JPS625034Y2 - - Google Patents
Info
- Publication number
- JPS625034Y2 JPS625034Y2 JP1983144948U JP14494883U JPS625034Y2 JP S625034 Y2 JPS625034 Y2 JP S625034Y2 JP 1983144948 U JP1983144948 U JP 1983144948U JP 14494883 U JP14494883 U JP 14494883U JP S625034 Y2 JPS625034 Y2 JP S625034Y2
- Authority
- JP
- Japan
- Prior art keywords
- conductor
- heating coil
- heating
- heated
- induction heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010438 heat treatment Methods 0.000 claims description 65
- 239000004020 conductor Substances 0.000 claims description 56
- 239000012809 cooling fluid Substances 0.000 claims description 18
- 230000006698 induction Effects 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 14
- 239000011810 insulating material Substances 0.000 claims description 10
- 230000004907 flux Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000001816 cooling Methods 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 238000005496 tempering Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- General Induction Heating (AREA)
Description
【考案の詳細な説明】
本考案は誘導加熱コイルの構造、くわしくは加
熱電源側出力端子に接続する入力端子と被加熱材
の被加熱面に所定間隙をへだてて対向する加熱導
体部とを結ぶリード部が極めて長大であることを
要求される誘導加熱コイルの当該リード部の構造
に関する。[Detailed description of the invention] The invention is based on the structure of an induction heating coil, specifically, connecting an input terminal connected to an output terminal on the heating power source side and a heating conductor portion facing the heated surface of the heated material with a predetermined gap. The present invention relates to the structure of a lead portion of an induction heating coil which is required to have an extremely long lead portion.
例えば長さ数メートルもある長尺管材の内面を
誘導加熱によつて焼入れ、焼戻しあるいは焼なま
し等するには、巻回加熱導体部を長尺管材内面の
一方端から他方端まで移動させつつ加熱すること
となるが、この場合には加熱電源側出力端子に接
続する加熱コイルの入力端子と上記加熱導体部と
を結ぶリード部の長さは少くとも管材の長さ以上
でなければならない。これを第1図aに示す加熱
コイルで説明する。 For example, when quenching, tempering, or annealing the inner surface of a long tube several meters long by induction heating, the wound heating conductor is moved from one end of the inner surface of the long tube to the other. In this case, the length of the lead connecting the heating conductor and the input terminal of the heating coil connected to the output terminal on the heating power source side must be at least the length of the tube material. This will be explained using the heating coil shown in FIG. 1a.
第1図aにおいて1は例えばボルト穴11を介
して図示しないボルトで電源側出力端子に緊締さ
れる加熱コイル10′の入力端子であつて、絶縁
材5を挾んで一方側入力端子1aおよび他方側入
力端子1bとからなる。巻回状の加熱導体部2の
一方端は上記一方側の入力端子1aから直角に突
出る水平方向リード部31a・当該水平方向リー
ド部31aの先端から垂下する長さLが長尺の垂
直方向リード部32′aを介して電気的に接続さ
れ、加熱導体2の他方端は上記一方側のリード部
31a・32′aとは絶縁材5を挾んで他方側の
入力端子1bから直角に突出る水平方向リード部
31b・当該水平方向リード部31bの先端から
垂下する長さLが長尺の垂直方向リード部32′
bを介して電気的に接続されている。当該両リー
ド部31および32′は例えばそれぞれの側面に
固着された銅パイプ等4a,4bの管内を流通す
る冷却用流体で自己発熱を抑制するように構成さ
れている。尚加熱導体部2に勿論自己発熱を奪熱
する冷却流体給排構成が設けられているが、本考
案には関係がないので図示を省略してある。而し
て上記構成からなる加熱コイル10′を用い、例
えば軸方向を垂直とした長尺管の内面を焼入れの
ために加熱する場合を第1図bに示す。先ず図示
の如く、加熱コイル10′は垂直とされている長
尺管Wの下方端面に加熱導体部2が位置するよう
に配置される。この状態において垂直方向リード
部32′は長尺管Wのほぼ軸心にそつて全長が殆
んど挿入状態となつている。図示しない電源を投
入した後、所定送り速度で長尺管Wを下方へ移動
もしくは加熱コイル10′を上方への移動させる
ことにより、加熱導体部2は矢印に従つて上方へ
順次変位せしめられ、当該長尺管Wの内面を移動
加熱し、加熱された内面は加熱導体部2の下方に
追随して移動する図示しない冷却流体噴射環から
噴射される冷却流体によつて順次急冷焼入れされ
る。かくして加熱導体部2が上方変位によつて長
尺管Wの上方端面から脱出状態となると当該長尺
