JPS6252181A - Manufacture of aluminum nitride sintered body - Google Patents
Manufacture of aluminum nitride sintered bodyInfo
- Publication number
- JPS6252181A JPS6252181A JP60190962A JP19096285A JPS6252181A JP S6252181 A JPS6252181 A JP S6252181A JP 60190962 A JP60190962 A JP 60190962A JP 19096285 A JP19096285 A JP 19096285A JP S6252181 A JPS6252181 A JP S6252181A
- Authority
- JP
- Japan
- Prior art keywords
- point
- aluminum nitride
- sintered body
- nitride sintered
- thermal conductivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 title claims description 37
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 238000005245 sintering Methods 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 9
- 239000012298 atmosphere Substances 0.000 claims description 5
- 230000001590 oxidative effect Effects 0.000 claims description 4
- 238000001354 calcination Methods 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims description 2
- 239000000843 powder Substances 0.000 description 9
- 239000002994 raw material Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 1
- FRWYFWZENXDZMU-UHFFFAOYSA-N 2-iodoquinoline Chemical compound C1=CC=CC2=NC(I)=CC=C21 FRWYFWZENXDZMU-UHFFFAOYSA-N 0.000 description 1
- 238000007088 Archimedes method Methods 0.000 description 1
- DCXXMTOCNZCJGO-UHFFFAOYSA-N Glycerol trioctadecanoate Natural products CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- LTPBRCUWZOMYOC-UHFFFAOYSA-N beryllium oxide Inorganic materials O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000013014 purified material Substances 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は熱伝導性の高い窒化アルミニウム焼結体の製造
方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing an aluminum nitride sintered body having high thermal conductivity.
(従来の技術)
近年、LSIなどの半導体素子の集積度が上がるにした
がってLSIの発熱量が増大するために、その発熱した
熱を速やかに外部へ伝熱、放熱する必要が生じてきた。(Prior Art) In recent years, as the degree of integration of semiconductor elements such as LSIs has increased, the amount of heat generated by LSIs has increased, and it has become necessary to quickly transfer and dissipate the generated heat to the outside.
また、パワートランジスタ、レーザーダイオードなど高
出力の半導体素子を実装するための基板及びパッケージ
においても素子の動作時に発生する熱を短時間の内に素
子外へ放出しなければならない。Furthermore, in substrates and packages for mounting high-output semiconductor elements such as power transistors and laser diodes, heat generated during the operation of the elements must be released outside the elements within a short period of time.
コノヨうな発熱量の大きい半導体素子を実装するために
、熱伝導率の高い基板材料が必要とされ、従来ニのよう
な熱伝導率の高い絶縁基板用材料として酸化ベリリウム
(Be○)系焼結体が用いられてきたが、毒性があるた
め使用範囲が限定されていた。In order to mount semiconductor elements that generate such a large amount of heat, substrate materials with high thermal conductivity are required, and beryllium oxide (Be○)-based sintered materials have traditionally been used as materials for insulating substrates with high thermal conductivity. The body has been used, but its use has been limited due to its toxicity.
そこで、近時、窒化アルミニウム(A IN )が高い
熱伝導率を持ち、8!械的強度も高いことから、そうし
た高熱伝導材料として注目されてきたが、AINは本質
的には難焼結性であるため、即ちSiC,Si、N、と
同様共有結合性が強く単味では焼結し難いため、Y2O
3等の焼結助剤を添加する窒化アルミニウム焼結体の製
造技術が検討されて慇だ(例えば特開昭60−1272
67号、特公昭47−18655号、特公昭48−18
925号公報)。Therefore, recently, aluminum nitride (AIN) has a high thermal conductivity, and has a high thermal conductivity of 8! Due to its high mechanical strength, AIN has attracted attention as such a high thermal conductivity material, but since AIN is inherently difficult to sinter, it has strong covalent bonds similar to SiC, Si, and N, so it cannot be used alone. Because it is difficult to sinter, Y2O
The manufacturing technology of aluminum nitride sintered bodies by adding sintering aids such as
No. 67, Special Publication No. 18655, Special Publication No. 1865, Special Publication No. 48-18
Publication No. 925).
