[go: up one dir, main page]

JPS6251674B2 - - Google Patents

Info

Publication number
JPS6251674B2
JPS6251674B2 JP51037512A JP3751276A JPS6251674B2 JP S6251674 B2 JPS6251674 B2 JP S6251674B2 JP 51037512 A JP51037512 A JP 51037512A JP 3751276 A JP3751276 A JP 3751276A JP S6251674 B2 JPS6251674 B2 JP S6251674B2
Authority
JP
Japan
Prior art keywords
catalyst
gas
pyrolysis
section
catalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51037512A
Other languages
Japanese (ja)
Other versions
JPS52120277A (en
Inventor
Shuji Hatsutori
Takakatsu Morimoto
Shigeki Kawase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3751276A priority Critical patent/JPS52120277A/en
Publication of JPS52120277A publication Critical patent/JPS52120277A/en
Publication of JPS6251674B2 publication Critical patent/JPS6251674B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Coke Industry (AREA)

Description

【発明の詳細な説明】 近年、プラスチツクの生産量の増大にともな
い、その廃棄物の処理が1つの大きな社会問題と
なつてきている。それに加えて、石油資源の固渇
傾向ならびに原油の高騰などの理由でプラスチツ
クの数多くの再利用法再生利用法が提案されてい
る。
DETAILED DESCRIPTION OF THE INVENTION In recent years, as the production of plastics has increased, the disposal of plastic waste has become a major social problem. In addition, many methods for reusing and recycling plastics have been proposed due to the tendency to deplete petroleum resources and the rising price of crude oil.

本発明者らも先にプラスチツクを、不活性ガス
雰囲気中で、ある種の触媒と接触的に熱分解させ
るとプラスチツクを構成しているポリマ中の水素
が効率良く水素ガスH2に変化することを見出し
た。
The present inventors also discovered that when plastic is catalytically decomposed with a certain type of catalyst in an inert gas atmosphere, the hydrogen in the polymer that makes up the plastic is efficiently converted to hydrogen gas H2 . I found out.

また、窒素を含むポリマの場合には、ポリマ中
に含まれる水素が効率よくH2に変化する以外
に、含まれる窒素が、通常の熱分解で生成するア
ンモニアNH3およびシアン化水素HCNなどの有
害成分に変化する割合を極端に抑制し、人体に無
害な窒素ガスに効率よく変化させることができる
ことを見出した。この場合、密閉系で酸素ガスの
ない雰囲気中での熱分解であるので、有害な窒素
酸化物の生成もほとんどないことを見出した。
In addition, in the case of polymers containing nitrogen, in addition to efficiently converting the hydrogen contained in the polymer into H 2 , the nitrogen contained in the polymer can also be converted into harmful components such as ammonia NH 3 and hydrogen cyanide HCN that are generated during normal thermal decomposition. We have discovered that it is possible to extremely suppress the rate at which nitrogen gas changes into nitrogen gas and efficiently convert it into nitrogen gas, which is harmless to the human body. In this case, it has been found that since the thermal decomposition is carried out in a closed system in an atmosphere free of oxygen gas, there is almost no generation of harmful nitrogen oxides.

その後の研究で含窒素プラスチツクのみなら
ず、含窒素有機化合物についても、含窒素プラス
チツクの場合と同様、有害ガスの発生のきわめて
少ない無公害処理が可能であることを見出した。
Subsequent research revealed that not only nitrogen-containing plastics but also nitrogen-containing organic compounds can be treated in a non-polluting manner with extremely low generation of harmful gases, just as in the case of nitrogen-containing plastics.

本発明は上述の方法を実施するための装置に関
するものである。
The invention relates to a device for carrying out the method described above.

本装置で基本的に重要な点は、被熱分解物を、
加熱された触媒と効果的に接触熱分解させるこ
と、ならびに触媒の接触効果は被熱分解物の接触
熱分解とともに低下するので、その効果を再生し
繰返し使用できるようにすることなどである。こ
れらを基本的に考慮した本発明装置について以下
詳細に説明する。
The fundamentally important point of this device is that the thermal decomposition products are
The purpose is to effectively carry out catalytic pyrolysis with a heated catalyst, and because the catalytic effect of the catalyst decreases with the catalytic pyrolysis of the material to be thermally decomposed, the effect can be regenerated and used repeatedly. The apparatus of the present invention that basically takes these into consideration will be described in detail below.

熱分解部において、被熱分解物を直接高温
(600℃以上)に加熱された触媒に導入することも
可能であるが、この場合被熱分解部の導入口付近
の触媒上で急激に加熱分解されるので、分解残渣
が局部的に付着し、その触媒の部分で系路がつま
つたり、あるいはつまらないまでもガスの流れが
さまたげられ均一な条件下での熱分解が不可能と
なる。従つて、被熱分解物をガス化(蒸発あるい
は熱分解)させる部分と、触媒と接触熱分解させ
る部分とを別にする方が望ましい。このようにす
ると、ガス化させる部分は、被熱分解物のガス化
のされやすさにより適当な加熱温度に調節できる
ので急激なガス化を抑制でき、従つて生成された
ガスを適当な流速で触媒へ送入できるので、円滑
な接触熱分解を遂行させることができる。ただ
し、この場合、同一の熱分解室であつても、例え
ば管状の熱分解室であれば、触媒充填部と被熱分
解物のガス化部とを別々の加熱温度に調節できる
ので、この目的を達成させることができる。この
ような場合、ガス化させる部分には、触媒を充填
するより、接触効果のない石英製、磁製、耐熱性
ガラス製の粒を充填させるとよい。
In the thermal decomposition section, it is also possible to introduce the thermal decomposition products directly into the catalyst heated to a high temperature (over 600℃), but in this case, the thermal decomposition products are rapidly thermally decomposed on the catalyst near the inlet of the thermal decomposition section. As a result, decomposition residues adhere locally to the catalyst, clogging the system or even blocking the flow of gas, making it impossible to carry out thermal decomposition under uniform conditions. Therefore, it is preferable to separate the part that gasifies (evaporates or thermally decomposes) the thermal decomposition products from the part that catalytically decomposes them with the catalyst. In this way, the heating temperature of the part to be gasified can be adjusted to an appropriate temperature depending on the ease with which the pyrolyzed material is gasified, so rapid gasification can be suppressed, and the generated gas can be controlled at an appropriate flow rate. Since it can be fed to the catalyst, smooth catalytic thermal decomposition can be carried out. However, in this case, even if the pyrolysis chamber is the same, for example, if it is a tubular pyrolysis chamber, the catalyst filling part and the gasification part of the pyrolyzed material can be adjusted to different heating temperatures, so for this purpose can be achieved. In such a case, it is better to fill the part to be gasified with particles made of quartz, porcelain, or heat-resistant glass, which have no contact effect, rather than with a catalyst.