管Wの全長にわたる内面焼入れは完了する。 In FIG. 1a, reference numeral 1 denotes an input terminal of a heating coil 10' which is fastened to an output terminal on the power supply side with a bolt (not shown) through a bolt hole 11, for example, with an insulating material 5 in between. It consists of a side input terminal 1b. One end of the wound heating conductor portion 2 is a horizontal lead portion 31a projecting at right angles from the input terminal 1a on the one side, and a length L hanging from the tip of the horizontal lead portion 31a is a long vertical direction. The other end of the heating conductor 2 is electrically connected via the lead portion 32'a, and the other end of the heating conductor 2 protrudes at right angles from the input terminal 1b on the other side with the insulating material 5 interposed between the lead portions 31a and 32'a on the one side. A horizontal lead portion 31b and a vertical lead portion 32' having a long length L hanging from the tip of the horizontal lead portion 31b.
They are electrically connected via b. Both lead portions 31 and 32' are configured to suppress self-heating by cooling fluid flowing through the pipes 4a and 4b, such as copper pipes fixed to their respective side surfaces. It should be noted that the heating conductor portion 2 is of course provided with a cooling fluid supply/discharge structure for absorbing self-generated heat, but it is not shown because it is not relevant to the present invention. FIG. 1b shows a case in which the heating coil 10' having the above-mentioned structure is used to heat the inner surface of a long tube, for example, the axial direction of which is perpendicular, for hardening. First, as shown in the figure, the heating coil 10' is arranged so that the heating conductor portion 2 is located on the lower end surface of the long tube W, which is vertical. In this state, the vertical lead portion 32' is inserted almost all the way along the axis of the long tube W. After turning on a power source (not shown), by moving the long tube W downward or moving the heating coil 10' upward at a predetermined feed speed, the heating conductor portion 2 is sequentially displaced upward according to the arrow. The inner surface of the long tube W is moved and heated, and the heated inner surface is sequentially rapidly cooled and quenched by cooling fluid injected from a cooling fluid injection ring (not shown) that moves below the heating conductor section 2. In this way, when the heating conductor portion 2 is displaced upwardly and comes out of the upper end surface of the long tube W, the internal hardening over the entire length of the long tube W is completed.
ところで、上記焼入れを施された長尺管Wの内
面焼入層を調査すると硬化深度が加熱開始端面方
向(下方端面)に厚く、加熱終了端面方向(上方
端面)に向つて順次薄くなり加熱終了端面で最も
薄くなつていることが判明する。 By the way, when examining the inner hardened layer of the long tube W that has been hardened, the hardening depth is thicker in the direction of the heating start end face (lower end face) and gradually becomes thinner towards the end face direction of heating end face (upper end face). It turns out that it is thinnest at the end face.
上記は長尺管Wの内面焼入れを例に挙げたが、
この問題は焼戻しのため単に加熱のみを施す場合
には焼戻し層の深さの厚・薄となつて発生する。 The above example uses internal hardening of a long pipe W, but
This problem occurs when only heating is applied for tempering, as the depth of the tempering layer becomes thicker or thinner.
