[go: up one dir, main page]

JPS6248659B2 - - Google Patents

Info

Publication number
JPS6248659B2
JPS6248659B2 JP57081471A JP8147182A JPS6248659B2 JP S6248659 B2 JPS6248659 B2 JP S6248659B2 JP 57081471 A JP57081471 A JP 57081471A JP 8147182 A JP8147182 A JP 8147182A JP S6248659 B2 JPS6248659 B2 JP S6248659B2
Authority
JP
Japan
Prior art keywords
reaction
copper
carbon monoxide
carbon atoms
carbonyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57081471A
Other languages
Japanese (ja)
Other versions
JPS58201748A (en
Inventor
Mamoru Tachikawa
Takashi Kotanino
Yoshihisa Matsushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP57081471A priority Critical patent/JPS58201748A/en
Publication of JPS58201748A publication Critical patent/JPS58201748A/en
Publication of JPS6248659B2 publication Critical patent/JPS6248659B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はオレフイン、エーテルまたはアルコー
ルから直接α―分岐カルボン酸エステルを製造す
る方法に関する。 従来α―分岐カルボン酸のアルキルエステルの
一段製造方法としてはエチレン、プロピレン等の
オレフインをBF3・アルコール触媒の存在下に一
般化炭素と反応させてオレフインより1個多い炭
素原子のカルボン酸基を有するカルボン酸エステ
ルを製造するカルボニル化方法(特開昭55−
147235号および特開昭56−108541号公報)や
MTBEのようなエーテルをBF3―H3PO4
CH3OH触媒の存在下一酸化炭素と反応させる方
法(イギリス特許第1232317号)等が知られてい
る。 しかしながらこれらの反応は収率よくα―分岐
カルボン酸エステルを得ることが難かしく、BF3
系触媒の高腐食性等を考慮すると反応容器の材
質、構造等から工業的には種々の問題があつた。 本発明者らはこれらの欠点を改良すべく鋭意研
究を続けた結果、銅()化合物、銀化合物を含
む三弗化ホウ素・アルコール錯体触媒を用いるこ
とによつてオレフイン、エーテルまたはアルコー
ルと一酸化炭素からα―分岐カルボン酸エステル
を低温、低圧で直接製造する方法を見出し本発明
を完成した。 すなわち本発明は式BF3・ROH〔但し、Rは炭
素数1〜4個のアルキル基である。〕錯体並びに
銅()化合物および/又は銀化合物の存在下に
炭素数3〜8個の脂肪族もしくは脂環式オレフイ
ン、式R1OR2〔但し、R1は炭素数3〜6個のア
ルキル基、R2は炭素数1〜4個のアルキル基で
ある。〕のエーテル又は炭素数3〜6個のアルキ
ルアルコールと一酸化炭素を反応させることを特
徴とするα―分岐カルボン酸エステルの製造方法
を要旨とする。 本発明において用いられる触媒はBF3・ROHの
分子式で表わされる三弗化ホウ素・アルコール錯
体でアルコール溶液に三弗化ホウ素ガスを吹込ん
で合成することができる。アルコールとしてはR
がメチル、エチル、n―プロピル、i―プロピ
ル、n―ブチル、i―ブチル、t―ブチルの低級
アルキル基であるアルキルアルコールである。 本触媒中で用いられる銅()化合物および/
または銀化合物は反応系中で銅()カルボニル
および/または銀カルボニルを生じるものであれ
ばどんな化合物を用いてもよいが、一価の酸化物
あるいはホウフツ化物、フツ化物の形で用いるの
が好ましい。銅()化合物では酸化銅が、銀化
合物としては酸化銀およびホウフツ化銀、フツ化
銀が好ましく用いられる。また銅()化合物の
代りに金属銅と銅()化合物の等量混合物例え
ば、銅粉と酸化第二銅を用いることも可能であ
る。 銅()カルボニルおよび/または銀カルボニ
ルとBF3・ROH錯体のモル比は特に厳密ではない
がBF3・ROH錯体1モル当り0.01〜0.1の範囲で
用いるのが好ましい。 次に本発明において原料として使用するオレフ
インは周知のコツホ反応で用いられるオレフイン
ならいずれでもよいが、炭素数3〜8の脂肪族オ
レフイン、脂環式オレフインが用いられる。たと
えばプロピレン、n―ブチレン、i―ブチレン、
ペンテン、ヘキセン、オクテン、シクロペンテ
ン、シクロヘキセンなどである。 また本発明において原料として用いるエーテル
はR1OR2の分子式で表わされるエーテルで、R1
は炭素数が3―6個のアルキル基であり、R2
メチル、エチル、n―プロピル、i―プロピル、
n―ブチル、i―ブチル、t―ブチルの炭素数が
1〜4の低級アルキル基である。このR1とR2
互に異なるものであつても同じものであつても良
い。 さらに原料として用いられるアルコールは炭素
数が3〜6個のアルキルアルコールである。 本発明の反応は−10℃〜+100℃の温度範囲で
行なわれる。この温度範囲では助触媒として用い
る銅()化合物、銀化合物は反応系内でCu
(CO) (n=1〜4),Ag(CO) (m=1〜
2)の形で存在する。これらのうち特に銅ではn
=3および4、銀ではm=2が助触媒作用効果が
大きい。この温度範囲内の高温側ではそれぞれ
n,mは1に近い値となり、低温側ではそれぞれ
4および2に近い値となる。従つて高温では触媒
作用を有する金属カルボニル濃度は減少するが反
応速度は早くなり低温ではn,mの値が大きくな
ることによつて反応を有利に進めることができ
る。 反応圧力は特に限定されないが反応速度と製造
コストのバランスから一般に0.1〜200気圧、好ま
しくは1〜20気圧で行うのが望ましい。反応形式
はバツチ方式、セミバツチ方式あるいは連続方式
のいずれかによつても実施することができる。次
にこれらの内、バツチ方式による反応方法につい
て説明する。 本発明によれば、一酸化炭素雰囲気中に銅
()カルボニルおよび/または銀カルボニル/
BF3・ROH溶液(予め別途調製しておいても、反
応器中で調製してもどちらでも良い)を反応器に
入れ所定温度で十分に撹拌しながら所定量のオレ