触媒の被熱分解物との接触熱分解効果は、触媒
表面に被熱分解物の熱分解物が残渣として付着す
るため、分解の進行とともに徐々に低下(いわゆ
る被毒される)する。
The catalytic thermal decomposition effect of the catalyst with the thermally decomposed substances gradually decreases (so-called poisoning) as the decomposition progresses because the thermally decomposed substances of the thermally decomposed substances adhere to the catalyst surface as a residue.

ところが、この被毒された金属表面は700℃以
上で酸素を含む気体、たとえば空気などを流すこ
とにより、再びその接触効果を復活させることを
見出した。これを再生という。そこで装置として
は、この触媒を再生できやすいようにする必要が
ある。そのために触媒充填部を、熱分解装置の他
の系とは独立に上記の再生操作を実施できる系路
に設けることが望ましい。また接触熱分解を触媒
の再生時においても継続して実施できるように触
媒充填部よりなる接触熱分解部を2基以上設け、
一基の触媒を再生している間は他の接触熱分解部
で継続して熱分解が実施できるようにすると都合
がよい。
However, they discovered that by flowing oxygen-containing gas, such as air, at temperatures above 700°C, the poisoned metal surface could regain its contact effect. This is called regeneration. Therefore, it is necessary for the device to be able to easily regenerate this catalyst. For this reason, it is desirable to provide the catalyst filling section in a system that can carry out the above regeneration operation independently of other systems in the pyrolysis apparatus. In addition, two or more catalytic pyrolysis units each consisting of a catalyst filling unit are provided so that catalytic pyrolysis can be carried out continuously even when the catalyst is regenerated.
While one catalyst is being regenerated, it is convenient to be able to continue pyrolysis in another catalytic pyrolysis section.

次に熱分解室の材質について述べる。まず、触
媒充填部の材質としては、かなり耐高温性に優れ
たものが要求される。例えば接触熱分解温度800
℃の場合においても、再生時に空気を流すと、触
媒上で酸化反応が起こるので触媒の温度は900℃
以上になることもある。従つて少なくとも1000℃
以上に耐える材質にする必要がある。この種の材
質としては、磁製材料、石英、ステンレススチー
ル、耐熱合金などが望ましい。また被熱分解物の
ガス化室の材質は触媒充填部ほどの耐熱性は要求
されないので、通常は600℃以上の耐熱性を有す
る材質であればよい。ただし触媒充填部と被熱分
解物のガス化部が同一の熱分解室に存在する場合
には、当然のことながら触媒充填部に要求される
耐熱性に合致した材質にすべきである。
Next, we will discuss the material of the pyrolysis chamber. First, the material for the catalyst filling part is required to have fairly excellent high temperature resistance. For example, catalytic pyrolysis temperature 800
℃, if air is flowed during regeneration, an oxidation reaction will occur on the catalyst, so the temperature of the catalyst will be 900℃.
It can be more than that. Therefore at least 1000℃
It is necessary to use a material that can withstand more than this. Desirable materials of this type include porcelain materials, quartz, stainless steel, and heat-resistant alloys. Further, since the material of the gasification chamber for the thermal decomposition material is not required to have the same heat resistance as the catalyst-packed part, it is generally sufficient that the material has heat resistance of 600° C. or higher. However, if the catalyst filling part and the gasification part of the thermally decomposed material are present in the same thermal decomposition chamber, the material should naturally meet the heat resistance required for the catalyst filling part.

触媒の加熱手段としては、電気炉あるいはガス
バーナによる加熱が容易であるが、分解温度を一
定に保持できやすい点で電気炉による加熱の方が
優れている。ただし、バーナ方式の場合、本方法
で得たガスを加熱用燃料として使用できるメリツ
トがある。ただし触媒充填部の容量が大きい場合
には、電気炉あるいはバーナによる熱分解室外か
らの加熱方式では、触媒の熱分解室内の室壁に近
い部分と室内の中心部とでは大きな温度差を生ず
る。例えば内径50mmの分解管の場合800℃で数十
度以上の温度差がある。従つて触媒の温度を均一
に保つことができないので、一定の条件下での熱
分解を行うことが困難となる。このような場合に
は熱分解室内にシーズヒータを挿入して触媒を加
熱することにより解決することができる。また、
電気炉などによる外部加熱とシーズヒータによる
内部加熱とを併用することによつても、触媒の均
一な加熱を達成させることができる。
As a heating means for the catalyst, heating using an electric furnace or a gas burner is easy, but heating using an electric furnace is superior in that it is easier to maintain a constant decomposition temperature. However, the burner method has the advantage that the gas obtained by this method can be used as heating fuel. However, if the capacity of the catalyst filling section is large, heating from outside the pyrolysis chamber using an electric furnace or burner will result in a large temperature difference between the portion of the catalyst in the pyrolysis chamber near the chamber wall and the center of the chamber. For example, in the case of a cracking tube with an inner diameter of 50 mm, there is a temperature difference of several tens of degrees or more at 800 degrees Celsius. Therefore, the temperature of the catalyst cannot be maintained uniformly, making it difficult to carry out thermal decomposition under certain conditions. Such a case can be solved by inserting a sheathed heater into the pyrolysis chamber to heat the catalyst. Also,
Uniform heating of the catalyst can also be achieved by using a combination of external heating using an electric furnace or the like and internal heating using a sheathed heater.

次に、本装置で用いる触媒は、ステンレススチ
ールSUS316で代表されるニツケルクロム系ステ
ンレススチールである。
Next, the catalyst used in this device is nickel-chromium stainless steel, typified by stainless steel SUS316.