従つて上記現象は加熱コイルの垂直方向リード
部32′が長尺管Wの管内に十分挿入されている
ときには加熱効果が大きく、挿入が少なければ少
ない程加熱効果が小さくなることから齋らされる
と云える。 Therefore, the above phenomenon is caused by the fact that when the vertical lead portion 32' of the heating coil is fully inserted into the long tube W, the heating effect is large, and the less the heating coil is inserted, the smaller the heating effect is. I can say that.
本考案者は上記問題点を次のように解析した。 The present inventor analyzed the above problem as follows.
即ち、絶縁材5で分離されている垂直方向リー
ド部32′a,32′bそれぞれは第1図cに示す
如く或る瞬間には相逆向きの磁束φを発生する
が、当該磁束φは管内では閉じ込められて管体に
流れ負荷状態となるので回路インピーダンスを高
くする結果、加熱導体部2から発生する磁束を大
とし、管外では空中へ無限大に拡散して無負荷状
態となるので回路インピーダンスを低くする結
果、加熱導体部2から発生する磁束を小とする。
このため垂直方向リード部32′の管内挿入が最
大のときには加熱導体部2の加熱効果が最大に発
揮され、管内挿入がないときには加熱導体部2に
よる加熱効果が最小となる。 That is, each of the vertical lead parts 32'a and 32'b separated by the insulating material 5 generates magnetic flux φ in opposite directions at a certain moment, as shown in FIG. 1c, but the magnetic flux φ is Inside the tube, the magnetic flux is trapped and flows to the tube body, creating a load state, which increases the circuit impedance, increasing the magnetic flux generated from the heating conductor section 2, and outside the tube, it diffuses infinitely into the air, creating a no-load state. As a result of lowering the circuit impedance, the magnetic flux generated from the heating conductor portion 2 is reduced.
Therefore, when the vertical lead section 32' is inserted into the pipe at its maximum, the heating effect of the heating conductor part 2 is maximized, and when it is not inserted into the pipe, the heating effect by the heating conductor part 2 is minimized.
以上の解析結果から長尺の垂直方向リード部3
2′の洩れ磁束が原因であるとされ、その対応策
として洩れ磁束を生じない同軸リードを用いれば
よいことが結論ずけられる。しかし乍ら、同軸リ
ードを用いる場合にもまた問題を生ずる。これを
以下に説明する。 From the above analysis results, the long vertical lead part 3
It is said that leakage magnetic flux of 2' is the cause, and it is concluded that a countermeasure to this problem is to use a coaxial lead that does not generate leakage magnetic flux. However, problems also arise when using coaxial leads. This will be explained below.
公知の如く、誘導加熱コイルのリード部は自己
発熱を奪熱するため冷却しなければならないの
で、例えば第2図に示す如く、加熱コイル10″
として垂直方向リード部32″の一方側32″aは
例えば丸棒状導体、他方側32″bは所定内径を
有する管状導体として上記丸棒状導体と同軸的に
配置し、当該管状導体の両端面を絶縁材51で閉
としたうえ管側の上下端部近傍に冷却流体の給・
排口6,6を設ける構造が一番簡易である。従つ
て、自己冷却用冷却流体は環状空腔8′を流通す
るので垂直方向リード部32″における32″aお
よび32″bは同時に冷却されることとなる。 As is well known, the lead portion of the induction heating coil must be cooled to absorb heat generated by itself. For example, as shown in FIG.
One side 32''a of the vertical lead portion 32'' is, for example, a round bar-shaped conductor, and the other side 32''b is a tubular conductor having a predetermined inner diameter, which is arranged coaxially with the round bar-shaped conductor, and both end surfaces of the tubular conductor are arranged coaxially. It is closed with an insulating material 51, and cooling fluid is supplied near the upper and lower ends of the tube side.
The structure in which the exhaust ports 6, 6 are provided is the simplest. Therefore, since the self-cooling cooling fluid flows through the annular cavity 8', the vertical leads 32'', 32''a and 32''b, are simultaneously cooled.