フイン、エーテルまたはアルコールを少しづつ加
える。反応はすみやかに進行し、やがて反応溶液
への一酸化炭素吸収がほとんど停止する。反応終
了後反応溶液に一酸化炭素吸収量と等モルのアル
コールを加え非極性溶剤例えばヘキサン等の飽和
炭化水素を用いる抽出により生成物を回収するこ
とができる。このときアルカリ金属のBF4 -塩の
ような塩を加えておいても触媒作用は阻害され
ず、反応生成物の抽出効果を増すことができる。
また抽出処理にあたつては銅、銀化合物は酸触媒
層に留まり、助触媒の効果を失うことなく反応を
連続的に行うことが可能である。また一酸化炭素
吸収停止後、減圧下で一部BF3を回収、次に残留
物をアルコール処理し、これからエステルを蒸留
分離することも可能である。 本発明によれば助触媒の銅カルボニル、銀カル
ボニルの効果により低温・低圧の穏かな条件下で
反応を行うことができα―分岐カルボン酸エステ
ルの収率を向上させ、オレフインの重合による原
料ロスを減少させることができると同時に、製造
コストの低減、装置の腐食の低減等を行い得る利
点がある。 本発明によつて得られるα―分岐カルボン酸エ
ステルは医薬品、農薬、潤滑剤、ポリマー用モノ
マー原料、ポリマー用コモノマー、可塑剤等多く
の用途がある。原料にオレフインとしてプロピレ
ン三弗化ホウ素・アルコール錯体としててBF3
CH3OHを用いると、イソ酪酸メチルが得られ、
これは脱水素によりメタクリル酸メチルを生成す
る。 以下本発明を実施例により詳細に説明する。 実施例 1 撹拌器を付けた200ml4口フラスコに酸化第一
銅0.305g(2.13ミリモル)をとり、フラスコ内
を一酸化炭素で置換した後BF3・CH3OH錯体30
mlを注射器で導入した。撹拌を開始すると直ちに
一酸化炭素の吸収が見られ、5分以内に銅カルボ
ニルの生成が終了した。この溶液を激しく撹拌し
ながらジイソブチレン3.63gを1.7時間に渡りマ
イクロフイーダーで加えた。一酸化炭素の吸収が
停止後反応液にメタノールを加え、さらに氷水を
加えてヘキサンで抽出して生生成物を得た。生生
成物のガスクロ分析により表―1に示す結果を得
た。この反応での温度は35℃で、一酸化炭素圧は
1気圧であつた。 実施例 2 撹拌機を付けた200ml4口フラスコに
AgBF41.75g(9.00ミリモル)をとり、フラスコ
内を窒素で置換した後、BF3・CH3OH錯体26ml
を注射器で導入した。フラスコ内の窒素を一酸化
炭素でパージした後、1気圧の一酸化炭素化で約
1時間撹拌し、AgBF4を溶解させカルボニル錯
体に変換させた。この溶液を激しく撹拌しなが
ら、ジイソブチレン2.90gを30分間に渡りマイク
ロフイーダーで加えた。さらに一酸化炭素の吸収
が停止するまで10分間撹拌を続けた。反応後生成
物の分析を行つた結果を表―1に示した。 比較例 1 実施例1と同様の反応を酸化第一銅を加えずに
行つた。その結果を表―1に示す。 実施例 3 実施例1と同様の方法で酸化第一銅0.36g
(2.51ミリモル)をBF3・CH3OH25ml中で一気圧
の一酸化炭素との反応を行わせ銅カルボニル/
BF3・CH3OH溶液を調製した。2.01g(22.8ミリ
モル)のメチル―t―ブチルエーテル
(MTBE)を1気圧の一酸化炭素下、激しく撹拌
中の銅カルボニル/BF3・CH3OH溶液に21℃で
30分間滴下した。その後7分間一酸化炭素の吸収
が停止するまで反応を行つた。生成物の分析結果
を表―1に示した。 実施例 4 実施例3の方法において酸化第一銅の代りに酸
化銀0.59g(2.55ミリモル)を用いて銀カルボニ
ル/BF3・CH3OH溶液を調製する以外は実施例
3と同じ方法で反応を行つた。生成物の分析結果
を表―1に示した。 実施例 5 実施例3と同様の方法で銅カルボニル/BF3
CH3OH溶液を調製し、その溶液に2.1gのt―ブ
タノールを1気圧の一酸化炭素圧下、30分間に渡
り滴下した。t―ブタノール滴下終了後、一酸化
炭素の吸収が停止するまで8分間撹拌をつづけ
た。反応後生成物の分析を行つた結果を表―1に
示した。
The present invention relates to a method for producing α-branched carboxylic acid esters directly from olefins, ethers or alcohols. Conventionally, as a one-step production method for alkyl esters of α-branched carboxylic acids, olefins such as ethylene and propylene are reacted with generalized carbon in the presence of a BF 3 /alcohol catalyst to form a carboxylic acid group with one more carbon atom than the olefin. Carbonylation method for producing carboxylic acid esters having
147235 and Japanese Patent Application Laid-Open No. 108541)
Ethers like MTBE as BF 3 ―H 3 PO 4
A method of reacting with carbon monoxide in the presence of a CH 3 OH catalyst (British Patent No. 1232317) is known. However, in these reactions, it is difficult to obtain α-branched carboxylic acid esters in good yield, and BF 3
