JPS624818B2 - - Google Patents
Info
- Publication number
- JPS624818B2 JPS624818B2 JP54139770A JP13977079A JPS624818B2 JP S624818 B2 JPS624818 B2 JP S624818B2 JP 54139770 A JP54139770 A JP 54139770A JP 13977079 A JP13977079 A JP 13977079A JP S624818 B2 JPS624818 B2 JP S624818B2
- Authority
- JP
- Japan
- Prior art keywords
- electron beam
- electron
- aperture plate
- aperture
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010894 electron beam technology Methods 0.000 claims description 29
- 239000000523 sample Substances 0.000 claims description 22
- 238000002441 X-ray diffraction Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 claims description 3
- 238000010521 absorption reaction Methods 0.000 claims 1
- 238000004451 qualitative analysis Methods 0.000 claims 1
- 238000004445 quantitative analysis Methods 0.000 claims 1
- 238000002834 transmittance Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 201000009310 astigmatism Diseases 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 238000011109 contamination Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/147—Arrangements for directing or deflecting the discharge along a desired path
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Description
【発明の詳細な説明】
本発明は、X線分析装置付走査電子顕微鏡(以
下SEM)、X線マイクロアナライザ(以下
XMA)、X線分析装置付透過形電子顕微鏡(以下
TEM)などのように、電子プローブを形成し
て、これを分析に利用するようにした電子線応用
装置に関し、特にこれらの電子線応用装置におけ
る絞り板に関する。[Detailed Description of the Invention] The present invention relates to a scanning electron microscope (hereinafter referred to as SEM) with an X-ray analyzer, and an X-ray microanalyzer (hereinafter referred to as SEM).
XMA), transmission electron microscope with X-ray analyzer (hereinafter referred to as
The present invention relates to an electron beam application device such as a TEM (TEM) in which an electron probe is formed and used for analysis, and particularly relates to an aperture plate in such an electron beam application device.
従来の電子線応用装置においては、絞りホルダ
に取付ける絞り板(最近モリブデン製が多い)に
直径20μmから400μm(装置ならびに使用目的
によつて異なる)程度の電子線通過孔を設け、電
子レンズの球面収差による電子プローブのボケ量
(δ=1/2Cs・α3:Csは球面収差係数、αは開き
角)を最小にする機能、ならびにセルフ・クリー
ニングと称し、熱伝導を小さくするため板の厚み
を10〜20μm程度とし、電子線照射により電子線
通過孔周辺に付着したコンタミネーシヨンを加熱
昇華させる機能を持たしめていた。 In conventional electron beam application equipment, an electron beam passage hole with a diameter of about 20 μm to 400 μm (depending on the equipment and purpose of use) is provided in the aperture plate (recently often made of molybdenum) attached to the aperture holder, and the spherical surface of the electron lens is The function is to minimize the amount of blurring of the electron probe due to aberration (δ = 1/2C s・ α 3 : C s is the spherical aberration coefficient, α is the aperture angle), and it is also called self-cleaning, and the plate is used to reduce heat conduction. The thickness was about 10 to 20 μm, and the function was to heat and sublimate contamination attached around the electron beam passage hole by electron beam irradiation.
また、セルフ・クリーニングを行なつてもなお
コンタミネーシヨンが付着したときに、その都度
真空容器に空気を入れないでも、真空外部から切
換えて常に清浄な絞りとして使用可能とするため
に、1または複数の絞り板を絞りホルダに取付け
て複数の電子線通過孔を鏡体内に準備しておくこ
とが行われていた。 In addition, when contamination still adheres even after self-cleaning, the diaphragm can be switched from outside the vacuum and used as a clean diaphragm each time, without having to introduce air into the vacuum container each time. Conventionally, a plurality of aperture plates are attached to an aperture holder to provide a plurality of electron beam passage holes in the mirror body.
第1図はエネルギー分散形X線分析装置
(EDX)付SEMの概略説明図である。電子銃1か
ら発射した電子は、陽極2により加速され、電子
線3を形成する。この線源は通常30μm程度の直
径を有する断面を有しており、これを数10Åから
数100Å程度に細く絞るため、第1集束レンズ4
および第2集束レンズ5ならびに対物レンズ7を
使用する。 FIG. 1 is a schematic explanatory diagram of an SEM equipped with an energy dispersive X-ray analyzer (EDX). Electrons emitted from the electron gun 1 are accelerated by the anode 2 and form an electron beam 3. This radiation source normally has a cross section with a diameter of about 30 μm, and in order to narrow it down to a diameter of several 10 Å to several 100 Å, the first focusing lens 4
and second focusing lens 5 and objective lens 7 are used.