一方触媒の形状は接触効果を高めるために、で
きるだけ表面積が大きいことが望ましいと云える
が、本装置の場合触媒は、その効果が低下すれば
空気などの酸素を含む気体を流し、何度も再生さ
せて使用(この場合、再生のたびに触媒表面はわ
ずかづつ劣化する)するところに特徴の一つがあ
るので、あまり、触媒が細かすぎたり、薄すぎた
りすると、再生しうる回数が少なくなり、実用上
不都合となる。従つて、平板状のものであれば、
少なくとも50μ、棒状であれば少なくとも太さ50
μ以上のものが必要となる。これ以下の形状、例
えば40μの平板状(ただし後述の理由で彎曲させ
たものを用いた)の触媒の場合、ナイロン―6を
800℃で接触分解、再生を繰返すと、数回以内の
繰返しで、触媒の形状は大きく変形した。このよ
うな厚さあるいは太さの制約の他に、一定容量に
できるだけ多く充填させることができ、しかも充
填することにより、ガスの流れが大きく妨げられ
ない(例えば、平板状であれば、重なつたところ
は接触効果がないばかりでなくガスの流れが妨げ
られる)こと、また再生する場合、加熱状態で空
気などを流して表面を酸化させて表面の付着物を
除くが、この場合容易に触媒の全表面を再生でき
る形状であること、さらに充填された状態で加熱
された場合触媒の熱膨張により、熱分解室内に圧
力がかかり、熱分解室を破損しないような形状す
なわち熱膨脹があつても充填金属内部でその膨脹
を吸収できる形状であることなど多くの制約が触
媒の形状に要求される。
On the other hand, it can be said that it is desirable for the shape of the catalyst to have as large a surface area as possible in order to enhance the contact effect, but in the case of this device, if the effectiveness of the catalyst decreases, a gas containing oxygen such as air is passed through the catalyst, and the catalyst is repeatedly used. One of its characteristics is that it is regenerated and used (in this case, the surface of the catalyst deteriorates slightly each time it is regenerated), so if the catalyst is too fine or too thin, the number of times it can be regenerated will decrease. , which is inconvenient in practice. Therefore, if it is flat,
At least 50μ, if rod-shaped, at least 50mm thick
More than μ is required. In the case of a catalyst with a shape smaller than this, for example a 40μ flat plate (however, a curved one was used for the reason explained later), use nylon-6.
When catalytic cracking and regeneration were repeated at 800°C, the shape of the catalyst changed significantly within a few cycles. In addition to such restrictions on thickness or thickness, it is possible to fill as much as possible into a given volume, and by filling the gas flow, the gas flow will not be significantly hindered (for example, if it is a flat plate, there will be no overlapping In addition, when regenerating, heated air is flowed through the surface to oxidize the surface and remove deposits, but in this case, the catalyst is easily removed. The catalyst must have a shape that allows the entire surface of the catalyst to be regenerated, and furthermore, when the catalyst is heated in a filled state, pressure will be applied inside the pyrolysis chamber due to the thermal expansion of the catalyst, and the shape will not damage the pyrolysis chamber. Many constraints are required on the shape of the catalyst, including a shape that can absorb the expansion within the filling metal.

以上のことを考慮すると、本装置に適した触媒
の形状としては、太さ50μ以上の線を網状に織つ
たものをさらに丸めたりして例えばDixon
packingのような形状に、あるいは織りたたんだ
りして、例えばHeli packingのような形状にした
もの、適当な大きさに切つた厚さ50μ以上の平板
を彎曲させたもの、金属のドリル加工時に生ずる
きりこ状の形状などがよい。
Taking the above into consideration, the shape of the catalyst suitable for this device is one made by weaving wires with a thickness of 50 μm or more into a net shape and then rolling it up, such as Dixon.
Items shaped like packing or woven into shapes such as Heli packing, items cut into an appropriate size and curved from a flat plate with a thickness of 50μ or more, used for metal drilling. The resulting cuticle-like shape is good.

次に本装置では、触媒の接触効果が有限である
ので、この効果が持続している間は、被熱分解物
を接触的に熱分解を行い、接触効果がなくなれば
前述のように再生する方式をとつている。従つ
て、本装置では何らかの方法で触媒の接触効果を
常に把握しておかねばならない。そこで接触熱分
解で生成されるガスを連続的あるいは適当な間隔
で採取し、そのガスの中で接触効果の大きさによ
り大きく生成量の変化のある成分、例えば水素
H2、アンモニアNH3、シアン化水素HCNなどを
定量分析する必要がある。これらの成分の分析手
段としては、H2の場合にはガスクロマトグラフ
法が、NH3、HCNの場合は、赤外線吸収スペク
トル法、イオン電極法などが適している。この場
合、ガスの採取から分析までを自動化し、その分
析値を自動的に読みとりその分析値の値が、例え
ば一定の規準を越えているとき要再生と判断し接
触熱分解操作から再生操作への切り換えを自動的
に行なうことも可能である。
Next, in this device, since the contact effect of the catalyst is finite, the material to be thermally decomposed is thermally decomposed catalytically while this effect lasts, and when the contact effect disappears, it is regenerated as described above. We have a method. Therefore, in this apparatus, the contact effect of the catalyst must be constantly grasped by some method. Therefore, the gas produced by catalytic pyrolysis is sampled continuously or at appropriate intervals, and components in the gas whose production amount changes greatly depending on the magnitude of the contact effect, such as hydrogen, are extracted.
It is necessary to quantitatively analyze H 2 , ammonia NH 3 , hydrogen cyanide HCN, etc. As means for analyzing these components, gas chromatography is suitable for H 2 , and infrared absorption spectroscopy, ion electrode method, etc. are suitable for NH 3 and HCN. In this case, the process from gas collection to analysis is automated, and the analysis value is automatically read and, for example, if the analysis value exceeds a certain standard, it is determined that regeneration is required, and the process is switched from catalytic pyrolysis operation to regeneration operation. It is also possible to switch automatically.