Considering the highly corrosive nature of the catalyst system, various problems have arisen industrially due to the material and structure of the reaction vessel. The present inventors continued intensive research to improve these drawbacks, and found that by using a boron trifluoride/alcohol complex catalyst containing a copper () compound and a silver compound, olefin, ether, or alcohol can be monoxidized. The present invention was completed by discovering a method for directly producing α-branched carboxylic acid ester from carbon at low temperature and low pressure. That is, the present invention is directed to the formula BF 3 .ROH [wherein R is an alkyl group having 1 to 4 carbon atoms]. ] A complex and an aliphatic or alicyclic olefin having 3 to 8 carbon atoms in the presence of a copper() compound and/or a silver compound, formula R 1 OR 2 [However, R 1 is an alkyl having 3 to 6 carbon atoms] The group R 2 is an alkyl group having 1 to 4 carbon atoms. The gist of this invention is a method for producing an α-branched carboxylic acid ester, which is characterized by reacting an ether or an alkyl alcohol having 3 to 6 carbon atoms with carbon monoxide. The catalyst used in the present invention is a boron trifluoride/alcohol complex represented by the molecular formula of BF 3 .ROH, and can be synthesized by blowing boron trifluoride gas into an alcohol solution. R as alcohol
is an alkyl alcohol which is a lower alkyl group such as methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, or t-butyl. Copper () compound and/or used in this catalyst
Alternatively, any silver compound may be used as long as it produces copper () carbonyl and/or silver carbonyl in the reaction system, but it is preferable to use it in the form of a monovalent oxide, borofluoride, or fluoride. . As the copper() compound, copper oxide is preferably used, and as the silver compound, silver oxide, silver borofluoride, and silver fluoride are preferably used. It is also possible to use a mixture of equal amounts of metallic copper and a copper() compound, such as copper powder and cupric oxide, instead of the copper() compound. Although the molar ratio of copper () carbonyl and/or silver carbonyl to BF 3 .ROH complex is not particularly strict, it is preferably used within the range of 0.01 to 0.1 per mole of BF 3 .ROH complex. Next, the olefin used as a raw material in the present invention may be any olefin used in the well-known Kotsuho reaction, but aliphatic olefins and alicyclic olefins having 3 to 8 carbon atoms are used. For example, propylene, n-butylene, i-butylene,
These include pentene, hexene, octene, cyclopentene, and cyclohexene. Further, the ether used as a raw material in the present invention is an ether represented by the molecular formula of R 1 OR 2 , and R 1
is an alkyl group having 3 to 6 carbon atoms, and R 2 is methyl, ethyl, n-propyl, i-propyl,
N-butyl, i-butyl, and t-butyl are lower alkyl groups having 1 to 4 carbon atoms. R 1 and R 2 may be different or the same. Further, the alcohol used as a raw material is an alkyl alcohol having 3 to 6 carbon atoms. The reaction of the present invention is carried out at a temperature range of -10°C to +100°C. In this temperature range, the copper() compound and silver compound used as cocatalysts are Cu in the reaction system.
(CO) + o (n=1~4), Ag(CO) + n (m=1~