この場合、自己冷却用冷却流体には上水の使用
が一般的である。而して上水には純水とは異なり
相当量の不純物を含むため絶縁抵が低い。そのた
め上記の如く、垂直方向リード部32″の一方側
導体32″aと他方側導体32″bとに逆極性の電
流が流れていると短絡電流が生ずる。流通路が短
小の場合には短絡電流は目立つ程ではないが、流
通路の長さlが数メートルにも及ぶような当該加
熱コイル10″の場合には絶縁抵抗の低さが短絡
電流を極めて多くするので電力損失が非常に大き
くなり、加熱導体部2へ供給されるべき電力を大
巾に低下させ、所期の加熱効果を得られなくする
という問題を惹起する。勿論冷却流体として純水
や例えばエア・窒素その他の気体を用いれば上記
問題は生ずるおそれはないが、純水は高価となつ
て経済的ではなく、気体は冷却効果が少ないばか
りでなくエア以外は高価である。 In this case, tap water is generally used as the cooling fluid for self-cooling. Unlike pure water, tap water contains a considerable amount of impurities and therefore has low insulation resistance. Therefore, as described above, when currents of opposite polarity flow through the conductor 32''a on one side and the conductor 32''b on the other side of the vertical lead portion 32'', a short circuit current occurs.If the flow path is short and small, a short circuit occurs. Although the current is not noticeable, in the case of the 10" heating coil where the length of the flow path is several meters, the low insulation resistance causes the short circuit current to be extremely large, resulting in a very large power loss. This causes a problem in that the electric power to be supplied to the heating conductor portion 2 is greatly reduced, making it impossible to obtain the desired heating effect. Of course, if pure water or air, nitrogen, or other gas is used as the cooling fluid, there is no risk of the above problem occurring, but pure water is expensive and uneconomical, and gases not only have little cooling effect but also It's expensive.
本考案は上述誘導加熱により被加熱材を加熱す
るに際して電源側出力端子と加熱導体とを結ぶリ
ード部が極めて長大であることを要求される場合
の問題点を解決する目的でなされたものであつ
て、被加熱面が長尺管材内面であれば長尺管材全
長にわたる均一加熱を、また上記長尺管材に限ら
ず、これを含む全ての長尺リード部での電力損失
の防止を廉価な上水を使用しつつ可能とする誘導
加熱コイルを提供するものである。 The present invention has been made with the purpose of solving the problem when the lead portion connecting the power supply side output terminal and the heating conductor is required to be extremely long when heating a heated material by the above-mentioned induction heating. If the surface to be heated is the inner surface of the long pipe, uniform heating can be achieved over the entire length of the long pipe, and power loss can be prevented not only in the above-mentioned long pipe but also in all long leads including this at a low cost. The present invention provides an induction heating coil that can be heated while using water.
本考案を第3図に示す一実施例に従つて説明す
る。 The present invention will be explained according to an embodiment shown in FIG.
第3図に示す本考案にかかる誘導加熱コイル1
0において第1図と同一符号を付したものは同一
部材である。即ち、31aおよび31bはそれぞ
れ水平方向リード部31の一方側および他方側導
体、2は加熱導体部、5は絶縁材である。本考案
では垂直方向リード部32が第1図aと異なるの
は勿論のこと第2図とも異なる。即ち垂直方向リ
ード部32の一方側の導体32aは8aで示され
る中空部を有する管状材であつて、接続部311
aを介して上記水平方向リード部31の一方側導
体31aに、また接続部21aを介して加熱導体
部2の一方端に接続する。垂直方向リード部32
の他方側導体32bは上記一方側導体32aの外
径よりやや大径の内径を有する内管321bと当
該内管321bの外径よりやや大径の内径を有す
る外管322bとからなる二重管材からなり、内
管321bと外管322bとによつて形成される
環状空隙8bの両端面は323bとして示す如く
閉面とされている。当該二重管材からなる他方側
導体32bは例えば鍔状の接続部311bを介し
て上記水平方向リード部31の一方側導体31b
に、また接続部21bを介して加熱導体部2の他
方端に接続する。他方側導体32bは一方側導体
32aの外周を囲繞する如く設けられた絶縁材7
を所定間隙保持材として一方側導体32aと同軸
的に配置される。而して一方側導体32aの軸方
向上・下端面には冷却流体給・排口9a,9aが
設けられていて中空部8aに冷却流体が流通可能
に、また他方側導体32bの軸方向上・下端部近
傍外側壁には冷却流体給・排口9b,9bが設け
られていて環状間隙8bに冷却流体が流通可能に
構成されている。 Induction heating coil 1 according to the present invention shown in FIG.