また二次電子像観察のために偏向コイル6で試
料8の面上をX―Yの二次元に走査するように構
成されている。なお、二次電子像観察システム
は、本発明と直接関係ないので図示していない。
試料8は試料ステージ9の上に載せられており、
真空ケース13の外部に設けられた微動ノブ23
によつて動かすことができる。 Further, for secondary electron image observation, the deflection coil 6 is configured to scan the surface of the sample 8 in two dimensions of XY. Note that the secondary electron image observation system is not shown because it is not directly related to the present invention.
The sample 8 is placed on the sample stage 9,
Fine movement knob 23 provided outside the vacuum case 13
It can be moved by.
試料8からは、絞り板12Aの電子線通過孔を
通過して形成される電子プローブ11の衝撃によ
つて、X線(連続X線と特性X線)が発生する
が、これはX線検出器10(この例ではEDX)
により検出され、その出力は分析装置14に供給
されて分析される。なお、12は絞り板12Aを
保持する絞りホルダ、24は検出器10を冷却す
るための冷媒槽(ジユワー壜など)である。 From the sample 8, X-rays (continuous X-rays and characteristic X-rays) are generated by the impact of the electron probe 11 that passes through the electron beam passage hole of the aperture plate 12A, but this is detected by X-ray detection. Container 10 (EDX in this example)
The output is supplied to the analyzer 14 and analyzed. Note that 12 is an aperture holder that holds the aperture plate 12A, and 24 is a refrigerant tank (such as a juicer bottle) for cooling the detector 10.
第2図はX線分析装置付TEMの概略説明図で
あり、第1図と同一の符号は同一または同等部分
をあらわす。15は絞り板移動機構、16は中間
レンズ、17は投射レンズ、18は螢光板、19
は写真フイルム、20はフイルムカセツト、21
はTEM用絞り部、22は絞り板移動機構であ
る。 FIG. 2 is a schematic explanatory diagram of a TEM equipped with an X-ray analyzer, and the same reference numerals as in FIG. 1 represent the same or equivalent parts. 15 is an aperture plate moving mechanism, 16 is an intermediate lens, 17 is a projection lens, 18 is a fluorescent plate, 19
is photographic film, 20 is film cassette, 21
2 is a TEM aperture section, and 22 is an aperture plate moving mechanism.
試料8のX線分析を行なう場合には、絞りホル
ダ12および絞り板12Aが図示位置に挿入セツ
トされ、電子線3から電子プローブ11が形成さ
れて、試料8に衝撃させられる。これによつて、
第1図の場合と同様に試料8からX線が放出さ
れ、検出される。 When performing X-ray analysis of the sample 8, the aperture holder 12 and the aperture plate 12A are inserted and set in the illustrated positions, and an electron probe 11 is formed from the electron beam 3 and is made to impact the sample 8. By this,
As in the case of FIG. 1, X-rays are emitted from the sample 8 and detected.
以上のように、電子プローブによつて試料を衝
撃してX線を放出させ、これを検出するようにし
たX線分析装置付の電子線応用装置においては、
試料位置の前段にあつて電子プローブを形成する
レンズ(SEMの場合は対物レンズ、TEMの場合
は最終段集束レンズ)の主面に、散乱電子が試料
に到達しないようにしたり、最も重要なレンズの
球面収差による電子プローブのぼけを小さくする
ために絞り板が設けられる。 As described above, in an electron beam application device equipped with an X-ray analyzer that uses an electron probe to impact a sample to emit X-rays and detect the X-rays,
The main surface of the lens that forms the electron probe in front of the sample position (objective lens for SEM, final focusing lens for TEM) is designed to prevent scattered electrons from reaching the sample, and is the most important lens. An aperture plate is provided to reduce blurring of the electron probe due to spherical aberration.
第3図はこの状態を示すものであり、1例とし
て第1図の該当部分の拡大断面図で示している。
このような場合、通常の装置では、クリーニング
サイクルを延ばす目的で、図に示すように絞り板
12Aに複数個の電子線通過孔12Bを設けてお
き、そのすべてが汚れてしまうまで本格的クリー
ニングが不必要となるようにされている。そし
て、絞り板の厚みは10ないし20μm程度と比
較的薄くし、絞り板の電子線通過孔周辺への電子
照射によつて発生された熱が逃げにくく、したが
つて絞り板が十分に加熱され、付着した汚れも昇
華し易いようにしてある。(これにても長期間に
亘つては、汚れが蓄積され、非点収差を発生する
原因となる。)
ところで、このような絞り板の薄さによつて惹
起される問題は、電子銃側で散乱電子線により発
生されたX線30が、絞り板12Aを透過し、透
過X線が試料8に照射されて二次X線(螢光X
線)が発生し、これが検出器10に入射して分析
精度を低下させることである。 FIG. 3 shows this state, and shows an enlarged cross-sectional view of the corresponding portion of FIG. 1 as an example.
