[go: up one dir, main page]

JPS6247484A - Device for forming deposited film by plasma cvd - Google Patents

Device for forming deposited film by plasma cvd

Info

Publication number
JPS6247484A
JPS6247484A JP18586085A JP18586085A JPS6247484A JP S6247484 A JPS6247484 A JP S6247484A JP 18586085 A JP18586085 A JP 18586085A JP 18586085 A JP18586085 A JP 18586085A JP S6247484 A JPS6247484 A JP S6247484A
Authority
JP
Japan
Prior art keywords
deposited film
electrode
substrate
reaction chamber
plasma cvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18586085A
Other languages
Japanese (ja)
Other versions
JPH0643632B2 (en
Inventor
Osamu Kamiya
神谷 攻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP18586085A priority Critical patent/JPH0643632B2/en
Publication of JPS6247484A publication Critical patent/JPS6247484A/en
Publication of JPH0643632B2 publication Critical patent/JPH0643632B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a good-quality deposited film without any damage on a substrate uniformly, homogeneously, steadily and stably by providing an electrode for collecting charged particles on the central part of a reaction vessel and circumferential arranging a rotatable cylindrical substrate with the electrode as the center. CONSTITUTION:A rotatable cylindrical substrate 6 is held by a holding means 61 equipped with a heating means 62 in a reaction chamber B, a high-frequency wave or a microwave generated from an oscillator 32 is introduced through a dielectric window 3 to generate plasma to excite a raw gas supplied from an inlet 5, and a thin film is deposited on the substrate 6 by the reaction in a deposited film forming device A by CVD. In the device, an electrode 7 for collecting charged particles is provided on the central part of the reaction chamber B and the cylindrical substrates 6 are coaxially and circumferentially arranged with the electrode 7 as the center. A negative voltage is impressed on the electrode 7 by a DC electric power source 72. The charged particles are collected and discharged by an exhauster 42 from a gap part 4. Consequently, neutral radical particles are moved to a side wall 1 and a deposited film is efficiently formed on the substrate 6.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、基体上に堆積膜、とりわけ機能性膜、殊に半
導体ディバイス、電子写真用の感光ディバイス、画像入
力用のラインセンサー、撮像ディバイス、光起電力素子
などに用いられるアモルファス状あるいは多結晶状等の
非単結晶状の堆積膜を形成するのに至適な、プラズマC
VD法による装置に関する。
Detailed Description of the Invention [Technical Field to Which the Invention Pertains] The present invention relates to a film deposited on a substrate, particularly a functional film, particularly a semiconductor device, a photosensitive device for electrophotography, a line sensor for image input, and an imaging device. The plasma C
This invention relates to a device using the VD method.

〔従来技術の説明〕[Description of prior art]

従来、半導体ディバイス、電子写真用感光ディバイス、
画像入力用ラインセンサー、撮像ディバイス、光起電力
素子等に使用する素子部材としては、アモルファスシリ
コン例えば水素又は/及びハロゲン(例えばフッ素、塩
素等)で補償されたアモルファスノリコン(以後ra 
5i(h、χ月と記す。)膜等が提案され、その中のい
(つかは実用に付されている。そして、そうしたa−3
i (H,χ)膜とともにそれ等a−3i (H,X)
膜等の形成法およびそれを実施する装置についてもいく
つか提案されていて、真空蒸着法、イオンブレーティン
グ法、いわゆるCVD法、プラズマCVD法、光CVD
法等があり、中でもプラズマCVD法は至適なものとし
て実用に付され、一般に広(用いられている。
Conventionally, semiconductor devices, photosensitive devices for electrophotography,
Element members used for image input line sensors, imaging devices, photovoltaic elements, etc. include amorphous silicon, such as amorphous silicon (hereinafter referred to as RA) compensated with hydrogen and/or halogen (e.g. fluorine, chlorine, etc.)
5i (denoted as h, χ month) membranes, etc. have been proposed, and some of them have been put into practical use.
i (H, χ) together with their a-3i (H, X)
Several methods for forming films and equipment have been proposed, including vacuum evaporation, ion blating, so-called CVD, plasma CVD, and photo-CVD.
Among them, the plasma CVD method has been put into practical use as the most suitable method and is generally widely used.

ところで前記プラズマCVD法は、高周波またはマイク
ロ波エネルギーを利用して堆積膜形成用ガスを基体表面
の近傍で励起種化(ラジカル化)して化学的相互作用を
生起させ、該基体表面に膜堆積せしめろというものであ
るというものであるところ、そのだめの装置として、第
5乃至6図に図示の装置が提案されている。
By the way, in the plasma CVD method, a deposited film forming gas is excited and speciated (radicalized) in the vicinity of the substrate surface using high frequency or microwave energy to cause chemical interaction, and a film is deposited on the substrate surface. However, the devices shown in FIGS. 5 and 6 have been proposed as an alternative device.

即ち第5図は、従来のプラズマCVD法による堆積膜形
成装置の断面略図であり、第6図は、第5図に図示の装
置の1−1線に沿った横断面略図である。
That is, FIG. 5 is a schematic cross-sectional view of a deposited film forming apparatus using the conventional plasma CVD method, and FIG. 6 is a schematic cross-sectional view of the apparatus shown in FIG. 5 taken along line 1--1.