2) exists in the form of Of these, especially copper
= 3 and 4, and for silver, m = 2 has a large promoter effect. On the high temperature side of this temperature range, n and m have values close to 1, respectively, and on the low temperature side they have values close to 4 and 2, respectively. Therefore, at high temperatures, the concentration of metal carbonyl having a catalytic effect decreases, but the reaction rate increases, and at low temperatures, the values of n and m increase, so that the reaction can proceed advantageously. The reaction pressure is not particularly limited, but in view of the balance between reaction rate and manufacturing cost, it is generally desirable to carry out the reaction at 0.1 to 200 atmospheres, preferably 1 to 20 atmospheres. The reaction may be carried out in batch mode, semi-batch mode or continuous mode. Next, among these methods, a batch reaction method will be explained. According to the present invention, copper() carbonyl and/or silver carbonyl/
Put a BF 3 ROH solution (prepared separately in advance or in the reactor) into a reactor, and add a small amount of olefin, ether, or alcohol to the reactor while stirring thoroughly at the specified temperature. Add one by one. The reaction proceeds rapidly, and carbon monoxide absorption into the reaction solution eventually stops. After completion of the reaction, the product can be recovered by adding alcohol in an amount equal to the amount of absorbed carbon monoxide to the reaction solution and extracting with a non-polar solvent such as a saturated hydrocarbon such as hexane. At this time, even if a salt such as an alkali metal BF 4 -salt is added, the catalytic action is not inhibited and the extraction effect of the reaction product can be increased.
Further, during the extraction process, the copper and silver compounds remain in the acid catalyst layer, making it possible to carry out the reaction continuously without losing the effect of the co-catalyst. It is also possible to partially recover BF 3 under reduced pressure after stopping carbon monoxide absorption, then treat the residue with alcohol, and then distill the ester from it. According to the present invention, the effect of copper carbonyl and silver carbonyl as co-catalysts allows the reaction to be carried out under mild conditions at low temperature and low pressure, improving the yield of α-branched carboxylic acid ester, and reducing the loss of raw materials due to the polymerization of olefins. This has the advantage of reducing manufacturing costs, reducing corrosion of equipment, etc. at the same time. The α-branched carboxylic acid ester obtained by the present invention has many uses such as pharmaceuticals, agricultural chemicals, lubricants, monomer raw materials for polymers, comonomers for polymers, and plasticizers. The raw material is propylene boron trifluoride as an olefin, and BF 3 as an alcohol complex.
Using CH 3 OH gives methyl isobutyrate,