0, those with the same reference numerals as in FIG. 1 are the same members. That is, 31a and 31b are conductors on one side and the other side of the horizontal lead portion 31, respectively, 2 is a heating conductor portion, and 5 is an insulating material. In the present invention, the vertical lead portion 32 is different from that in FIG. 1a as well as in FIG. 2. That is, the conductor 32a on one side of the vertical lead portion 32 is a tubular member having a hollow portion indicated by 8a, and is connected to the connecting portion 311.
It is connected to the one side conductor 31a of the horizontal lead part 31 through a, and to one end of the heating conductor part 2 through the connecting part 21a. Vertical lead section 32
The other side conductor 32b is a double tube material consisting of an inner tube 321b having an inner diameter slightly larger than the outer diameter of the one side conductor 32a and an outer tube 322b having an inner diameter slightly larger than the outer diameter of the inner tube 321b. Both end surfaces of the annular gap 8b formed by the inner tube 321b and the outer tube 322b are closed surfaces as shown as 323b. The other side conductor 32b made of the double pipe material is connected to the one side conductor 31b of the horizontal lead portion 31 via, for example, a brim-shaped connection portion 311b.
It is also connected to the other end of the heating conductor section 2 via the connection section 21b. The other side conductor 32b is an insulating material 7 provided so as to surround the outer periphery of the one side conductor 32a.
is arranged coaxially with the one-side conductor 32a using a predetermined gap maintaining member. Cooling fluid supply/discharge ports 9a and 9a are provided on the upper and lower end faces of the one side conductor 32a in the axial direction, so that the cooling fluid can flow through the hollow portion 8a, and the axially upper end face of the other side conductor 32b is provided with cooling fluid supply/discharge ports 9a and 9a. - Cooling fluid supply/discharge ports 9b and 9b are provided on the outer wall near the lower end so that the cooling fluid can flow into the annular gap 8b.
以上の構成をとることによつて、垂直方向リー
ド部32における一方側導体32aと他方側導体
32bとは同軸的に配置されるので洩れ磁束の発
生が防止されるとともに、一方側導体32aは中
空部8aを流通する冷却流体で自己冷却が施さ
れ、また他方側導体32bは環状間隙8bを流通
する冷却流体で自己冷却が施され、かつそれぞれ
の冷却流体の流通路となる管壁は単一極性の電流
が流れているので、短絡電流の流れるおそれがな
いため、たとえ不純物を含む上水を冷却流体とし
ても絶縁抵抗の低さを問題にする必要がなく、加
熱導体部2への供給電力の上水による損失は全く
なくなる。 By employing the above configuration, the one side conductor 32a and the other side conductor 32b in the vertical lead portion 32 are arranged coaxially, so generation of leakage magnetic flux is prevented, and the one side conductor 32a is hollow. The conductor 32b on the other side is self-cooled by the cooling fluid flowing through the annular gap 8b, and each tube wall serving as the cooling fluid flow path is made of a single piece. Since a polar current flows, there is no risk of short-circuit current flowing, so even if clean water containing impurities is used as a cooling fluid, there is no need to worry about low insulation resistance, and the power supplied to the heating conductor section 2 is reduced. There will be no water loss at all.