次に生成したガスの捕集方法について述べる。
最も簡単な捕集法としては、生成したガスをその
ままガスタンクなどで捕集することが挙げられる
が、先に提案したように、生成ガスをまず液体窒
素などで生成ガスの一部を液化させ、その後、液
化されないガスをガスタンクに捕集すると、沸点
の差による分別ができるので、生成ガスを利用す
る場合都合がよい。また含窒素有機化合物を本装
置で熱分解させると、含まれる窒素は無害な窒素
ガスN2に効率よく変化させることができるが、
触媒の接触効果が低下し、再生直前の状態では微
量のNH3、HCNなどの有害なガスを生成しはじ
める。そのため、この種の有害なガスを極度にき
らう場合には、生成ガスが捕集される前の段階
で、水中をバブリングさせるか、水のシヤワーの
中を通して除くとよい。
Next, a method for collecting the generated gas will be described.
The simplest collection method is to collect the generated gas as is in a gas tank, but as proposed earlier, first liquefy a portion of the generated gas with liquid nitrogen, etc. Thereafter, if the gas that is not liquefied is collected in a gas tank, it can be separated based on the difference in boiling point, which is convenient when using the generated gas. In addition, when nitrogen-containing organic compounds are thermally decomposed using this device, the nitrogen contained can be efficiently converted into harmless nitrogen gas N2 .
The contact effect of the catalyst decreases, and immediately before regeneration, trace amounts of harmful gases such as NH 3 and HCN begin to be produced. Therefore, if you are extremely concerned about this type of harmful gas, it is best to remove the generated gas by bubbling it through the water or by passing it through a shower of water before it is collected.

次に本発明の実施例を説明する。第1図は、本
装置の構成の概略を示す。本装置は、被熱分解部
のガス化部と接触分解部とが別々の場合で、ガス
化されやすい、即ち、沸点が低い場合、あるいは
熱分解で生成される成分の沸点が低い場合の被熱
分解物の接触熱分解に適した装置である。この装
置では、エチレンジアミン、ジエチルアミン、ト
リエチルアミン、イソプロピルアミンなどの、沸
点が150℃以下のアミン類の接触熱分解に適して
いた。第1図において、1は被熱分解物のガス化
部、2は石英製の熱分解管で、円径20mmφ、長さ
15cmであり、その内部には熱容量を増すために大
きさ4mmφ×4mmの石英製ビーズ3が充填されて
いる。熱分解管2は電気炉4により加熱されるよ
うになつている。また、5および5′は接触熱分
解部でそれぞれ内径20mmφ、長さ20cmの石英製の
熱分解管6,6′と電気炉7,7′とから構成され
ており、熱分解管6,6′中には、ステンレスス
チールSUS316製のDixon packingよりなる触媒
8,8′が充填されている。熱分解管6および
6′は電気炉7および7′によりそれぞれ加熱され
るようになつている。また9は触媒8,8′の接
触効果を知るためのモニター部で、詳細は後述す
る。10は生成されたガスの捕集部で、ピストン
―シリンダ型の容積約4の捕集器を用いた。
Next, embodiments of the present invention will be described. FIG. 1 shows an outline of the configuration of this device. This device is suitable for cases where the gasification section and catalytic cracking section of the pyrolysis target section are separate, and when the component is easily gasified, that is, has a low boiling point, or when the boiling point of the component produced by pyrolysis is low. This equipment is suitable for catalytic pyrolysis of pyrolysis products. This device was suitable for catalytic thermal decomposition of amines with boiling points below 150°C, such as ethylenediamine, diethylamine, triethylamine, and isopropylamine. In Fig. 1, 1 is the gasification part of the material to be pyrolyzed, and 2 is a pyrolysis tube made of quartz, with a diameter of 20 mmφ and a length of
It has a diameter of 15 cm, and its interior is filled with quartz beads 3 having a size of 4 mmφ x 4 mm to increase heat capacity. The pyrolysis tube 2 is heated by an electric furnace 4. Further, 5 and 5' are catalytic pyrolysis sections, each consisting of quartz pyrolysis tubes 6 and 6' with an inner diameter of 20 mmφ and a length of 20 cm, and electric furnaces 7 and 7'. Catalysts 8, 8' made of Dixon packing made of stainless steel SUS316 are filled in the inside. The pyrolysis tubes 6 and 6' are heated by electric furnaces 7 and 7', respectively. Reference numeral 9 denotes a monitor section for checking the contact effect of the catalysts 8 and 8', the details of which will be described later. Reference numeral 10 denotes a collection section for the generated gas, and a piston-cylinder type collector with a volume of about 4 was used.

次に、第1図の装置で、沸点117℃のエチレン
ジアミンを接触熱分解を行なう場合の操作手順を
述べる。
Next, the operating procedure for carrying out catalytic thermal decomposition of ethylenediamine having a boiling point of 117°C using the apparatus shown in FIG. 1 will be described.

(i) 電気炉4の電圧を熱分解管2内の温度が150
℃になるように設定し、電気炉7および7′の
電圧を触媒8および8′の温度が800℃になるよ
うに設定する。
(i) When the voltage of the electric furnace 4 is set to 150, the temperature inside the pyrolysis tube 2 is
The voltage of the electric furnaces 7 and 7' is set so that the temperature of the catalysts 8 and 8' becomes 800°C.

(ii) ガス導入口11から窒素ガスを導入し、系内
を窒素ガスで置換する。このとき接続部12は
離したままにし、窒素ガス置換後シリンダを有
する捕集部10と接続する。
(ii) Introduce nitrogen gas from the gas inlet 11 to replace the inside of the system with nitrogen gas. At this time, the connection part 12 is kept separated and connected to the collection part 10 having the cylinder after nitrogen gas replacement.

(iii) コツク13および14を開け、ガス化部1→
接触熱分解部5→ガス捕集部10の系路を開通
させ、一方、コツク13′および14′を閉じ1
→5′→10の系路を遮断する。
(iii) Open the pots 13 and 14 and open the gasification section 1 →
The system path from the catalytic pyrolysis section 5 to the gas collection section 10 is opened, while the locks 13' and 14' are closed.
→5'→10 system is cut off.