This produces methyl methacrylate upon dehydrogenation. The present invention will be explained in detail below with reference to Examples. Example 1 0.305 g (2.13 mmol) of cuprous oxide was placed in a 200 ml 4-necked flask equipped with a stirrer, and after replacing the inside of the flask with carbon monoxide, BF 3 CH 3 OH complex 30
ml was introduced with a syringe. As soon as stirring was started, carbon monoxide was absorbed, and the production of copper carbonyl was completed within 5 minutes. While vigorously stirring this solution, 3.63 g of diisobutylene was added over 1.7 hours using a microfeeder. After the absorption of carbon monoxide stopped, methanol was added to the reaction solution, ice water was further added, and the mixture was extracted with hexane to obtain a product. The results shown in Table 1 were obtained by gas chromatography analysis of the product. The temperature in this reaction was 35°C and the carbon monoxide pressure was 1 atm. Example 2 In a 200ml 4-necked flask equipped with a stirrer
Take 1.75 g (9.00 mmol) of AgBF 4 and replace the inside of the flask with nitrogen, then add 26 ml of BF 3 CH 3 OH complex.
was introduced with a syringe. After purging the nitrogen in the flask with carbon monoxide, the mixture was stirred for about 1 hour under 1 atm of carbon monoxide to dissolve AgBF 4 and convert it into a carbonyl complex. While vigorously stirring this solution, 2.90 g of diisobutylene was added over 30 minutes using a microfeeder. Stirring was continued for an additional 10 minutes until absorption of carbon monoxide stopped. The results of the analysis of the reaction product are shown in Table 1. Comparative Example 1 A reaction similar to Example 1 was carried out without adding cuprous oxide. The results are shown in Table-1. Example 3 0.36 g of cuprous oxide was prepared in the same manner as in Example 1.
Copper carbonyl /
A BF 3 .CH 3 OH solution was prepared. 2.01 g (22.8 mmol) of methyl-t-butyl ether (MTBE) was added to a vigorously stirred copper carbonyl/BF 3 CH 3 OH solution at 21°C under 1 atmosphere of carbon monoxide.
It was dropped for 30 minutes. Thereafter, the reaction was continued for 7 minutes until absorption of carbon monoxide stopped. The analysis results of the product are shown in Table 1. Example 4 The reaction was carried out in the same manner as in Example 3 except that 0.59 g (2.55 mmol) of silver oxide was used instead of cuprous oxide to prepare a silver carbonyl/BF 3 .CH 3 OH solution. I went there. The analysis results of the product are shown in Table 1. Example 5 Copper carbonyl/BF 3 was prepared in the same manner as in Example 3.
A CH 3 OH solution was prepared, and 2.1 g of t-butanol was added dropwise to the solution under 1 atmosphere of carbon monoxide pressure over 30 minutes. After dropping t-butanol, stirring was continued for 8 minutes until absorption of carbon monoxide stopped. The results of the analysis of the reaction product are shown in Table 1.

