[go: up one dir, main page]

JPS6251514B2 - - Google Patents

Info

Publication number
JPS6251514B2
JPS6251514B2 JP5793781A JP5793781A JPS6251514B2 JP S6251514 B2 JPS6251514 B2 JP S6251514B2 JP 5793781 A JP5793781 A JP 5793781A JP 5793781 A JP5793781 A JP 5793781A JP S6251514 B2 JPS6251514 B2 JP S6251514B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
light
optical fiber
face
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5793781A
Other languages
Japanese (ja)
Other versions
JPS57173992A (en
Inventor
Toshihiko Sugie
Masatoshi Saruwatari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5793781A priority Critical patent/JPS57173992A/en
Publication of JPS57173992A publication Critical patent/JPS57173992A/en
Publication of JPS6251514B2 publication Critical patent/JPS6251514B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4207Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback
    • G02B6/4208Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback using non-reciprocal elements or birefringent plates, i.e. quasi-isolators
    • G02B6/4209Optical features

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 本発明は、半導体レーザと光フアイバとを、半
導体レーザの光出射端面より得られるレーザ光を
光フアイバ内にその光入射端面より入射せしめる
べく、結合せしめる半導体レーザ−光フアイバ結
合装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser light source that combines a semiconductor laser and an optical fiber so that the laser light obtained from the light emitting end face of the semiconductor laser enters the optical fiber from the light input end face. This invention relates to improvements in fiber coupling devices.

斯種半導体レーザ−光フアイバ結合装置として
従来、第1図に示す如く、半導体レーザ1と光フ
アイバ2とを有し、而して半導体レーザ1の光出
射端面3と光フアイバ2のコア4の端面でなる光
入射端面5との間に、2個の偏光板間にYIG結晶
板でなるフアラデイ効果素子が介挿されてなる構
成(図示せず)を有する非相反回路6が介挿さ
れ、一方半導体レーザ1の光出射端面3及び非相
反回路6間に、半導体レーザ1の光出射端面3よ
り拡がつて得られるレーザ光を、その光学路の光
軸と平行になる様にして非相反回路6に垂直に入
射せしめるべく、レンズ7が介挿され、又非相反
回路6及び光フアイバ2の光入射端面5間に、非
相反回路6より平行に得られるレーザ光を、光フ
アイバ2内にその光入射端面5より集束して入射
せしめるべく、他のレンズ8が介挿されてなる構
成のものが提案されている。
Conventionally, such a semiconductor laser-optical fiber coupling device has a semiconductor laser 1 and an optical fiber 2, as shown in FIG. A non-reciprocal circuit 6 having a configuration (not shown) in which a Faraday effect element made of a YIG crystal plate is inserted between two polarizing plates is inserted between the light incident end face 5 which is an end face, On the other hand, the laser light obtained by spreading from the light emitting end face 3 of the semiconductor laser 1 is placed between the light emitting end face 3 of the semiconductor laser 1 and the non-reciprocal circuit 6 so as to be parallel to the optical axis of its optical path. A lens 7 is inserted so that the laser beam enters the circuit 6 perpendicularly, and between the non-reciprocal circuit 6 and the light incident end face 5 of the optical fiber 2, the laser beam obtained in parallel from the non-reciprocal circuit 6 is directed into the optical fiber 2. A configuration has been proposed in which another lens 8 is inserted in order to make the light incident from the light incident end face 5 in a focused manner.

所で、斯る従来の装置の場合、半導体レーザ1
の光出射端面3と光フアイバ2の光入射端面5と
の間に非相反回路6が介挿されているので、光フ
アイバ2内に入射せんとするレーザ光の一部が光
フアイバ2の光入射端面5にて反射しても、その
反射光が、半導体レーザ1内に、その光入射端面
3より不必要に入射することがなく、依つて半導
体レーザ1を安定に所期の特性を以つて作動せし
め得るという特徴を有するものである。
However, in the case of such a conventional device, the semiconductor laser 1
Since a non-reciprocal circuit 6 is inserted between the light output end face 3 of the optical fiber 2 and the light input end face 5 of the optical fiber 2, a part of the laser light that is about to enter the optical fiber 2 is redirected to the light of the optical fiber 2. Even if the reflected light is reflected at the incident end surface 5, the reflected light does not enter the semiconductor laser 1 unnecessarily from the light incident end surface 3, thereby stably maintaining the semiconductor laser 1 with the desired characteristics. It has the feature that it can be operated by