(iv) 被熱分解物導入口15からエチレンジアミン
を0.1gづつ間を置いてガス化部1へ導入する。
(iv) Ethylenediamine is introduced into the gasification section 1 from the thermally decomposed product inlet 15 at intervals of 0.1 g.

(v) エチレンジアミン0.1gを導入のたびに、モニ
ター部9から生成ガスの一部を採取し、その赤
外線吸収スペクトルを側定し、シアン化水素の
定量分析を行なう。
(v) Every time 0.1 g of ethylenediamine is introduced, a portion of the generated gas is collected from the monitor section 9, its infrared absorption spectrum is determined, and hydrogen cyanide is quantitatively analyzed.

(vi) エチレンジアミン0.1gづつを約10回接触熱分
解を行なうと触媒の接触効果が低下し、通常の
熱分解、即ち触媒がなく、窒素ガス雰囲気中
800℃において、生成されるシアン化水素の約
5%の生成率となる。この時点で接触分解部5
での接触熱分解を終了させる。
(vi) When 0.1 g of ethylenediamine is subjected to catalytic pyrolysis about 10 times, the catalytic effect of the catalyst decreases, and normal pyrolysis, that is, without a catalyst and in a nitrogen gas atmosphere, is performed.
At 800°C, the production rate of hydrogen cyanide is approximately 5%. At this point, the catalytic cracking section 5
terminating the catalytic pyrolysis at

(vii) (vi)の操作終了後直ちに接触熱分解部5′で接
触熱分解を継続させる。すなわち、コツク13
および14を閉じ、かつ、コツク13および1
4は、ガス導入口16→コツク13→コツク1
4→ガス導入口17の系路が開放させるように
調節する。逆にコツク13′および14′を開
き、すなわち、ガス化部1→接触熱分解部5′
→ガス捕集部10の系路を開通させ、接触熱分
解部5′で継続して、エチレンジアミンの接触
熱分解を行なう。
(vii) Immediately after the operation in (vi) is completed, catalytic pyrolysis is continued in the catalytic pyrolysis section 5'. In other words, Kotoku 13
and 14, and Kotoku 13 and 1
4 is gas inlet 16 → Kotoku 13 → Kotoku 1
4→Adjust so that the gas inlet 17 line is opened. On the contrary, open the locks 13' and 14', that is, from the gasification section 1 to the catalytic pyrolysis section 5'.
→The system line of the gas collection section 10 is opened, and catalytic pyrolysis of ethylenediamine is continued in the catalytic pyrolysis section 5'.

(viii) (vii)の操作を行なつている間に、接触熱分解

5の触媒8の再生を行なう。すなわち、ガス導
入口16あるいは17から空気を約1/min
の流速で2分間流し、その後ガス導入口16あ
るいは17から、窒素ガスを流し接触熱分解部
5の系内を窒素ガスで置換し、コツク18およ
び19を閉じる。
(viii) While the operation in (vii) is being carried out, the catalyst 8 in the catalytic pyrolysis section 5 is regenerated. That is, air is introduced from the gas inlet 16 or 17 at a rate of approximately 1/min.
After that, nitrogen gas is passed through the gas inlet 16 or 17 to replace the inside of the catalytic pyrolysis section 5 with nitrogen gas, and the tanks 18 and 19 are closed.

(ix) 接触熱分解部5′で(iv)〜(vi)の操作を継続さ
せ、接触熱分解部5′の触媒8′が劣化したら、
(vii)以下の操作を繰返す。
(ix) Continue the operations (iv) to (vi) in the catalytic pyrolysis section 5', and when the catalyst 8' in the catalytic pyrolysis section 5' deteriorates,
(vii) Repeat the following operations.

以上が第1図の装置の操作手順であるが、この
装置では被熱分解物の沸点が高い場合、あるいは
ポリマのように、一次熱分解で得られる成分中に
高沸点成分が多く含まれるような場合には、ガス
化部1と接触熱分解部5および5′との間に、こ
れらの高沸点成分が液化凝縮したり、あるいは凝
縮させないために加熱するとこれらの高沸点成分
が分解して固形化したりして、系路がつまる場合
を生ずる。このような不都合を解消するため、第
2図に示すような装置を用いる。
The above is the operating procedure for the apparatus shown in Figure 1. This apparatus can be used when the boiling point of the thermally decomposed material is high, or when the components obtained by primary thermal decomposition contain many high-boiling point components, such as polymers. In such cases, these high boiling point components may liquefy and condense between the gasification section 1 and the catalytic pyrolysis sections 5 and 5', or when heated to prevent condensation, these high boiling point components may decompose. It may solidify and cause clogging of the system. In order to eliminate such inconveniences, a device as shown in FIG. 2 is used.

第2図の装置は2基の熱分解部20および2
0′と生成ガスの組成のモニター部22、ガス捕
集部23とから構成されている。熱分解部20お
よび20′はそれぞれ石英製の熱分解管24およ
び24′(いずれも内径20mmφ×70cm)および熱
分解管24,24′を加熱するための長さ30cmの
電気炉25および25′、長さ15cmの電気炉26
および26′、長さ20cmの電気炉27および2
7′から構成されており、分解管24,24′内部
にはステンレススチールSUS316製の
Dixonpackingよりなる触媒28および28′およ
び径約4mmφ、長さ4mmの石英ビーズ29,2
9′が充填されている。熱分解部20および2
0′で生成したガスは、ガス捕集部23で捕集さ
れるようになつている。なお、モニター部22に
ついては後述する。
The apparatus shown in FIG. 2 has two pyrolysis sections 20 and 2.
0', a monitoring section 22 for the composition of produced gas, and a gas collecting section 23. The pyrolysis sections 20 and 20' are respectively made of quartz pyrolysis tubes 24 and 24' (inner diameter 20 mmφ x 70 cm) and electric furnaces 25 and 25' with a length of 30 cm for heating the pyrolysis tubes 24 and 24'. , electric furnace 26 with a length of 15 cm
and 26′, electric furnace 27 and 2 with a length of 20 cm.
The inside of the decomposition tube 24, 24' is made of stainless steel SUS316.
Catalysts 28 and 28' made of Dixonpacking and quartz beads 29, 2 with a diameter of about 4 mmφ and a length of 4 mm.
9' is filled. Pyrolysis section 20 and 2
The gas generated at 0' is collected by a gas collecting section 23. Note that the monitor section 22 will be described later.