上記実施例では垂直方向リード部32の一方側
導体32aと他方側導体32bとの同軸的配置に
上記一方側導体外周全長を囲繞した絶縁材7を用
いて行なつたが、これに限定されるものではな
く、例えば絶縁材からなる環材を部分的に用いた
り、あるいは駒材を用いたりして所定間隙を保持
するようにしてもよい。 In the above embodiment, the one side conductor 32a and the other side conductor 32b of the vertical lead portion 32 are coaxially arranged using the insulating material 7 that surrounds the entire outer circumference of the one side conductor, but the present invention is not limited to this. For example, a predetermined gap may be maintained by partially using a ring member made of an insulating material or by using a bridge member.
また上記実施例では説明の都合上水平方向リー
ド部31・垂直方向リード部32の如く表現して
いるが、リード部3が実施例の如く屈折せずに直
線的に構成されていて、かつ全長もしくは所定範
囲のリード部3を上記実施例における32a,3
2bと同様に構成してもよく、実施例と全く同一
の作用効果があること勿論である。 Further, in the above embodiment, for convenience of explanation, the horizontal lead portion 31 and the vertical lead portion 32 are expressed, but the lead portion 3 has a straight structure without bending as in the embodiment, and has a full length. Alternatively, a predetermined range of the lead portion 3 may be replaced with 32a, 3 in the above embodiment.
It goes without saying that it may be constructed in the same manner as 2b, and that it will have exactly the same effects as the embodiment.
第1図aおよびbはそれぞれ必要に応じてリー
ド部を長大としただけの従来型誘導加熱コイルの
斜視図および加熱動作を示す正面図、第1図cは
従来型誘導加熱コイルに存する問題点を説明する
ための断面平面図、第2図は必要に応じてリード
部を長大としただけの同軸リード型誘導加熱コイ
ルの断面正面図、第3図は本考案誘導加熱コイル
の断面正面図である。
1……入力端子、1a……入力端子の一方側、
1b……入力端子の他方側、2……加熱導体、3
……リード部、31a,32a……リード部の一
方側導体、31b,32b……リード部の他方側
導体、321b,322b……リード部の他方側
導体における内管および外管、7……絶縁材、8
a……中空部、8b……環状間隙、10……誘導
加熱コイル、W……被加熱材。
Figures 1a and b are a perspective view and a front view showing the heating operation of a conventional induction heating coil in which the lead portion is made longer if necessary, respectively, and Figure 1c is a problem with the conventional induction heating coil. Fig. 2 is a cross-sectional front view of a coaxial lead type induction heating coil with the lead portion lengthened as necessary, and Fig. 3 is a cross-sectional front view of the induction heating coil of the present invention. be. 1...Input terminal, 1a...One side of the input terminal,
1b...Other side of the input terminal, 2...Heating conductor, 3
...Lead portion, 31a, 32a...One side conductor of the lead portion, 31b, 32b...Other side conductor of the lead portion, 321b, 322b...Inner tube and outer tube of the other side conductor of the lead portion, 7... Insulating material, 8
a... Hollow part, 8b... Annular gap, 10... Induction heating coil, W... Heated material.