然し乍ら、第1図に示す従来の装置の場合、非
相反回路6に於ける2個の偏光板と1個のフアラ
デイ効果素子とを要すると共に、非相反回路6と
半導体レーザ1及び光フアイバ2の夫々との間に
於ける2個のレンズ7及び8を要し、この為、全
体として多くの部品点数を要していたと共に、全
体の装置が複雑化し、更には半導体レーザ1の光
出射端面3及び光フアイバ2の入射端面5間の光
学路長が長くなつて全体の装置が大型化する等の
欠点を有していた。
However, in the case of the conventional device shown in FIG. Two lenses 7 and 8 are required between the two lenses, which requires a large number of parts as a whole, complicates the entire device, and furthermore reduces the light output end face of the semiconductor laser 1. 3 and the entrance end surface 5 of the optical fiber 2 becomes long, resulting in an increase in the size of the entire device.

又第1図に示す従来の装置の場合、半導体レー
ザ1よりのレーザ光が、レンズ7、非相反回路6
及びレンズ8で反射することは、それ等に反射防
止膜を附したとしても否めなく、特に非相反回路
6では、それにレーザ光がその光学路の光軸と平
行になされて入射するので、大なる反射を伴い、
而してその反射率が半導体レーザ1内に無視し得
ないものとして入射するものである。この為上述
に於て、第1図に示す従来の装置の場合、半導体
レーザ1を安定に所期の特性を以つて動作せしめ
得るという特徴を有すると述べたが、その所期の
特性を以つて動作の安定性が十分満足し得るもの
でないという欠点を有していた。
Furthermore, in the case of the conventional device shown in FIG.
It is undeniable that the laser beam is reflected by the lens 8, even if an anti-reflection film is attached to them. In particular, in the non-reciprocal circuit 6, since the laser beam is incident on the non-reciprocal circuit 6 parallel to the optical axis of its optical path, the laser beam is reflected by the lens 8. with a reflection,
The reflectance of the light enters the semiconductor laser 1 as a non-negligible factor. For this reason, in the above description, it was stated that the conventional device shown in FIG. However, it has the disadvantage that the stability of operation is not fully satisfactory.

依つて本発明は上述せる欠点のない新規な半導
体レーザ−光フアイバ結合装置を提案せんとする
もので、以下詳述する所より明らかとなるであろ
う。
The present invention therefore proposes a novel semiconductor laser-optical fiber coupling device free from the above-mentioned drawbacks, which will become clear from the detailed description below.

第2図は、本発明による半導体レーザ−光フア
イバ結合装置の原理的な第1の実施例を示し、第
1図との対応部分には同一符号を附して示すも、
半導体レーザ1と光フアイバ2とを有し、而して
半導体レーザ1の光出射端面3と光フアイバ2の
コア4の端面でなる光入射端面5との間に、YIG
結晶球11が凸レンズ機能の得られる形状を有す
るフアラデイ効果素子12として介挿され、一方
そのフアラデイ効果素子12と光フアイバ2の光
入射端面5との間にその光入射端面5上に配され
てなる態様を以つて複屈折結晶板13が介挿され
ている。
FIG. 2 shows a theoretical first embodiment of a semiconductor laser-optical fiber coupling device according to the present invention, and parts corresponding to those in FIG. 1 are denoted by the same reference numerals.
It has a semiconductor laser 1 and an optical fiber 2, and a YIG
A crystal sphere 11 is inserted as a Faraday effect element 12 having a shape that provides a convex lens function, and is placed between the Faraday effect element 12 and the light entrance end surface 5 of the optical fiber 2 on the light entrance end surface 5. A birefringent crystal plate 13 is inserted in this manner.