次に本装置を用いてトリエタノールアミン(沸
点360℃)を接触熱分解させる場合の操作手順を
述べる。
Next, we will describe the operating procedure for catalytic thermal decomposition of triethanolamine (boiling point 360°C) using this device.

(i) 2本の熱分解管24および24′内を窒素ガ
スで置換させる。このとき接続部30ははずし
ておき、置換後ガス捕集部23と連結させる。
(i) The insides of the two pyrolysis tubes 24 and 24' are replaced with nitrogen gas. At this time, the connection part 30 is removed and connected to the post-replacement gas collection part 23.

(ii) 電気炉により熱分解管24,24′内部を所
定の温度に調節する。すなわち、電気炉25お
よび25′付近の管24,24′部分を800℃、
電気炉26および26′付近の温度は400℃、電
気炉27および27′付近の温度は800℃にそれ
ぞれ調節する。
(ii) Adjust the inside of the pyrolysis tubes 24, 24' to a predetermined temperature using an electric furnace. That is, the tubes 24, 24' near the electric furnaces 25 and 25' are heated to 800°C.
The temperature near the electric furnaces 26 and 26' is adjusted to 400°C, and the temperature near the electric furnaces 27 and 27' is adjusted to 800°C.

(iii) コツク31′を閉じ熱分解部20′とガス捕集
部23との間を遮断する。
(iii) Close the pot 31' to cut off the connection between the thermal decomposition section 20' and the gas collection section 23.

(iv) 被熱分解物導入口32からトリエタノールア
ミンを0.1gづつ、間を置いて熱分解管24内に
導入する。
(iv) 0.1 g of triethanolamine is introduced into the pyrolysis tube 24 from the pyrolysis product inlet 32 at intervals.

(v) 約1.5gのトリエタノールアミンを接触分解さ
せると、触媒28の接触効果が低下し、通常の
熱分解、即ち、触媒を用いずして、窒素ガス雰
囲気中の800℃において、生成されるシアン化
水素の生成量の約5%生成される時点で熱分解
部20での接触熱分解を終了させる。なおシア
ン化水素の生成率は第1図の装置の場合と全く
同様にして知つた。
(v) When about 1.5 g of triethanolamine is catalytically decomposed, the catalytic effect of the catalyst 28 is reduced, and the product is not produced by normal thermal decomposition, i.e., without using a catalyst, at 800° C. in a nitrogen gas atmosphere. The catalytic pyrolysis in the pyrolysis section 20 is terminated when about 5% of the amount of hydrogen cyanide produced is produced. The production rate of hydrogen cyanide was determined in exactly the same manner as in the case of the apparatus shown in FIG.

(vi) (v)の操作終了後、直ちにコツク31を閉じ、
コツク31′を開け、熱分解部20の場合全く
同様に熱分解部20′を用いてトリエタノール
アミンの接触熱分解を継続させる。
(vi) After completing the operation in (v), immediately close Kotoku 31,
The pot 31' is opened and the catalytic thermal decomposition of triethanolamine is continued using the thermal decomposition unit 20' in exactly the same manner as in the case of the thermal decomposition unit 20.

(vii) (vi)の操作を行つている間に、熱分解部20の
触媒28の再生を行なう。すなわち、コツク2
1,31,33および34を調節し、ガス導入
口35→コツク21→コツク31→ガス導入口
36の系路を開通させ、ガス導入口35あるい
は36から空気を1/minの流速で約2分間
導入し、その後再びこの系内を窒素ガスで置換
する。
(vii) While the operation in (vi) is being performed, the catalyst 28 in the thermal decomposition section 20 is regenerated. In other words, Kotoku 2
1, 31, 33 and 34 to open the system of gas inlet 35 → gas inlet 21 → gas inlet 31 → gas inlet 36, and air is introduced from gas inlet 35 or 36 at a flow rate of 1/min for about 20 minutes. After that, the system is replaced with nitrogen gas again.

(viii) 熱分解部20′の触媒28′の接触効果が低下
すれば、再び熱分解部20′に切換えて、接触
熱分解を継続させ、一方熱分解部20′の触媒
28′を(vii)と同様の操作で再生させる。これら
の操作を繰り返してトリエタノールアミンの接
触熱分解が遂行される。
(viii) When the contact effect of the catalyst 28' in the thermal decomposition section 20' decreases, the catalytic decomposition is continued by switching to the thermal decomposition section 20' again, while the catalyst 28' in the thermal decomposition section 20' is ) to playback. Catalytic thermal decomposition of triethanolamine is accomplished by repeating these operations.

なお上記の実施例では、いずれも被熱分解物で
あるエチレンジアミンおよびトリエタノールアミ
ンを熱分解部20,20′に導入する際、一定量
を間けつ的に導入させたが、これらの被熱分解物
をマイクロチユーブポンプを使用し一定流速で連
続的に導入させた場合においても、同様の効果が
見出された。
In the above example, when introducing ethylenediamine and triethanolamine, which are thermally decomposed products, into the thermal decomposition parts 20 and 20', a certain amount was introduced intermittently. A similar effect was found when the substance was introduced continuously at a constant flow rate using a microtube pump.

次に第1図、第2図に示した装置におけるモニ
ター部9および22の概略について第3図を参照
し述べる。すなわち、熱分解部5,5′および2
0,20′とガス捕集部10および23との間に
ガス採取口37を設け、必要なときに容積約300
mlのテフロン製バツグ38を接続させ、ばね材3
9で止め、コツク40および41を開けて、生成
されるガスの一部をバツグ38内に捕集する。採
集されたガスの一定量を赤外分光分析用のガスセ
ル内に導入し、赤外吸収スペクトルを測定し、
14.01μのシアン化水素の吸収バンドからシアン
化水素の定量分析を行なつた。
Next, an outline of the monitor sections 9 and 22 in the apparatus shown in FIGS. 1 and 2 will be described with reference to FIG. 3. That is, the pyrolysis sections 5, 5' and 2
A gas sampling port 37 is provided between 0 and 20' and the gas collection sections 10 and 23, and a gas sampling port 37 is provided between the
ml Teflon bag 38 is connected, and the spring material 3
Stop at 9 and open the caps 40 and 41 to collect some of the gas produced in the bag 38. A certain amount of the collected gas is introduced into a gas cell for infrared spectroscopic analysis, and the infrared absorption spectrum is measured.
Quantitative analysis of hydrogen cyanide was performed from the hydrogen cyanide absorption band at 14.01μ.