【表】【table】

【表】 実施例 6 実施例3の方法においてBF3・CH3OHの代り
にBF3・C2H5OH25mlを用いて銅カルボニル/
BF3・C2H5OHを調製し、MTBEの代りにジイソ
ブチレン5.61g(50.0ミリモル)を反応させる以
外は実施例3と同じ方法で反応を行つた。生成物
の分析結果を表―2に示した。 比較例 2 実施例6において酸化第一銅を用いないで反応
を行つた。その結果を表―2に示す。
[ Table] Example 6 In the method of Example 3 , copper carbonyl /
BF 3 .C 2 H 5 OH was prepared and the reaction was carried out in the same manner as in Example 3, except that 5.61 g (50.0 mmol) of diisobutylene was used instead of MTBE. The analysis results of the product are shown in Table 2. Comparative Example 2 The reaction in Example 6 was carried out without using cuprous oxide. The results are shown in Table-2.

【表】 実施例 7 内容積250mlのテフロン加工電磁撹拌式オート
クレーブに、BF3・CH3OH40mlと酸化第一銅0.36
g(2.51ミリモル)を仕込み室温で10気圧の一酸
化炭素で2回パージを行つた。一酸化炭素を5気
圧加え、激しく撹拌しながら5.3gの液化プロピ
レンを圧入した。さらにオートクレーブが20気圧
になるまで一酸化炭素を加え、一酸化炭素添加に
より内部圧力を20気圧に保ち、1時間反応を行つ
た。メタノール、水処理およびこれに続く抽出に
より得られた生成物の分析結果を表―3に示し
た。 比較例 3 実施例7において酸化第一銅を用いないで、プ
ロピレンの量を9.8gにした以外は実施例7と同
様に反応を行つた。その結果を表―3に示した。
[Table] Example 7 In a Teflon-coated electromagnetic stirring autoclave with an internal volume of 250 ml, 40 ml of BF 3 CH 3 OH and 0.36 cuprous oxide were added.
g (2.51 mmol) and purged twice with carbon monoxide at 10 atm at room temperature. Five atmospheres of carbon monoxide was added, and 5.3 g of liquefied propylene was injected under vigorous stirring. Furthermore, carbon monoxide was added until the autoclave reached 20 atm, and the internal pressure was maintained at 20 atm by adding carbon monoxide, and the reaction was carried out for 1 hour. The analysis results of the products obtained by methanol and water treatment and subsequent extraction are shown in Table 3. Comparative Example 3 The reaction was carried out in the same manner as in Example 7 except that cuprous oxide was not used and the amount of propylene was changed to 9.8 g. The results are shown in Table 3.

【表】【table】

【表】 実施例 8 実施例1と同様の方法で銅カルボニル(2.4ミ
リモル)/BF3・CH3OH錯体溶液を調製し、そ
の溶液に4.0g(48.7ミリモル)のシクロヘキセ
ンを1気圧の一酸化炭素下、一時間掛けて滴下し
た。その後一酸化炭素の吸収が停止する迄、15分
間撹拌を続けた、ガスクロ分析により、1―メチ
ルシクロペンタンカルボン酸メチルのみが82%の
収率で生成していることが判明した。
[Table] Example 8 A copper carbonyl (2.4 mmol)/BF 3 CH 3 OH complex solution was prepared in the same manner as in Example 1, and 4.0 g (48.7 mmol) of cyclohexene was added to monoxide at 1 atm. It was added dropwise under carbon over a period of one hour. Thereafter, stirring was continued for 15 minutes until the absorption of carbon monoxide stopped. Gas chromatography analysis revealed that only methyl 1-methylcyclopentanecarboxylate was produced at a yield of 82%.