この場合、半導体レーザ1の光出射端面3と光
フアイバ2の光入射端面5との間の距離Lが、半
導体レーザ1の光出射端面3より拡がつて得られ
るレーザ光が、フアラデイ効果素子12としての
YIG結晶球11によつて、光フアイバ2内にその
光入射端面5より集束して入射されるべく、半導
体レーザ1の光出射端面3とYIG結晶球11の中
心とのなす距離a(第5図参照)、及びYIG結晶
球11の中心とレーザ光が焦点を結ぶ点の距離b
(第5図参照)の考慮の下に選ばれている。又、
フアラデイ効果素子12としてのYIG結晶球11
には、半導体レーザ1の光出射端面3より出射し
て得られるレーザ光が、第3図Aに示す如く、水
平方向の直線偏光として得られるものとした場
合、YIG結晶球11を通過せるレーザ光が、第3
図Bに示す如く、水平方向に対して45゜傾斜せる
方向の直線偏光として得られるべく、磁界発生手
段14よりの磁界が与えられている。更に、複屈
折結晶板13は、YIG結晶球11より得られるレ
ーザ光が、屈折することなしに、そのままこの複
屈折結晶13を通つて光フアイバ2側に到るべ
く、その複屈折結晶板13の光学軸とレーザ光の
光学路の光軸とのなす角θ(第4図参照)が選ば
れた状態で、YIG結晶球11及び光フアイバ2間
に介挿されている。
In this case, the distance L between the light output end face 3 of the semiconductor laser 1 and the light input end face 5 of the optical fiber 2 is expanded from the light output end face 3 of the semiconductor laser 1, and the laser light obtained is transmitted to the Faraday effect element 12. as
The distance a (fifth (see figure), and the distance b between the center of the YIG crystal sphere 11 and the point where the laser beam is focused.
(See Figure 5). or,
YIG crystal sphere 11 as Faraday effect element 12
In this example, if the laser light emitted from the light emitting end face 3 of the semiconductor laser 1 is obtained as linearly polarized light in the horizontal direction as shown in FIG. Light is the third
As shown in FIG. B, a magnetic field is applied from the magnetic field generating means 14 so as to obtain linearly polarized light in a direction inclined at 45 degrees with respect to the horizontal direction. Further, the birefringent crystal plate 13 is arranged so that the laser beam obtained from the YIG crystal sphere 11 passes through the birefringent crystal 13 as it is and reaches the optical fiber 2 side without being refracted. is inserted between the YIG crystal sphere 11 and the optical fiber 2 with the angle θ (see FIG. 4) formed between the optical axis of the laser beam and the optical axis of the optical path of the laser beam being selected.

以上が本発明による半導体レーザ−光フアイバ
結合装置の原理的な第1の実施例の構成である
が、斯る構成によれば、半導体レーザ1の光出射
端面3より出射して得られるレーザ光が、フアラ
デイ効果素子12としてのYIG結晶球11を介し
且複屈折結晶板13を介して、光フアイバ2内
に、その光入射端面5より入射すること明らかで
あるが、この場合、YIG結晶球11及び複屈折結
晶板13を有するので、光フアイバ2内に、その
光入射端面5より入射せんとするレーザ光の一部
が反射しても、その反射光によつて、半導体レー
ザ1が安定に所期の特性を以つて動作すること
が、何等損なわれないものである。その理由は次
の通りである。
The above is the basic configuration of the first embodiment of the semiconductor laser-optical fiber coupling device according to the present invention. It is clear that the light enters the optical fiber 2 from its light incident end face 5 via the YIG crystal sphere 11 as the Faraday effect element 12 and the birefringent crystal plate 13. In this case, the YIG crystal sphere 11 and a birefringent crystal plate 13, even if part of the laser light that is intended to enter the optical fiber 2 from the light incident end face 5 is reflected, the semiconductor laser 1 is stabilized by the reflected light. operation with the intended characteristics is not impaired in any way. The reason is as follows.