次に触媒8,8′および28,28′の充填部の
容量が大きい場合の接触熱分解部の好ましい一実
施例を述べる。被熱分解物の接触熱分解において
は、触媒の温度調節が生成されるガスの組成に大
きな影響を与える。すなわち、例えば第2図の装
置を用いてトリエタノールアミンを接触熱分解さ
せた場合、生成されるアンモニアaおよびシアン
化水素bの量は第4図のようになる。従つてこの
場合800℃〜850℃の間が好ましい温度条件である
ことがわかる。ところが接触熱分解部の容量が大
きい場合には前述のように、電気炉に近い部分と
中心部とは大きな温度差を生ずる。即ち、被熱分
解時においては、一般に中心部の方が温度が低
い。このような場合触媒の温度を均一にできる第
5図のような接触熱分解部が好ましい。
Next, a preferred embodiment of the catalytic thermal decomposition section will be described where the capacity of the packed section of the catalysts 8, 8' and 28, 28' is large. In the catalytic pyrolysis of thermally decomposed products, temperature control of the catalyst has a large effect on the composition of the gas produced. That is, for example, when triethanolamine is catalytically decomposed using the apparatus shown in FIG. 2, the amounts of ammonia a and hydrogen cyanide b produced are as shown in FIG. 4. Therefore, it can be seen that the preferable temperature condition in this case is between 800°C and 850°C. However, when the capacity of the catalytic pyrolysis section is large, as described above, a large temperature difference occurs between the part near the electric furnace and the central part. That is, during thermal decomposition, the temperature is generally lower in the center. In such a case, a catalytic thermal decomposition section as shown in FIG. 5 is preferable because it can make the temperature of the catalyst uniform.

第5図において、42はガス化部で生成された
ガスの導入口で、43はガス捕集への接触熱分解
ガス排出口である。44はステンレススチール
SUS321製の内径55mmφの熱分解管で、その中心
部には太さ8mm、表面材料ステンレススチール
SUS321のシーズヒータ45がうめ込んであり、
空間部に触媒46としてステンレススチール
SUS316製のチツプが充填されている。このチツ
プは、厚さ0.4mmで、約4mm角の板を彎曲させた
形状を成す。この触媒46はシーズヒータ45と
電気炉47により加熱されるようになつている。
In FIG. 5, 42 is an inlet for the gas generated in the gasification section, and 43 is a catalytic pyrolysis gas outlet for gas collection. 44 is stainless steel
It is a pyrolysis tube made of SUS321 with an inner diameter of 55 mmφ, and the center part has a thickness of 8 mm, and the surface material is stainless steel.
A SUS321 sheathed heater 45 is embedded.
Stainless steel as catalyst 46 in space
Filled with SUS316 chips. This chip has a thickness of 0.4 mm and is shaped like a curved board approximately 4 mm square. This catalyst 46 is heated by a sheathed heater 45 and an electric furnace 47.

このような構成の接触熱分解部においては、内
部の触媒の温度差は、数度以内に調節できること
を見出した。
It has been found that in a catalytic pyrolysis section having such a configuration, the temperature difference between the internal catalysts can be controlled within several degrees.

以上述べたように本発明の有機物の熱分解装置
は、被熱分解物を、加熱された触媒と効果的に接
触熱分解させることができまた、その触媒を繰返
し使用が可能で常時良好な接触効果を保有できる
ように、再生し得るものであり、安定して有機化
合物の熱分解が行える。
As described above, the organic substance thermal decomposition apparatus of the present invention is capable of effectively catalytically decomposing a thermally decomposed substance with a heated catalyst, and the catalyst can be used repeatedly and good contact can be maintained at all times. It is recyclable and can stably thermally decompose organic compounds so that it retains its effectiveness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における有機物の熱分
解装置の概略構成図、第2図は同装置の他実施例
を示す概略構成図、第3図は同装置に設けるモニ
ター部を示す概略断面図、第4図は同装置の熱分
解温度とガスの生成量との関係を示す図、第5図
はその熱分解部の他実施例を示す概略構成図であ
る。 1…ガス化部、2…熱分解管、4…電気炉、
5,5′…接触熱分解部、6,6′…熱分解管、
7,7′…電気炉、8,8′…触媒、9…モニター
部、10…捕集部、20,20′…熱分解部、2
2…モニター部、23…ガス捕集部、24,2
4′…熱分解管、25,25′,26,26′,2
7,27′…電気炉、28,28′…触媒、44…
熱分解管、45…シーズヒータ、46…触媒、4
7…電気炉。
FIG. 1 is a schematic configuration diagram of an organic substance thermal decomposition device according to an embodiment of the present invention, FIG. 2 is a schematic configuration diagram showing another embodiment of the same device, and FIG. 3 is a schematic cross-sectional diagram showing a monitor section provided in the same device. FIG. 4 is a diagram showing the relationship between the thermal decomposition temperature and the amount of gas produced in the same apparatus, and FIG. 5 is a schematic diagram showing another embodiment of the thermal decomposition section. 1... Gasification section, 2... Pyrolysis tube, 4... Electric furnace,
5, 5'... Catalytic pyrolysis section, 6, 6'... Pyrolysis tube,
7, 7'... Electric furnace, 8, 8'... Catalyst, 9... Monitor section, 10... Collection section, 20, 20'... Pyrolysis section, 2
2...Monitor section, 23...Gas collection section, 24,2
4'...Pyrolysis tube, 25, 25', 26, 26', 2
7,27'...Electric furnace, 28,28'...Catalyst, 44...
Pyrolysis tube, 45... Sheathed heater, 46... Catalyst, 4
7...Electric furnace.