(発明が解決しようとする問題点)
しかしながら、単にY2O3を添加するのみの前記公知
の窒化アルミニウム焼結体の熱伝導率は、例えば前記特
開昭60−127267号公報に示されるように40
W / m″に程度、高純度窒化アルミニウム原料を使
用したイツトリア添加系窒化アルミニウム焼結体におい
てさえ、80W/m”k程度であって、窒化アルミニク
ム自体の理論熱伝導率が320W/m’ kであること
と対比すると、がなり低いものである。(Problems to be Solved by the Invention) However, the thermal conductivity of the known aluminum nitride sintered body to which Y2O3 is simply added is 40 as shown in, for example, Japanese Patent Application Laid-open No. 60-127267.
Even in an yttria-added aluminum nitride sintered body using a high-purity aluminum nitride raw material, it is about 80 W/m'k, and the theoretical thermal conductivity of aluminum nitride itself is 320 W/m'k. Compared to that, the value is relatively low.
(問題点を解決するための手段)
本発明者は上記問題点に鑑み鋭意研究した結果、主成分
の窒化アルミニウムに、焼結助剤として、炭素換算で0
.2〜3.4重量%の炭素、炭化物又は焼成により炭素
を生成する化合物と、酸化イツトリウム0.1〜10重
量%とを、添付図面に示す点A(C0.2%、Y2O3
10.0,0%)、点B(C0,94、Y2O310,
0%)、点C(C3,4%、Y2O30310.%)、
点D(C0,2%、Y2O50310.%)で囲まれる
限定範囲内で含有せしめ、これより得られた成形体を、
非酸化性雰囲気中で1600〜2100℃で焼成するこ
とによって、最低でも68W/m’にの熱伝導率を有し
、単にY2O,を添加した窒化アルミニウム焼結体よつ
もm密質でかつ熱伝導率が向上した高熱伝導性窒化アル
ミニウム焼結体が得られることを見出だした。(Means for Solving the Problem) As a result of intensive research in view of the above problems, the present inventor added aluminum nitride, which is the main component, as a sintering aid to carbon
.. 2 to 3.4% by weight of carbon, carbide, or a compound that produces carbon upon calcination, and 0.1 to 10% by weight of yttrium oxide at point A (C0.2%, Y2O3) shown in the accompanying drawing.
10.0,0%), point B (C0,94, Y2O310,
0%), point C (C3, 4%, Y2O30310.%),
It is contained within a limited range surrounded by point D (C0.2%, Y2O50310.%), and the molded body obtained from this is
By firing at 1,600 to 2,100°C in a non-oxidizing atmosphere, the aluminum nitride sintered body has a thermal conductivity of at least 68 W/m' and is denser and more thermally It has been discovered that a highly thermally conductive aluminum nitride sintered body with improved conductivity can be obtained.
実験の結果、上記数値限定範囲の焼結助剤の選択使用が
好ましいものであることが判明したのであるが、Y2O
,が0310.%未満であると、焼結性の高いAIN焼
結体が得られず、また10%を越えるとY2O3を主体
とする粒界相が多くなり、熱伝導率が低下してしまう、
Cの含有量が3.4%を越えると、析出カーボン、炭化
物(A1.C,、A1、OC)の生成量が多(なり焼結
体が充分緻密化せず、また0、2%未満では焼結体の熱
伝導率が向上しない。As a result of experiments, it was found that it is preferable to use a sintering aid within the numerically limited range mentioned above, but Y2O
, is 0310. If it is less than 10%, an AIN sintered body with high sinterability cannot be obtained, and if it exceeds 10%, the grain boundary phase mainly composed of Y2O3 will increase and the thermal conductivity will decrease.
If the C content exceeds 3.4%, a large amount of precipitated carbon and carbides (A1. In this case, the thermal conductivity of the sintered body does not improve.
焼成温度は、1600℃より低い場合には焼結が不十分
で焼結体のm密化が進まず、また2100℃より高くな
ると昇華が激しく、分解し易くなる。また、焼成の雰囲
気は、非酸化性雰囲気でなければならない。酸化雰囲気
では、窒化アルミニウム粒体表面が酸化されて、酸化物
粒界相が増し、ボイドも多くなって、充分緻密化しかつ
熱伝導性の高い優良な窒化アルミニウム焼結体を得るこ
とはできなくなる、
そして、添付図面(第1図)の点A(C0.2%、Y2
O310.0,0%)、点B(C0.94、Y2O31
0.0,0%)、点C(C3,4%、Y2O。If the firing temperature is lower than 1600°C, sintering will be insufficient and m-density of the sintered body will not progress, and if it is higher than 2100°C, sublimation will be severe and decomposition will occur easily. Furthermore, the firing atmosphere must be a non-oxidizing atmosphere. In an oxidizing atmosphere, the surface of aluminum nitride grains is oxidized, the oxide grain boundary phase increases, and the number of voids increases, making it impossible to obtain an excellent aluminum nitride sintered body that is sufficiently dense and has high thermal conductivity. , and point A (C0.2%, Y2
O310.0,0%), point B (C0.94, Y2O31
0.0,0%), point C (C3,4%, Y2O.