即ち、半導体レーザ1の光出射端面3より得ら
れるレーザ光が、第3図Aに示す如く、水平方向
の直線偏光である場合、光フアイバ2内に入射す
るレーザ光は、第3図Bに示す如く、水平方向に
対して45゜傾斜せる方向の直線偏光であるが、こ
の場合、YIG結晶球11及び光フアイバ2間に於
ける上述せる反射光が、第3図Cにて実線図示の
如く、光フアイバ2内に入射するレーザ光と同じ
方向(水平方向より45゜傾斜している方向)の直
線偏光であるとすれば、その反射光が、第4図に
示す如く、複屈折結晶板13を通つて正常光とし
て得られるので、その反射光がレーザ光の光学路
の光軸上にある光として得られる。この為その反
射光がYIG結晶球11を介して半導体レーザ1内
に入射する。然し乍らその反射光は、第3図Dに
て実線図示の如く、半導体レーザ1及びYIG結晶
球11間に於て、YIG結晶球及び光フアイバ2間
に於ける水平方向より45゜傾斜している方向より
45゜回転せる方向従つて垂直方向の直線偏光とな
つており、この為その反射光が、半導体レーザ1
内に入射しても、その反射光が、半導体レーザ1
が安定に所期の特性を以つて動作することに対
し、悪影響を実質的に与えないからである。又、
YIG結晶球11及び光フアイバ2間に於ける反射
光が、第3図Cにて点線図示の如く光フアイバ2
内に入射するレーザ光に対して90゜回転せる方向
の直線偏光であり、この為その反射光が、半導体
レーザ1及びYIG結晶球11間に於て、第3図D
にて点線図示の如く半導体レーザ1の光出射端面
3上でのレーザ光と同じ水平方向の直線偏光とし
て得られるとしても、その反射光は、複屈折結晶
板13の存在の為に、第4図に示す如く、レーザ
光の光学路の光軸より離れた異常光として得られ
る。依つてその反射光が半導体レーザ1内に実質
的に入射しないからである。
That is, when the laser light obtained from the light emitting end face 3 of the semiconductor laser 1 is horizontally linearly polarized light as shown in FIG. 3A, the laser light entering the optical fiber 2 is polarized as shown in FIG. 3B. As shown, the light is linearly polarized in a direction inclined at 45 degrees with respect to the horizontal direction, but in this case, the above-mentioned reflected light between the YIG crystal sphere 11 and the optical fiber 2 is as shown by the solid line in FIG. As shown in Fig. 4, if the laser beam is linearly polarized in the same direction as the laser beam entering the optical fiber 2 (a direction inclined at 45 degrees from the horizontal direction), the reflected light will be reflected by a birefringent crystal, as shown in Fig. 4. Since the normal light is obtained through the plate 13, the reflected light is obtained as light on the optical axis of the optical path of the laser beam. Therefore, the reflected light enters the semiconductor laser 1 via the YIG crystal sphere 11. However, as shown by the solid line in FIG. 3D, the reflected light is inclined at 45 degrees between the semiconductor laser 1 and the YIG crystal sphere 11 with respect to the horizontal direction between the YIG crystal sphere and the optical fiber 2. from the direction
The light is linearly polarized in the direction in which it can be rotated by 45 degrees, that is, in the vertical direction, and therefore the reflected light is reflected by the semiconductor laser 1.
Even if the reflected light enters the semiconductor laser 1
This is because it does not substantially have an adverse effect on the stable operation with desired characteristics. or,
The reflected light between the YIG crystal sphere 11 and the optical fiber 2 is reflected by the optical fiber 2 as shown by the dotted line in FIG. 3C.
The reflected light is linearly polarized in a direction that can be rotated by 90 degrees with respect to the laser beam that enters the interior, and the reflected light is reflected between the semiconductor laser 1 and the YIG crystal sphere 11 as shown in Fig. 3D.
Even if the reflected light is obtained as linearly polarized light in the same horizontal direction as the laser light on the light emitting end surface 3 of the semiconductor laser 1 as shown by the dotted line, the reflected light is polarized by the fourth polarized light due to the presence of the birefringent crystal plate 13. As shown in the figure, it is obtained as extraordinary light that is distant from the optical axis of the optical path of the laser beam. This is because the reflected light does not substantially enter the semiconductor laser 1.

又第2図にて上述せる本発明による装置の場
合、半導体レーザ1及び光フアイバ2間にYIG結
晶球11が介挿されているも、そのYIG結晶球1
1が字句通り球体であるので、半導体レーザ1よ
りのレーザ光がYIG結晶球11で反射するとして
も、その反射光はレーザ光の光学路の光軸より発
散し、依つてその反射光が不必要に半導体レーザ
1内に入射することがないものである。
In addition, in the case of the device according to the present invention described above in FIG. 2, although the YIG crystal sphere 11 is inserted between the semiconductor laser 1 and the optical fiber 2,
Since 1 is literally a sphere, even if the laser light from the semiconductor laser 1 is reflected by the YIG crystal sphere 11, the reflected light diverges from the optical axis of the optical path of the laser light, and therefore the reflected light is undesirable. The light does not necessarily enter the semiconductor laser 1.