Claims (1)

【特許請求の範囲】 1 式BF3・ROH〔但し、Rは炭素数1〜4個の
アルキル基である。〕錯体並びに銅()化合物
および/又は銀化合物の存在下に炭素数3〜8個
の脂肪族もしくは脂環式オレフイン、式R1OR2
〔但し、R1は炭素数3〜6個のアルキル基、R2
炭素数1〜4個のアルキル基である。〕のエーテ
ル又は炭素数3〜6個のアルキルアルコールと一
酸化炭素を反応させることを特徴とするα―分岐
カルボン酸エステルの製造方法。
[Claims] 1 Formula BF 3 ·ROH [However, R is an alkyl group having 1 to 4 carbon atoms. ] Aliphatic or cycloaliphatic olefin having 3 to 8 carbon atoms, formula R 1 OR 2 in the presence of the complex and a copper() compound and/or a silver compound
[However, R 1 is an alkyl group having 3 to 6 carbon atoms, and R 2 is an alkyl group having 1 to 4 carbon atoms. A method for producing an α-branched carboxylic acid ester, which comprises reacting the ether or alkyl alcohol having 3 to 6 carbon atoms with carbon monoxide.
JP57081471A 1982-05-17 1982-05-17 Preparation of alpha-branched carboxylic acid ester Granted JPS58201748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57081471A JPS58201748A (en) 1982-05-17 1982-05-17 Preparation of alpha-branched carboxylic acid ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57081471A JPS58201748A (en) 1982-05-17 1982-05-17 Preparation of alpha-branched carboxylic acid ester

Publications (2)

Publication Number Publication Date
JPS58201748A JPS58201748A (en) 1983-11-24
JPS6248659B2 true JPS6248659B2 (en) 1987-10-15

Family

ID=13747310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57081471A Granted JPS58201748A (en) 1982-05-17 1982-05-17 Preparation of alpha-branched carboxylic acid ester

Country Status (1)

Country Link
JP (1) JPS58201748A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010002809A1 (en) 2010-03-12 2011-11-17 Evonik Degussa Gmbh Process for the preparation of linear alpha, omega-dicarboxylic acid diesters
GB2577315A (en) * 2018-09-21 2020-03-25 Mexichem Fluor Sa De Cv Methods

Also Published As

Publication number Publication date
JPS58201748A (en) 1983-11-24

Similar Documents

Publication Publication Date Title
Bittler et al. Carbonylation of olefins under mild temperature conditions in the presence of palladium complexes
US2967873A (en) Process for the production of aliphatic and cycloaliphatic monocarboxylic acid alkyl esters
US2542767A (en) Organic ester synthesis
US3028417A (en) Process of making hydroxy ester compounds
KR19990076903A (en) Process for the preparation of 1,2-bis (acyloxylate)
EP0144936B1 (en) Production of carboxylic acids from alcohols
JPS6248659B2 (en)
EP0440420B1 (en) Process for preparation of condensed alcohols by alkoxide catalysis
US4716239A (en) Nickel composition soluble in hydrocarbons
US4614816A (en) Preparation of carboxylic acids and esters thereof
JPH0338259B2 (en)
KR860000492B1 (en) Process for preparing glycol ethers
JPS61502125A (en) chemical method
JP2650100B2 (en) Method for producing ethylidene diacetate
JPS5843936A (en) Manufacture of glycol aldehyde
EP0296275B1 (en) Carboxylic acid mixture and process for producing the same
US4002577A (en) Copper carbonyl-containing catalytic solutions
EP0144949B1 (en) Process for producing organic acids
US4355173A (en) Process for the preparation of alkyl carboxylate
EP0146823B1 (en) Production of carboxylic acids from organic formate esters
EP0171804B1 (en) Production of acetate esters from alcohols using rhodium complex catalysts
JPS6337774B2 (en)
JPH0338257B2 (en)
KR100308731B1 (en) Hydrogenation of carbon dioxide and hydroformylation using rhodium catalyst/salt co-catalyst system
EP0171651A1 (en) Production of carboxylic acids from organic formates using rhodium complex catalysts