0.1%)、点D(C0,2%、Y2O30.1%)で
囲まれた限定範囲内でY2O,−〇焼結助剤を使用した
結果は、充分焼結体が緻密化しており、熱伝導率は同一
添加量のイツトリア単味の焼結体よりも更に10〜35
%程度向上していることが確認されたのである。The result of using Y2O,-〇 sintering aid within the limited range surrounded by point D (C0.2%, Y2O30.1%) is that the sintered body is sufficiently densified. , the thermal conductivity is 10 to 35 higher than that of the sintered body of ittria with the same additive amount.
% improvement was confirmed.
更に研究を進めた結果、添付図面第2図図示の点A(C
0,2%、Y2O310.0,0%)、点B(CO,9
4、Y2O310.0,0%)、点E(CI、58%、
Y2O,3,0%)、点F(C2,0%、Y2O,O,
S%)、点G(C1,0SY20.0゜5%)、点H(
C0.2%、Y、0.2.5%)で囲まれた範囲内で焼
結助剤を使用した場合は、得られた窒化アルミニウム焼
結体の熱伝導率は80W/+++’に以上の高い値とな
っていて、より好適なものであることを知見した。As a result of further research, point A (C) shown in Figure 2 of the attached drawing.
0.2%, Y2O3 10.0,0%), point B (CO,9
4, Y2O3 10.0,0%), point E (CI, 58%,
Y2O, 3,0%), point F (C2,0%, Y2O,O,
S%), point G (C1,0SY20.0°5%), point H (
If the sintering aid is used within the range (C0.2%, Y, 0.2.5%), the thermal conductivity of the obtained aluminum nitride sintered body is 80W/+++' or more. It was found that this was a more suitable value as it had a high value of .
本発明で得られた窒化アルミニウム焼結体の組織は、多
数の微細なAIN結晶(平均粒径1.5〜10μI)と
その粒界相としての、Y2Al5O12(YAG)、Y
A I Oz ヤY 4A + 20 s f> 結
晶及ヒ分散されたC、A1.C5又はA1□○Cとから
なっている。The structure of the aluminum nitride sintered body obtained in the present invention consists of many fine AIN crystals (average grain size 1.5 to 10 μI) and their grain boundary phases of Y2Al5O12 (YAG) and Y2Al5O12 (YAG).
A I Oz Y 4A + 20 s f> Crystals and dispersed C, A1. It consists of C5 or A1□○C.
結晶体の望ましい微細構造はm密質であり、第3図のよ
うにAIN結晶同士がくっついており、粒界相が点在す
る構造である。A desirable microstructure of the crystal is m-dense, in which AIN crystals are stuck together and grain boundary phases are scattered, as shown in FIG.
本発明においては、結晶助剤としてイントリアの他に、
特定量の炭素が配合されていることが必須であるが、こ
の炭素は常に他から積極的に加えなければならないもの
ではなく、窒化アルミニクム粉末原料に予め含んでいる
ものでもよい。In the present invention, in addition to Intria as a crystallization aid,
Although it is essential that a specific amount of carbon is blended, this carbon does not always have to be actively added from elsewhere, and may be included in the aluminum nitride powder raw material in advance.
これにより高熱伝導性窒化アルミニウム焼結体が得られ
るのである。As a result, a highly thermally conductive aluminum nitride sintered body can be obtained.
この理論の解明は未だなされていないが、本発明によれ
ば比較的純度の高くない窒化アルミニウム原料粉末を使
用しても、純度の高い窒化アルミニウム原料粉末を用い
た窒化アルミニウム焼結体と同等の高熱伝導性が得られ
、gllココスト低減できる。もちろん、高純度のもの
を使用すれば更に高熱伝導性が向上する。Although this theory has not yet been elucidated, according to the present invention, even if a relatively low-purity aluminum nitride raw material powder is used, the aluminum nitride sintered body using a high-purity aluminum nitride raw material powder can be produced. High thermal conductivity can be obtained and GLL cost can be reduced. Of course, if a highly purified material is used, the thermal conductivity will be further improved.