従つて第2図に示す本発明による装置によれ
ば、半導体レーザ1を、第1図にて上述せる従来
の装置の場合に比し、より安定に所期の特性を以
つて動作せしめ得るという特徴を有するものであ
る。
Therefore, according to the apparatus according to the present invention shown in FIG. 2, the semiconductor laser 1 can be operated more stably and with desired characteristics than in the case of the conventional apparatus described above in FIG. It has characteristics.

又本発明による装置の場合、今述べた特徴が、
半導体レーザ1及び光フアイバ2間に、1つの
YIG結晶球11と1つの複屈折結晶板13とを配
するのみで得られ、この為、全体として、第1図
に示す従来の装置の場合に比し、部品点数が少な
いと共に、全体の装置が簡易化し、更には半導体
レーザ1及び光フアイバ2間の光学路長が、第1
図の場合に比し短かくなつて、全体の装置が小型
化する等の大なる特徴を有するものである。
Furthermore, in the case of the device according to the invention, the features just mentioned are:
Between the semiconductor laser 1 and the optical fiber 2, one
This can be achieved by simply arranging a YIG crystal sphere 11 and one birefringent crystal plate 13. Therefore, as a whole, the number of parts is smaller than in the case of the conventional device shown in FIG. is simplified, and furthermore, the optical path length between the semiconductor laser 1 and the optical fiber 2 is
It has great features such as being shorter than the case shown in the figure, making the overall device more compact.

又、第2図に示す本発明の装置の場合、半導体
レーザ1の光出射端面3が1〜3μm程度、光フ
アイバ2のコア4の径が10〜50μm程度の場合、
半導体レーザ1の光出射端面3とYIG結晶球11
の端面とのなす距離(a−R)(但しRはYIG結
晶球11の半径)を約125μm、YIG結晶球11
で半導体レーザ1よりのレーザ光をとらえること
の出来る角度θcを65゜とすることによつて、半
導体レーザ1よりのレーザ光を、効率良く光フア
イバ2内に入射せしめ得るものである。
Further, in the case of the device of the present invention shown in FIG. 2, when the light emitting end face 3 of the semiconductor laser 1 is about 1 to 3 μm and the diameter of the core 4 of the optical fiber 2 is about 10 to 50 μm,
Light emitting end face 3 of semiconductor laser 1 and YIG crystal sphere 11
The distance (a-R) (where R is the radius of the YIG crystal sphere 11) from the end face of the YIG crystal sphere 11 is approximately 125 μm.
By setting the angle θ c at which the laser beam from the semiconductor laser 1 can be captured to 65°, the laser beam from the semiconductor laser 1 can be made to enter the optical fiber 2 efficiently.

次に、第6図を伴なつて、本発明による装置の
原理的な第2の実施例を述べるに、第2図との対
応部分には同一符号を附して詳細説明はこれを省
略するも、第2図にて上述せる構成に於て、その
YIG結晶球11及び複屈折結晶板13間に倍率変
換用レンズ15が介挿されてなることを除いて
は、第2図の場合と同様の構成を有する。
Next, a second embodiment of the principle of the device according to the present invention will be described with reference to FIG. 6. Parts corresponding to those in FIG. 2 will be given the same reference numerals, and detailed explanation thereof will be omitted. Also, in the configuration described above in Figure 2, the
The structure is the same as that shown in FIG. 2, except that a magnification conversion lens 15 is inserted between the YIG crystal sphere 11 and the birefringent crystal plate 13.

以上が本発明による装置の原理的な第2の実施
例の構成であるが、斯る構成によれば、それが、
上述せる事項を除いては、第2図の場合と同様の
構成を有するので、詳細説明はこれを省略する
も、第2図の場合と同様の優れた特徴を有すると
共に、倍率変換用レンズ15の存在の為、レーザ
光の光フアイバ2の光入射端面5上での像の倍率
を、光入射端面5の大いさに応じて適切に選定し
得るので、レーザ光を効率よく光フアイバ2内に
容易に入射せしめ得る特徴を有するものである。
The above is the configuration of the second embodiment of the device according to the present invention. According to this configuration, it is possible to
Except for the above-mentioned matters, it has the same configuration as the case in FIG. 2, so a detailed explanation thereof will be omitted. Because of the existence of It has the characteristic that it can be easily made incident on the light source.

