If the earth station has only a smaller antenna and the signal level is even lower, the transmission cycle of the information signal shown in FIG. 2(b) is made longer. For example, if the waveform shown in FIG. 2(b) is transmitted at twice the period and the addition time in addition 523 is increased to 12 chips, the signal-to-noise ratio can be improved by a factor of 12.

この加算時間の変更はカウンタ26のカウント数を変え
るだけで良いので極めて容易に実現することができる。
This addition time can be changed very easily since it is only necessary to change the count number of the counter 26.

(発明の効果) 以上詳細に記したように、本発明によれば情報の伝送速
度を変更しても同一の変復調装置で容易に情報を復調で
きる可変速度通信方式を提供することができる。
(Effects of the Invention) As described in detail above, according to the present invention, it is possible to provide a variable speed communication system in which even if the information transmission speed is changed, the information can be easily demodulated using the same modulation/demodulation device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す図、 第2図(a)〜(g)は本発明の動作を示す図である。 図において、 10は速度変換回路、11は1次変調器、12は2次変
調器、20は2次復調器、22は1次復調器、23は判
定回路を示す。 第1図 第2図
FIG. 1 is a diagram showing an embodiment of the present invention, and FIGS. 2(a) to (g) are diagrams showing the operation of the present invention. In the figure, 10 is a speed conversion circuit, 11 is a primary modulator, 12 is a secondary modulator, 20 is a secondary demodulator, 22 is a primary demodulator, and 23 is a determination circuit. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 入力情報を速度変換して一定速度の高速信号に変換し、
該高速信号を予め定められた符号系列で一次変調した後
変調器で2次変調を行って送信し、受信側では復調器で
前記2次変調を復調してベースバンド信号に変換し該ベ
ースバント信号をサンプルしてデジタル信号に変換した
後前記符号系列で逆変調して一次変調を復調し情報速度
で判定を行うことを特徴とした可変速度通信方式。
Converts the input information into a high-speed signal with a constant speed,
After primary modulating the high-speed signal with a predetermined code sequence, a modulator performs secondary modulation and transmits it, and on the receiving side, a demodulator demodulates the secondary modulation and converts it to a baseband signal, and the baseband signal is converted to a baseband signal. A variable speed communication system characterized by sampling a signal, converting it into a digital signal, inversely modulating it with the code sequence, demodulating the primary modulation, and making a determination based on the information rate.
JP60194331A 1985-09-02 1985-09-02 Variable speed communication system Granted JPS6253037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60194331A JPS6253037A (en) 1985-09-02 1985-09-02 Variable speed communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60194331A JPS6253037A (en) 1985-09-02 1985-09-02 Variable speed communication system

Publications (2)

Publication Number Publication Date
JPS6253037A true JPS6253037A (en) 1987-03-07
JPH0453336B2 JPH0453336B2 (en) 1992-08-26

Family

ID=16322811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60194331A Granted JPS6253037A (en) 1985-09-02 1985-09-02 Variable speed communication system

Country Status (1)

Country Link
JP (1) JPS6253037A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05219016A (en) * 1991-12-09 1993-08-27 Matsushita Electric Ind Co Ltd Transmitting and receiving circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05219016A (en) * 1991-12-09 1993-08-27 Matsushita Electric Ind Co Ltd Transmitting and receiving circuit
US5365543A (en) * 1991-12-09 1994-11-15 Matsushita Electric Industrial Co., Ltd. Transmitting circuit and receiving circuit

Also Published As

Publication number Publication date
JPH0453336B2 (en) 1992-08-26

Similar Documents

Publication Publication Date Title
US5276704A (en) SAWC phase detection method and apparatus
US9794095B2 (en) Signal concentrator device
US3689841A (en) Communication system for eliminating time delay effects when used in a multipath transmission medium
US3497625A (en) Digital modulation and demodulation in a communication system
JPH06502754A (en) Method and apparatus for data signal multiplexing
US5144641A (en) Spread spectrum communication device
CN1192569C (en) Method for combining signals on digital interface
US20240121021A1 (en) Method and device for modulating with zadoff-chu sequences
US3777062A (en) Transmission system for a time-divisional multiplex psk signal
KR0137529B1 (en) Quadrature quadrature
KR100641067B1 (en) A transceiver and method for communicating with a second transceiver, and a wireless telephone system
US20050013345A1 (en) Method for ultra wideband communication using frequency band modulation, and system for the same
GB2045582A (en) Multiplexed carrier transmission through harmonic polluted medium
JPS6253037A (en) Variable speed communication system
CN108989251A (en) A kind of communication system based on shortwave narrowband waveform
US6868111B1 (en) Methods and systems for identifying transmitted codewords after loss of synchronization in spread spectrum communication systems
JP3457099B2 (en) Parallel combination spread spectrum transmission and reception system.
JPS6025354A (en) Wireless communication method
EP0045923B1 (en) Digital receiver for four-phase differential modulated signals
JP3278311B2 (en) Data transceiver
US6496542B1 (en) Digital communication system
JP2004129173A (en) Transmission device of radio communication system
JP3441086B2 (en) Clock Recovery Method for Wireless Local Area Network Station
KR100237432B1 (en) π / 4-DQPSK transmitter and method
JPH1188290A (en) Spread spectrum communication system