In such a case, in a normal device, in order to extend the cleaning cycle, a plurality of electron beam passing holes 12B are provided in the diaphragm plate 12A as shown in the figure, and full-scale cleaning is not performed until all of them are dirty. It is made unnecessary. The thickness of the aperture plate is made relatively thin, about 10 to 20 μm, so that the heat generated by electron irradiation around the electron beam passage hole of the aperture plate is difficult to escape, and therefore the aperture plate is sufficiently heated. , it is designed so that attached dirt can be easily sublimated. (Even in this case, dirt accumulates over a long period of time, causing astigmatism.) By the way, the problem caused by the thinness of the aperture plate is that The X-rays 30 generated by the scattered electron beam are transmitted through the diaphragm plate 12A, and the transmitted X-rays are irradiated onto the sample 8 to generate secondary X-rays (fluorescent X-rays).
rays) are generated, which are incident on the detector 10 and reduce the accuracy of the analysis.
したがつて、本発明の目的は、絞り板の電子銃
側で発生したX線が絞り板を透過しないようにし
て、前記従来装置の問題点を解決することにあ
る。 Therefore, an object of the present invention is to solve the problems of the conventional apparatus by preventing X-rays generated on the electron gun side of the aperture plate from passing through the aperture plate.
このために、本発明においては、その汚れによ
る非点収差等が問題となる像観察時に使用する電
子線通過孔の周辺部の絞り板の厚みは十分に薄く
すると共に、X線分析時に使用する電子線通過孔
の周辺部の絞り板の厚みを十分大きくしX線透過
率を小としている。 For this reason, in the present invention, the thickness of the aperture plate around the electron beam passage hole used during image observation, where astigmatism due to contamination is a problem, is made sufficiently thin, and the thickness of the aperture plate used during X-ray analysis is made sufficiently thin. The thickness of the aperture plate around the electron beam passage hole is made sufficiently large to reduce the X-ray transmittance.
第4図は本発明の1実施例の平面図および側断
面図であり、12Aは絞り板、12Bはそこに穿
設された電子線通過孔である。この例では、絞り
板12Aには4個の電子線通過孔12Bが穿設さ
れ、右2個の電子線通過孔12Bがある部分Rの
厚みは、左2個の電子線通過孔がある部分Lの厚
みよりも厚く構成されている。 FIG. 4 is a plan view and a side sectional view of one embodiment of the present invention, where 12A is a diaphragm plate and 12B is an electron beam passage hole bored therein. In this example, four electron beam passing holes 12B are formed in the aperture plate 12A, and the thickness of the portion R where the two right electron beam passing holes 12B are located is the same as the thickness of the portion R where the two left electron beam passing holes are located. It is configured to be thicker than the thickness of L.
このように、1枚の絞り板12Aの厚みを部分
的に異ならせておくことにより、像観察に対して
特に汚れによる非点収差が問題となる場合には絞
り板の薄い部分Lを使用し、X線分析に際して
は、散乱X線の透過に起因する悪影響を除去する
ため絞り板12Aの厚い部分Rを使用するように
することができる。 In this way, by partially varying the thickness of one aperture plate 12A, the thinner part L of the aperture plate can be used when astigmatism due to dirt is a problem for image observation. During X-ray analysis, the thick portion R of the aperture plate 12A can be used to eliminate the adverse effects caused by the transmission of scattered X-rays.
厚い部分Rは熱伝導が良いため、温度が上らず
薄い部分Lと比較して汚れが付着し易いが、像観
察の厳密さに較べ非点収差による影響が少ないた
め、実用上全く問題ない。なお、図では薄い部分
と厚い部分が一体となつているが、これを2枚に
分けても効果は同じである。 Since the thick part R has good thermal conductivity, the temperature does not rise and dirt is more likely to adhere to it than the thin part L, but compared to the strictness of image observation, the influence of astigmatism is small, so there is no problem in practice. . Note that in the figure, the thin part and the thick part are integrated, but the effect is the same even if this is divided into two parts.