以上にて本発明による装置の原理的な第1及び
第2の実施例が明らかとなつたが、第1の実施例
(第2図)の具体的構成は、これを、詳細説明は
これを省略するも、第7図に示す如く、半導体レ
ーザ1をヒートシンク27上に取付けて載置する
載置板21;スペーサ板22;レーザ光透過性板
23及び24;光フアイバ2、YIG結晶球11及
び磁界発生手段14を保持するホルダ25;光フ
アイバ2のコア4及び複屈折結晶板13を保持す
るホルダ26等を用いて容易に構成し得、又、第
2の実施例(第6図)の具体的構成は、これを、
同様に詳細説明はこれを昇略するも、第7図の場
合に準じて第8図に示す如く、半導体レーザ1を
ヒートシンク27上に取付けて載置する載置板2
1;スペーサ板22;レーザ光透過性板23及び
24;YIG結晶球11及び磁界発生手段14を保
持するホルダ25a;倍率変換用レンズ15を保
持するホルダ25b;光フアイバ2を保持するホ
ルダ25c;光フアイバ2のコア4及び複屈折結
晶板13を保持するホルダ26等を用いて容易に
構成し得るものである。尚第7図及び第8図に於
て28はレーザ光モニタ用ガイドである。
The principle of the first and second embodiments of the device according to the present invention has been clarified above. Although omitted, as shown in FIG. 7, a mounting plate 21 on which the semiconductor laser 1 is mounted and placed on a heat sink 27; a spacer plate 22; laser light transmitting plates 23 and 24; an optical fiber 2, and a YIG crystal sphere 11. and a holder 25 for holding the magnetic field generating means 14; a holder 26 for holding the core 4 of the optical fiber 2 and the birefringent crystal plate 13; The specific configuration is as follows.
Similarly, a detailed explanation will be omitted, but as shown in FIG. 8 in accordance with the case of FIG.
1; Spacer plate 22; Laser light transmitting plates 23 and 24; Holder 25a that holds the YIG crystal sphere 11 and magnetic field generating means 14; Holder 25b that holds the magnification conversion lens 15; Holder 25c that holds the optical fiber 2; It can be easily constructed using the holder 26 that holds the core 4 of the optical fiber 2 and the birefringent crystal plate 13, and the like. In FIGS. 7 and 8, reference numeral 28 denotes a laser beam monitoring guide.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体レーザ−光フアイバ結合
装置を示す略線図、第2図は本発明による半導体
レーザ−光フアイバ結合装置の原理的な第1の実
施例を示す略線図、第3図、第4図及び第5図は
その説明に供する図、第6図は本発明による半導
体レーザ−光フアイバ結合装置の原理的な第2の
実施例を示す略線図、第7図及び第8図は夫々第
2図及び第6図に示す本発明による装置の具体例
を示す略線図である。 図中、1は半導体レーザ、2は光フアイバ、3
は光出射端面、4はコア、5は光入射端面、11
はYIG結晶球、12はフアラデイ効果素子、13
は複屈折結晶板、14は磁界発生手段、15は倍
率変換用レンズを夫々示す。
FIG. 1 is a schematic diagram showing a conventional semiconductor laser-optical fiber coupling device, FIG. 2 is a schematic diagram showing a first embodiment of the principle of the semiconductor laser-optical fiber coupling device according to the present invention, and FIG. 4 and 5 are diagrams for explaining the same, FIG. 6 is a schematic diagram showing a second embodiment of the principle of the semiconductor laser-optical fiber coupling device according to the present invention, and FIGS. 7 and 5 are diagrams for explaining the same. FIG. 8 is a schematic diagram showing a specific example of the apparatus according to the invention shown in FIGS. 2 and 6, respectively. In the figure, 1 is a semiconductor laser, 2 is an optical fiber, and 3 is a semiconductor laser.
is a light output end face, 4 is a core, 5 is a light input end face, 11
is a YIG crystal ball, 12 is a Faraday effect element, 13
14 represents a birefringent crystal plate, 14 represents a magnetic field generating means, and 15 represents a magnification conversion lens.