Claims (1)
加熱材の被加熱面に所定間隙をへだてて対向す
る加熱導体部とを結ぶリード部が極めて長大で
あることを要求される誘導加熱コイルにおい
て、上記リード部を構成する入力端子の一方側
と加熱導体部の一方端とを結ぶ一方側導体の全
長もしくは所定範囲を管状材とするとともに、
当該管状材の中空部に自己冷却用流体を流通可
能とし、入力端子の他方側と加熱導体部の他方
端とを結ぶ他方側導体を上記一方側の導体の全
長もしくは所定範囲とほぼ同一範囲にわたり所
定間隙をへだてて同軸的に配置した二重管材と
するとともに、当該二重管材の内管と外管とで
形成される環状空隙の両端面を閉として当該環
状空隙内に自己冷却用流体を流通可能としたこ
とを特徴とする誘導加熱コイル。 2 管状材と二重管材とが絶縁材によつて所定間
隙をへだてる如く同軸的に配置されている実用
新案登録請求の範囲第1項記載の誘導加熱コイ
ル。 3 被加熱材が長尺管材であつて、被加熱面が当
該管材の内面である実用新案登録請求の範囲第
1項記載の誘導加熱コイル。[Scope of Claim for Utility Model Registration] 1. The lead portion connecting the input terminal connected to the output terminal on the heating power source side and the heating conductor portion facing the heated surface of the heated material with a predetermined gap therebetween is extremely long. In the required induction heating coil, the entire length or a predetermined range of one side conductor connecting one side of the input terminal constituting the lead part and one end of the heating conductor part is made of a tubular material,
A self-cooling fluid is allowed to flow through the hollow part of the tubular material, and the other side conductor connecting the other side of the input terminal and the other end of the heating conductor section is extended over a range that is approximately the same as the entire length or a predetermined range of the one side conductor. A double pipe material is arranged coaxially with a predetermined gap, and both ends of the annular gap formed by the inner pipe and outer pipe of the double pipe material are closed, and a self-cooling fluid is introduced into the annular space. An induction heating coil characterized by being able to be distributed. 2. The induction heating coil according to claim 1, wherein the tubular material and the double tubular material are coaxially arranged with a predetermined gap separated by an insulating material. 3. The induction heating coil according to claim 1, wherein the material to be heated is a long tube, and the surface to be heated is the inner surface of the tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1983144948U JPS6053192U (en) | 1983-09-21 | 1983-09-21 | induction heating coil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1983144948U JPS6053192U (en) | 1983-09-21 | 1983-09-21 | induction heating coil |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6053192U JPS6053192U (en) | 1985-04-15 |
JPS625034Y2 true JPS625034Y2 (en) | 1987-02-04 |
Family
ID=30323089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1983144948U Granted JPS6053192U (en) | 1983-09-21 | 1983-09-21 | induction heating coil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6053192U (en) |
-
1983
- 1983-09-21 JP JP1983144948U patent/JPS6053192U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6053192U (en) | 1985-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3895432A (en) | Method of electrically joining together two bimetal tubular superconductors | |
US3278808A (en) | Superconducting device | |
JPS625034Y2 (en) | ||
JP2002305074A (en) | Induction heating equipment | |
EP0987723B1 (en) | Electrical transformer with superconducting windings | |
JPH0586053B2 (en) | ||
JP2000068043A (en) | Induction heating coil of tapered body | |
JP2010219532A (en) | Superconductive current limiter with magnetic field triggering | |
US3984756A (en) | Power source for supplying stabilized current to electrical installations | |
JPH07114984A (en) | Flexible heater coil | |
JPS5882491A (en) | Flat induction coil for crucibleless zone melting | |
CN210518975U (en) | Water-electricity connecting device for arc plasma generator | |
JPH1069968A (en) | Induction heating method and apparatus | |
JPH0498773A (en) | Superconducting cable connection section | |
JP2002323260A (en) | Instant water heating device | |
JPH0553844B2 (en) | ||
CN110213873A (en) | A kind of water power coupling arrangement for arc plasma generator | |
JP2570969Y2 (en) | High frequency induction heating coil | |
JP2717354B2 (en) | High frequency induction heating coil | |
US2827543A (en) | Tube welding by high frequency resistance heating | |
US2395196A (en) | Electrical heating apparatus | |
JP2001035647A (en) | Induction heater | |
JPH0235009B2 (en) | WAAKUNOKINITSUKANETSUHOHOOYOBYUDOKANETSUSOCHI | |
SU1274873A1 (en) | Torch for electric-arc working | |
JPS5778109A (en) | Conductor for electric winding |