(試験例)
平均粒径1.2μm、純度97,0%の窒化アルミニウ
ム(A IN )粉末(酸素含有量1.5重量%)を主
成分とし、これに平均粒径0.8μIのY2゜、粉末(
0〜15重量%)と平均粒径0.02μ信のカーボンブ
ラック粉末(0〜3.5重1%)を表1に示す量比で添
加混合し、これに更にバイングーとしてパラフィンワッ
クス6重1%とステアリンWt1重1%を加えて混合し
たものを、成形圧1000 K g/ cm2でプレス
成形した。(Test Example) The main component was aluminum nitride (AIN) powder (oxygen content 1.5% by weight) with an average particle size of 1.2 μm and a purity of 97.0%, and Y2° with an average particle size of 0.8 μI. , powder (
0 to 15% by weight) and carbon black powder (0 to 3.5% by weight) with an average particle size of 0.02 μm were added and mixed in the amount ratio shown in Table 1, and to this was further added 6 parts of paraffin wax and 1 part of paraffin wax as binggu. % and 1% by weight of stearin Wt were added and mixed and press molded at a molding pressure of 1000 Kg/cm2.
次に得られた成形体を常法により脱バイングーした後、
窒素雰囲気中(1気圧)で1860℃、30分加熱焼成
して窒化アルミニウム焼結体を得た。Next, after debinding the obtained molded body by a conventional method,
The aluminum nitride sintered body was obtained by heating and firing at 1860° C. for 30 minutes in a nitrogen atmosphere (1 atm).
更に、上記と同様の窒化アルミニウム粉末の主成分にY
2O,粉末単線を表2に示す量比で添加、混合し、上記
本発明実施例の比較例とした。Furthermore, Y is added to the main component of the aluminum nitride powder similar to the above.
2O and a powdered single wire were added and mixed in the amount ratio shown in Table 2 to prepare a comparative example of the above-mentioned example of the present invention.
表 1
本部は本発明の範囲外
表 2
これら焼結体のカサ密度をアルキメデス法で、熱伝導率
をレーザフラッシュ法で測定したところ、表1、表2に
示したような結果が得られた。Table 1 Parts outside the scope of the present invention Table 2 The bulk density of these sintered bodies was measured by the Archimedes method, and the thermal conductivity was measured by the laser flash method, and the results shown in Tables 1 and 2 were obtained.
また、前記表に記載の各試料を、fJS1図に試料番号
を付して図示した。In addition, each sample listed in the table is illustrated in the fJS1 diagram with a sample number attached.
これらから判ることは、カーボン添加量増加によ’)A
IN質焼結体の熱伝導率向上の効果が認められるが、Y
2O3と相対的な関係があって、第1図の点A 、B
、C、D″C囲まれる範囲内のYzO*−Cの焼結剤使
用が、高熱伝導性窒化アルミニツム焼結体を提供できる
ものであることが理解できる。What can be seen from these is that the increase in the amount of carbon added ')A
Although the effect of improving the thermal conductivity of the IN sintered body is recognized,
There is a relative relationship with 2O3, and points A and B in Figure 1
, C, and D″C as a sintering agent can provide a highly thermally conductive aluminum nitride sintered body.
以上の焼結体は常圧法によったが、ホットプレス法によ
って行っても同様の傾向の試験結果が得られ、その場合
は焼結体の密度が一層高められるので、熱伝導性も全般
に上昇する。Although the above sintered bodies were made using the normal pressure method, similar test results were obtained even if the hot press method was used.In that case, the density of the sintered bodies is further increased, so the thermal conductivity is generally improved. Rise.
なお、グリーン体の成形は、プレス成形のほか、テープ
成形、鋳込成形によっても行なわれる。Note that the green body is formed by not only press molding but also tape molding and casting molding.
(発明の効果)
以上、従来高純度な窒化アルミニウム粉末原料や種々の
焼結助剤を使用しなければ高熱伝導性窒化アルミニウム
焼結体が得られなかったのに対し、本発明によれば前把
持定範囲のY 20 、+ Cの単純な焼結助剤使用に
よって、比較的純度の高くない窒化アルミニツム粉末原
料から高熱伝導性窒化アルミニウム焼結体が得られるの
である。(Effects of the Invention) As described above, while conventionally a highly thermally conductive aluminum nitride sintered body could not be obtained without using a high-purity aluminum nitride powder raw material or various sintering aids, according to the present invention, A highly thermally conductive aluminum nitride sintered body can be obtained from a relatively pure aluminum nitride powder raw material by simply using a sintering aid with Y 20 and +C within a certain range.