Claims (1)

【特許請求の範囲】 1 半導体レーザと光フアイバとを、上記半導体
レーザの光出射端面より得られるレーザ光を光フ
アイバ内にその光入射端面より入射せしめるべ
く、結合せしめる半導体レーザ−光フアイバ結合
装置に於て、上記半導体レーザの光出射端面及び
上記光フアイバに光入射端面間に凸レンズ機能の
得られる形状を有するフアラデイ効果素子が介挿
され、該フアラデイ効果素子及び上記光フアイバ
の光入射端面間に複屈折結晶板が介挿されてなる
事を特徴とする半導体レーザ−光フアイバ結合装
置。 2 特許請求の範囲第1項所載の半導体レーザ−
光フアイバ結合装置に於て、上記フアラデイ効果
素子がYIG結晶球でなる事を特徴とする半導体レ
ーザ−光フアイバ結合装置。
[Scope of Claims] 1. A semiconductor laser-optical fiber coupling device for coupling a semiconductor laser and an optical fiber so that the laser light obtained from the light-emitting end face of the semiconductor laser enters the optical fiber from its light-input end face. A Faraday effect element having a shape that provides a convex lens function is inserted between the light output end face of the semiconductor laser and the light input end face of the optical fiber, and a Faraday effect element having a shape that provides a convex lens function is inserted between the light output end face of the semiconductor laser and the light input face of the optical fiber. A semiconductor laser-optical fiber coupling device characterized in that a birefringent crystal plate is inserted in the semiconductor laser. 2. Semiconductor laser recited in claim 1
1. A semiconductor laser-optical fiber coupling device, wherein the Faraday effect element is a YIG crystal sphere.
JP5793781A 1981-04-17 1981-04-17 Coupling device for semiconductor laser to optical fiber Granted JPS57173992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5793781A JPS57173992A (en) 1981-04-17 1981-04-17 Coupling device for semiconductor laser to optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5793781A JPS57173992A (en) 1981-04-17 1981-04-17 Coupling device for semiconductor laser to optical fiber

Publications (2)

Publication Number Publication Date
JPS57173992A JPS57173992A (en) 1982-10-26
JPS6251514B2 true JPS6251514B2 (en) 1987-10-30

Family

ID=13069930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5793781A Granted JPS57173992A (en) 1981-04-17 1981-04-17 Coupling device for semiconductor laser to optical fiber

Country Status (1)

Country Link
JP (1) JPS57173992A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057694A (en) * 1983-09-08 1985-04-03 Matsushita Electric Ind Co Ltd Semiconductor laser
JPS6057695A (en) * 1983-09-08 1985-04-03 Matsushita Electric Ind Co Ltd Polarizing control type light source and polarizing controlling device
JPS6151769U (en) * 1984-09-07 1986-04-07
JPS60156766U (en) * 1984-03-27 1985-10-18 日本電気株式会社 semiconductor laser equipment
JPS61192471U (en) * 1985-05-22 1986-11-29

Also Published As

Publication number Publication date
JPS57173992A (en) 1982-10-26

Similar Documents

Publication Publication Date Title
US4239329A (en) Optical nonreciprocal device
US4375910A (en) Optical isolator
US4733094A (en) Bidirectional optoelectronic component operating as an optical coupling device
US4799210A (en) Fiber optic read/write head for an optical disk memory system
US5216737A (en) Optoelectronic device comprising a semiconductor laser and an optical isolator
JP2001504947A (en) Optical isolator
JPS6251514B2 (en)
US4966444A (en) Feedback-free optical arrangement for converting polarized laser emissions into a convergent beam
JPS6076707A (en) Semiconductor laser duplex module
JP2898760B2 (en) Receptacle type semiconductor laser module
JPS62196620A (en) Laser module
JPS61167912A (en) Optical coupling device
JPH0527146A (en) Optical function device
JPS59184584A (en) Semiconductor laser module
JPS62150210A (en) Semiconductor laser and optical fiber coupling module with optical isolator
JPS62269909A (en) Light-receiving device
JPH07301763A (en) Optocoupler and optical fiber amplifier
JP2526604B2 (en) Semiconductor laser module with optical isolator
JPH0194309A (en) Laser diode module incorporating isolator
JPS6180209A (en) Photocoupler between light source and optical fiber
JPH06148570A (en) Polarized light synthesizing device
JPH01116522A (en) Optical directional coupler
JPH04344606A (en) Photodetecting module
JPS6219817A (en) Optical branching and coupling device
JPS6240423A (en) Laser module provided with light isolator