Claims (1)

【特許請求の範囲】[Claims] 1 被熱分解物の導入口を有する熱分解室とこの
熱分解室内を加熱する加熱装置とよりなり被熱分
解物をガス化するガス化部と、ニツケルクロム系
ステンレススチールよりなる触媒と触媒を加熱す
る加熱装置を有し、前記ガス化部で生成したガス
を前記触媒と接触させて分解させる少なくとも2
個の第1、第2の接触熱分解部と、前記接触熱分
解部で生成されるガスを採取分析する手段とを備
え、前記第1、第2の接触熱分解部と前記ガス化
部との接続を相互にガス通路で切替え可能とし、
一方の接触熱分解部の稼動時に他方において触媒
の再生がされるように構成し、前記採取分析する
手段の分析結果をもとに前記切替えを行う有機物
の熱分解装置。
1. A pyrolysis chamber having an inlet for pyrolyzable materials, a heating device for heating the interior of the pyrolysis chamber, and a gasification section for gasifying the pyrolyzable materials, a catalyst made of nickel-chromium stainless steel, and a catalyst. At least two parts, each having a heating device for heating, and bringing the gas generated in the gasification section into contact with the catalyst to decompose the gas.
the first and second catalytic pyrolysis sections, and a means for collecting and analyzing the gas generated in the catalytic pyrolysis section; The connections can be switched between each other using the gas passage,
An apparatus for thermally decomposing organic substances, which is configured so that when one catalytic thermal decomposition section is in operation, a catalyst is regenerated in the other, and the switching is performed based on the analysis result of the sampling and analyzing means.
JP3751276A 1976-04-02 1976-04-02 Apparatus for decomposing organic matter Granted JPS52120277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3751276A JPS52120277A (en) 1976-04-02 1976-04-02 Apparatus for decomposing organic matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3751276A JPS52120277A (en) 1976-04-02 1976-04-02 Apparatus for decomposing organic matter

Publications (2)

Publication Number Publication Date
JPS52120277A JPS52120277A (en) 1977-10-08
JPS6251674B2 true JPS6251674B2 (en) 1987-10-30

Family

ID=12499580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3751276A Granted JPS52120277A (en) 1976-04-02 1976-04-02 Apparatus for decomposing organic matter

Country Status (1)

Country Link
JP (1) JPS52120277A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630753B2 (en) * 1985-06-15 1994-04-27 公重 佐藤 Waste catalytic combustion treatment equipment
JP4549216B2 (en) * 2005-03-31 2010-09-22 株式会社豊田中央研究所 Hydrogen fuel supply system
JP2006282458A (en) * 2005-03-31 2006-10-19 Toyota Motor Corp Hydrogen generator and fuel cell system
JP2006282457A (en) * 2005-03-31 2006-10-19 Toyota Motor Corp Hydrogen generator and fuel cell system
JP4559900B2 (en) * 2005-03-31 2010-10-13 株式会社豊田中央研究所 Hydrogen fuel supply system
JP4505367B2 (en) * 2005-04-01 2010-07-21 株式会社豊田中央研究所 Hydrogen fuel supply system
JP4564392B2 (en) * 2005-04-01 2010-10-20 株式会社豊田中央研究所 Hydrogen fuel supply system
JP4959311B2 (en) * 2006-12-04 2012-06-20 ハビックス株式会社 Method and apparatus for producing hydrogen from biomass and iron oxide
JP5243861B2 (en) * 2008-06-27 2013-07-24 Jx日鉱日石エネルギー株式会社 Hydrogen storage device and hydrogen storage method

Also Published As

Publication number Publication date
JPS52120277A (en) 1977-10-08

Similar Documents

Publication Publication Date Title
Erdöhelyi et al. Effects of the support on the adsorption and dissociation of CO and on the reactivity of surface carbon on Rh catalysts
JPS6251674B2 (en)
CN100393616C (en) Method and apparatus for producing carbon nanotubes
US4119706A (en) Method of catalytically recombining radiolytic hydrogen and radiolytic oxygen
CN114014265B (en) Liquid organic hydrogen storage device and method
JPH03146862A (en) Analysis method and apparatus for isotope composition
FR2508886A1 (en) PROCESS FOR CRACKING SULFURATED HYDROGEN GAS AND APPARATUS FOR CARRYING OUT SAME
Stacy et al. Interaction of sulfur dioxide with active carbon
JP3276981B2 (en) High surface area activated carbon production equipment
Khaghanikavkani et al. Thermal pyrolysis of polyethylene: kinetic study
CN108341397A (en) A kind of off-gas recovery utilizes system and method
US4683125A (en) Method for purifying an industrial raw material gas and a purifier for use in said method and a method of manufacturing said purifier
CN101923034B (en) Catalyst treatment device and method
JPH02504157A (en) Processes and equipment for converting combustible pollutants and waste into clean energy and usable products
CN115326962B (en) A device and method for measuring hydrogen isotope of hydrogen sulfide in natural gas
FR2601181A1 (en) METHOD AND DEVICE FOR THE DECONTAMINATION OF REJECTED FUEL CYCLE GAS OF A FUSION NUCLEAR REACTOR GAS REJECTED CONTAMINATED BY COMPONENTS CONTAINING TRITIUM AND / OR DEUTERIUM IN COMBINED CHEMICALLY COMBINED FORM
CN110607187A (en) A reaction system and method for preparing clean gas by catalytic cracking tar model compound
CN114345359B (en) A preparation method and application of a catalyst for efficient catalytic cracking of sludge pyrolysis tar and a real-time detection system
JP2014234321A (en) Method and apparatus for producing hydrogen
DeLancey et al. Cyclohexane dehydrogenation for thermochemical energy conversion
CN113512433A (en) A kind of biomass pyrolysis gasification real-time monitoring and particle temperature measurement device and method
CN223113016U (en) Controllable oxygenolysis pyrolysis shale oil yield simulation device
JPS5849379B2 (en) Thermal decomposition method of organic polymer compounds
CN221268044U (en) Solid waste pyrolysis catalytic experimental system
US3410922A (en) Method for the direct conversion of methane to aromatic hydrocarbons