したがって本発明は、従来法に比し、非常に有利性の高
いものである。Therefore, the present invention is highly advantageous compared to conventional methods.
第1図は、本発明のY 20、− C系焼結助剤の使用
組成範囲を示す片対数グラフ(Y2O3量のみが片対数
目盛)、第2図は更に好ましいY2O−C系焼結助剤の
使用組成範囲を示す片対数グラフ(Y2O3量のみが片
対数目盛)を示し、第3図は好ましい焼結体の組織説明
図を示す。Fig. 1 is a semi-logarithmic graph showing the composition range of the Y2O-C sintering aid of the present invention (only the amount of Y2O3 is on a semi-logarithmic scale), and Fig. 2 is a semi-logarithmic graph showing the composition range of the Y2O-C sintering aid of the present invention. A semi-logarithmic graph (only the amount of Y2O3 is on a semi-logarithmic scale) showing the composition range in which the agent is used is shown, and FIG. 3 shows an explanatory diagram of the structure of a preferable sintered body.
Claims (2)
炭素換算で0.2〜3.4重量%の炭素、炭化物又は焼
成により炭素を生成する化合物と、酸化イットリウム0
.1〜10重量%とを、添付図面(第1図)に示す点A
(C 0.2%、Y_2O_3 10.0%)、点B(
C 0.94、Y_2O_3 10.0%)、点C(C
3.4%、Y_2O_3 0.1%)、点D(C 0
.2%、Y_2O_3 0.1%)で囲まれる限定範囲
内で含有せしめ、これより得られた成形体を、非酸化性
雰囲気中で1600〜2100℃で焼成することを特徴
とする窒化アルミニウム焼結体の製造方法。(1) As a sintering aid to aluminum nitride, the main component,
0.2 to 3.4% by weight of carbon in terms of carbon, carbide, or a compound that produces carbon by calcination, and 0 yttrium oxide.
.. 1 to 10% by weight at point A shown in the attached drawing (Figure 1).
(C 0.2%, Y_2O_3 10.0%), point B (
C 0.94, Y_2O_3 10.0%), point C (C
3.4%, Y_2O_3 0.1%), point D (C 0
.. 2%, Y_2O_3 0.1%), and the molded body obtained therefrom is fired at 1600 to 2100°C in a non-oxidizing atmosphere. How the body is manufactured.
2O_3 10.0%)、点B(C 0.94、Y_2
O_3 10.0%)、点E(C 1.58%、Y_2
O_3 3.0%)、点F(C 2.0%、Y_2O_
3 0.5%)、点G(C 1.0、Y_2O_3 0
.5%)、点H(C 0.2%、Y_2O_3 2.5
%)(第2図)であることを特徴とする特許請求の範囲
第1項記載の窒化アルミニウム焼結体の製造方法。(2) The points shown in the attached drawing are point A (C 0.2%, Y_
2O_3 10.0%), point B (C 0.94, Y_2
O_3 10.0%), point E (C 1.58%, Y_2
O_3 3.0%), point F (C 2.0%, Y_2O_
3 0.5%), point G (C 1.0, Y_2O_3 0
.. 5%), point H (C 0.2%, Y_2O_3 2.5
%) (FIG. 2). The method for producing an aluminum nitride sintered body according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60190962A JPS6252181A (en) | 1985-08-31 | 1985-08-31 | Manufacture of aluminum nitride sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60190962A JPS6252181A (en) | 1985-08-31 | 1985-08-31 | Manufacture of aluminum nitride sintered body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6252181A true JPS6252181A (en) | 1987-03-06 |
Family
ID=16266570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60190962A Pending JPS6252181A (en) | 1985-08-31 | 1985-08-31 | Manufacture of aluminum nitride sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6252181A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01305863A (en) * | 1988-06-03 | 1989-12-11 | Hitachi Metals Ltd | Aluminium nitride sintered body, its production, and electronic parts using the same sintered body |
EP0393524A2 (en) * | 1989-04-17 | 1990-10-24 | Kawasaki Steel Corporation | Method of making a sintered body of aluminium nitride |
JPH042663A (en) * | 1990-04-17 | 1992-01-07 | Sumitomo Electric Ind Ltd | Colored aluminum nitride sintered material having high thermal conductivity and production thereof |
JP2002284280A (en) * | 2001-03-21 | 2002-10-03 | Sony Corp | Card-type recording medium housing case, housing case holder and electronic apparatus |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6191068A (en) * | 1984-10-01 | 1986-05-09 | ゼネラル・エレクトリツク・カンパニイ | Manufacture of high heat conductivity ceramic body |
JPS61127667A (en) * | 1984-11-01 | 1986-06-14 | ゼネラル・エレクトリツク・カンパニイ | Manufacture of ceramic body with high heat conductivity |
JPS61146769A (en) * | 1984-12-07 | 1986-07-04 | ゼネラル・エレクトリツク・カンパニイ | High heat conductivity ceramic body and manufacture |