第5図はモリブデン製の板を使用し、厚みをパ
ラメータとした場合のX線の波長に対するX線透
過率を示すグラフである。曲線Aは厚み10μmの
場合を、曲線13は100μmの場合を示す。 FIG. 5 is a graph showing the X-ray transmittance versus X-ray wavelength when a molybdenum plate is used and the thickness is taken as a parameter. Curve A shows the case when the thickness is 10 μm, and curve 13 shows the case when the thickness is 100 μm.
この図から分るように、モリブデン製絞り板1
2によるX線の透過率は、たとえばCu―Kα線
(λ=1.542Å、ε=8.04KeV)で、絞り板厚み10
μmのとき(曲線A)20.4%であるのに対し、厚
み100μm(曲線B)では0.0%となり問題なくな
る。Fe―Kα線(λ=0.937Å、ε=6.4KeV)で
も、10μm厚みでは4.6%程度の透過率がある
が、100μm厚みでは0.0%となる。 As you can see from this figure, molybdenum aperture plate 1
The X-ray transmittance according to 2 is, for example, Cu-Kα ray (λ = 1.542 Å, ε = 8.04 KeV) and the aperture plate thickness is 10
When the thickness is 100 μm (curve A), it is 20.4%, but when the thickness is 100 μm (curve B), it is 0.0%, which is no problem. Even for Fe-Kα rays (λ = 0.937 Å, ε = 6.4 KeV), the transmittance is about 4.6% at a thickness of 10 μm, but it becomes 0.0% at a thickness of 100 μm.
ほとんどの場合、この種の装置の材質は、鉄、
真鍮、燐青銅、ステンレス鋼であり、これらの材
質もほゞ同じ透過率を示すので、波長1Å以下の
X線はほとんど考慮しなくてよい。 In most cases, the materials of this type of equipment are iron,
These materials are brass, phosphor bronze, and stainless steel, and since these materials exhibit almost the same transmittance, there is almost no need to consider X-rays with a wavelength of 1 Å or less.
なお、以上に述べた絞り板の厚みは単なる例示
であつて、これに限定されるものではなく、使用
目的に応じて最適厚みの絞り板を使用できるのは
当然であり、またそのようにすることによつて最
高の効果を達成することができる。 It should be noted that the thickness of the aperture plate described above is merely an example, and is not limited to this. It is a matter of course that the aperture plate with the optimum thickness can be used depending on the purpose of use, and it is possible to do so. The best effect can be achieved by doing so.
以上詳細に説明したように、本発明によれば、
部分的に厚みの異なる絞り板または厚みの異なる
複数の絞り板を同一ホルダに支持し、真空ケース
外部より選択制御可能とし、像観察とX線分析に
応じて、使用する電子線通過孔を切換えることに
より、両者に対してそれぞれ最適な絞り作用を行
なわせることが可能であると共に、さらにつぎの
ような効果を奏することができる。 As explained in detail above, according to the present invention,
Aperture plates with partially different thicknesses or multiple aperture plates with different thicknesses are supported in the same holder and can be selectively controlled from outside the vacuum case, allowing the electron beam passage hole to be used to be switched according to image observation and X-ray analysis. By doing so, it is possible to perform the optimal throttling action on both of them, and the following effects can also be achieved.
(1) 厚い部分の絞り板が一体材質の為、絞り上お
よび絞りより電子源側で発生したX線の吸収が
完全に効率よく出来る。(1) Since the thick part of the aperture plate is made of a single piece of material, X-rays generated above the aperture and on the side of the electron source from the aperture can be completely and efficiently absorbed.
(2) 薄膜部の絞りにはカバー等を取付けないの
で、熱伝導の小さい状態を保つことが出来、周
辺に付着したコンタミネイシヨンの加熱昇華機
能を低下させない。(2) Since no cover etc. is attached to the aperture of the thin film part, it is possible to maintain a state of low heat conduction, and the heating sublimation function of contamination attached to the surrounding area is not deteriorated.
第1図はEDX付SEMの概略説明図、第2図は
EDX付TEMの概略説明図、第3図は対物レンズ
付近の拡大図とX線の径路を示す図、第4図は本
発明に用いる絞り板の拡大平面図および断面図、
第5図はX線の透過率を示すグラフである。
1…電子銃、4,5…集束レンズ、7…対物レ
ンズ、8…試料、10…X線検出器、11…電子
プローブ、12…絞りホルダ、12A…絞り板、
13…真空ケース、14…分析装置。
Figure 1 is a schematic diagram of the SEM with EDX, Figure 2 is
A schematic explanatory diagram of a TEM with EDX, Fig. 3 is an enlarged view of the vicinity of the objective lens and a diagram showing the path of X-rays, Fig. 4 is an enlarged plan view and cross-sectional view of the aperture plate used in the present invention,
FIG. 5 is a graph showing the transmittance of X-rays. DESCRIPTION OF SYMBOLS 1... Electron gun, 4, 5... Focusing lens, 7... Objective lens, 8... Sample, 10... X-ray detector, 11... Electron probe, 12... Aperture holder, 12A... Aperture plate,
13...Vacuum case, 14...Analyzer.
Claims (1)
どの観察や、定性・定量分析などのX線分析を行
うことのできる電子線応用装置において、 試料位置の前段にあつて、電子プローブを形成
するためのレンズに挿入される絞り板が複数の電
子線通過孔を有し、 前記電子線通過孔が真空容器外から選択切換え
られると共に、 一部の電子線通過孔は、電子線照射によつて温
度上昇し易い、薄い絞り板部に形成され、 他の電子線通過孔はX線吸収機能をもつ、一体
材質の厚い絞り板部に形成されたことを特徴とす
る電子線応用装置。[Scope of Claims] 1. In an electron beam application device that can irradiate a sample with an electron beam and perform X-ray analysis such as observation of transmission and secondary electron images and qualitative and quantitative analysis, In this case, an aperture plate inserted into a lens for forming an electron probe has a plurality of electron beam passing holes, and the electron beam passing holes are selectively switched from outside the vacuum vessel, and some of the electron beam passing holes are selectively switched from outside the vacuum vessel. The holes are formed in a thin diaphragm plate whose temperature easily rises due to electron beam irradiation, and the other electron beam passage holes are formed in a thick diaphragm plate made of a single piece of material that has an X-ray absorption function. Electron beam applied equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13977079A JPS5665445A (en) | 1979-10-31 | 1979-10-31 | Electron beam applying device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13977079A JPS5665445A (en) | 1979-10-31 | 1979-10-31 | Electron beam applying device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5665445A JPS5665445A (en) | 1981-06-03 |
JPS624818B2 true JPS624818B2 (en) | 1987-02-02 |
Family
ID=15252989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13977079A Granted JPS5665445A (en) | 1979-10-31 | 1979-10-31 | Electron beam applying device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5665445A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS455382Y1 (en) * | 1966-04-06 | 1970-03-14 | ||
JPS5258354A (en) * | 1975-11-07 | 1977-05-13 | Hitachi Ltd | Electronic beam iris unit |
-
1979
- 1979-10-31 JP JP13977079A patent/JPS5665445A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS455382Y1 (en) * | 1966-04-06 | 1970-03-14 | ||
JPS5258354A (en) * | 1975-11-07 | 1977-05-13 | Hitachi Ltd | Electronic beam iris unit |
Also Published As
Publication number | Publication date |
---|---|
JPS5665445A (en) | 1981-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7221731B2 (en) | X-ray microscopic inspection apparatus | |
US8173952B2 (en) | Arrangement for producing electromagnetic radiation and method for operating said arrangement | |
US8158937B2 (en) | Particle beam system | |
JP4826632B2 (en) | X-ray microscope and X-ray microscope method | |
JP7384868B2 (en) | Charged particle blocking element, exposure apparatus equipped with such an element and method of using such an exposure apparatus | |
US5033074A (en) | X-ray colllimator for eliminating the secondary radiation and shadow anomaly from microfocus projection radiographs | |
US4196367A (en) | X-ray tube | |
JPS624818B2 (en) | ||
US2418228A (en) | Electronic microanalyzer | |
Zhao et al. | Characterization of hard X-ray sources produced via the interaction of relativistic femtosecond laser pulses with metallic targets | |
JP2006012795A (en) | Transmission electron microscope | |
EP1679733A2 (en) | X-ray microscopic inspection apparatus | |
JP4079503B2 (en) | Analytical electron microscope | |
Johansen | A high performance Wehnelt grid for transmission electron microscopes | |
JPH05135725A (en) | Removing method for organic gas molecule in charged particle beam device | |
JPH08171882A (en) | Focused ion beam device and sample pretreatment method | |
JP3684106B2 (en) | Deposition equipment | |
JP3064335B2 (en) | Transmission electron microscope | |
JPH09134696A (en) | Scanning electron microscope | |
JPH06283128A (en) | Electron microscope | |
JPS6139351A (en) | X-ray generating system | |
JP2500423Y2 (en) | electronic microscope | |
JPH05182624A (en) | Objective diaphragm | |
JPS6324616Y2 (en) | ||
JPH0210381B2 (en) |