JPS61155263A (en) * | 1984-12-17 | 1986-07-14 | ゼネラル・エレクトリツク・カンパニイ | Manufacture of high heat conductivity ceramic body |
JPS61219763A (en) * | 1984-11-26 | 1986-09-30 | ゼネラル・エレクトリツク・カンパニイ | High heat conductivity ceramic body and manufacture |
-
1985
- 1985-08-31 JP JP60190962A patent/JPS6252181A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6191068A (en) * | 1984-10-01 | 1986-05-09 | ゼネラル・エレクトリツク・カンパニイ | Manufacture of high heat conductivity ceramic body |
JPS61127667A (en) * | 1984-11-01 | 1986-06-14 | ゼネラル・エレクトリツク・カンパニイ | Manufacture of ceramic body with high heat conductivity |
JPS61219763A (en) * | 1984-11-26 | 1986-09-30 | ゼネラル・エレクトリツク・カンパニイ | High heat conductivity ceramic body and manufacture |
JPS61146769A (en) * | 1984-12-07 | 1986-07-04 | ゼネラル・エレクトリツク・カンパニイ | High heat conductivity ceramic body and manufacture |
JPS61155263A (en) * | 1984-12-17 | 1986-07-14 | ゼネラル・エレクトリツク・カンパニイ | Manufacture of high heat conductivity ceramic body |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01305863A (en) * | 1988-06-03 | 1989-12-11 | Hitachi Metals Ltd | Aluminium nitride sintered body, its production, and electronic parts using the same sintered body |
EP0393524A2 (en) * | 1989-04-17 | 1990-10-24 | Kawasaki Steel Corporation | Method of making a sintered body of aluminium nitride |
JPH042663A (en) * | 1990-04-17 | 1992-01-07 | Sumitomo Electric Ind Ltd | Colored aluminum nitride sintered material having high thermal conductivity and production thereof |
JP2002284280A (en) * | 2001-03-21 | 2002-10-03 | Sony Corp | Card-type recording medium housing case, housing case holder and electronic apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01203270A (en) | Sintered aluminum nitride body having high thermal conductivity and its production | |
JPS63156075A (en) | High heat conductivity electric insulation aluminum nitride sintered body and manufacture | |
CN111285692A (en) | High-thermal-conductivity Si3N4Ceramic and preparation method thereof | |
JPS62128971A (en) | Aluminum nitride sintered body and its manufacturing method | |
JP3408298B2 (en) | High thermal conductive silicon nitride metallized substrate, method of manufacturing the same, and silicon nitride module | |
JP2871410B2 (en) | High thermal conductive silicon nitride sintered body and method for producing the same | |
JPS6252181A (en) | Manufacture of aluminum nitride sintered body | |
JPH07172921A (en) | Aluminum nitride sintered material and its production | |
JPH01252584A (en) | Composite ceramic sintered body and its manufacturing method | |
JPH11310464A (en) | Silicon nitride heat dissipation member and method of manufacturing the same | |
JPH0313190B2 (en) | ||
JPH0442861A (en) | Preparation of highly strong aluminum nitride sintered product | |
JP4761617B2 (en) | Aluminum nitride sintered body, method for producing the same, and electronic component using the same | |
JP2673095B2 (en) | Aluminum nitride sintered body | |
JP2536448B2 (en) | Aluminum nitride sintered body | |
JP4702978B2 (en) | Aluminum nitride sintered body | |
JPS60239360A (en) | Silicon carbide ceramic sintered body | |
JPH11180774A (en) | Silicon nitride heat dissipation member and method of manufacturing the same | |
JPS61201669A (en) | Aluminum nitride sintered body and manufacture | |
JPH0678195B2 (en) | Aluminum nitride sintered body | |
JPS61286267A (en) | Manufacture of aluminum nitride base sintered body | |
JP2000191376A (en) | Aluminum nitride sintered body and its production | |
JPS61205665A (en) | Electrically insulating substrate and manufacture | |
JPS6236066A (en) | Silicon carbide base sintered body and manufacture | |
JPS60239366A (en) | Manufacture of aluminum nitride sintered body |