図において、Aは、側壁11、底壁11′及び蓋部11
aで密封形成されてなる反応室Bを有する前記装置全体
を示す。13は、金属等の導電性材料からなる円筒であ
って、側壁に複数の穿孔1屓、15.・を有し、該円筒
は、反応室B内の中央に中心軸線に底部固定して立設さ
れていて、その底部が外部に設けられた排気系14に接
続している。12,12.・・・ば、加熱手段17を内
蔵し底部で回転手段16に機械接続している基体保持手
段上に裁置さtzた円筒基体であって、第6i4に図示
されろように、導1a性の円1笥13を中心VCして、
同一円周上に所定の間・隔を保って配列設置1りされて
いる。そして基体12,12.・・・は、側壁11と共
に両者が同電位に保持されるように電気的に接地19さ
れている。15は、ガス導入系であって、管手段を介し
て原料ガスが反応室B内に供給されるようにされている
。18は、高周波電力発生源であり、一端は導電性の円
筒1ろに電気的に接続され、他端は電気的に接地19さ
れている。なお前記導電性の円筒16と前記円筒基体1
2,12.・・・は、装置の操作時、前者はカソード電
極として、そして後者はアノード電極としてそれぞれ作
用する。
In the figure, A represents the side wall 11, the bottom wall 11', and the lid part 11.
The whole apparatus having a reaction chamber B formed in a sealed manner is shown in FIG. 13 is a cylinder made of a conductive material such as metal, and has a plurality of perforations in the side wall; 15. The cylinder is erected in the center of the reaction chamber B with its bottom fixed to the central axis, and its bottom is connected to an exhaust system 14 provided outside. 12,12. . . , a cylindrical substrate placed on a substrate holding means incorporating a heating means 17 and mechanically connected to the rotation means 16 at the bottom, as shown in No. 6i4, VC centered on Yen 1 and 13,
They are arranged and installed on the same circumference with predetermined intervals maintained. and base bodies 12, 12. ... are electrically grounded 19 together with the side wall 11 so that both are held at the same potential. Reference numeral 15 denotes a gas introduction system, through which raw material gas is supplied into the reaction chamber B through pipe means. Reference numeral 18 denotes a high frequency power generation source, one end of which is electrically connected to the conductive cylinder 1, and the other end electrically grounded 19. Note that the conductive cylinder 16 and the cylindrical base 1
2,12. ... respectively act as a cathode electrode and the latter as an anode electrode during operation of the device.

以上説明の、従来のプラズマCVD法による堆積膜形成
装置によろ成膜操作は、例えばa−3i(H,χ)堆積
膜を形成する場合について説明すると、円筒基体12を
それぞれの基体保持手段に載置しておき、排気系14を
操作して反応室B内を真空状態にし、円筒基体12,1
2.・・・のそれぞれをそれぞれの加熱手段17で所定
温度に加熱し、ガスj9人系15を介して原料ガスたる
ンランヵスが反応室B内に導入し、それと同時に、高周
波電力発生源18に連成して4直性の円筒13に高周波
電力な印加せしめ、且つ回転機構16,16゜・・・を
作動して円筒基体12,12.・・・を回転せしめるこ
とにより行われる。かく操作すると、カソード電極とし
て作用する円筒16とアノード電極として作用する円筒
基体12,12.・・・との間にプラズマ放電が生起し
、それにより/ランガスが励起・分解され、且つそれら
の間で化学的相互作用が起こり、前記基体のそれぞれの
表面上にa−31,(H,X)膜が堆積される。
The above-described film forming operation using a deposited film forming apparatus using the conventional plasma CVD method is performed in the case where, for example, an a-3i (H, χ) deposited film is formed. The cylindrical substrates 12 and 1 are placed in the cylindrical substrates 12 and 1 by operating the exhaust system 14 to create a vacuum inside the reaction chamber B.
2. ... are heated to a predetermined temperature by their respective heating means 17, and the raw material gas Nrankas is introduced into the reaction chamber B via the gas j9 human system 15, and at the same time, coupled to the high frequency power generation source 18. Then, high-frequency power is applied to the quadrilateral cylinder 13, and the rotation mechanisms 16, 16° . . . This is done by rotating... When operated in this manner, the cylinder 16 acts as a cathode electrode and the cylindrical substrate 12, 12 . acts as an anode electrode. A plasma discharge is generated between them, thereby exciting and decomposing the /lan gas, and chemical interaction occurs between them, so that a-31, (H, X) A film is deposited.

か(する、第5乃至6図に図示の従来のプラズマCVD
法による堆積膜形成装置は、好適なものとして採用され
ているところではあるが、操作上いくつかの問題点が存
在する。
(The conventional plasma CVD shown in FIGS. 5 and 6)
Although the apparatus for forming a deposited film by the method has been adopted as a suitable one, there are some problems in operation.

即ち、高周波電圧が円筒15に印加されると、反応室B
内に導入されている原料ガス(例えば/ランガス)のガ
ス分子は励起・分解されてプラスマ化し、電子、イオン
粒子、中性ラジカル粒子等になる。これらの粒子は、回
転している円筒基体12,12.・・・のそれぞれの表
面近傍に飛来し、堆積膜を形成する。ここで、堆積膜の
形成に寄与するものは、主として中性ラジカル粒子であ
るが、プラズマ中には同時に電子、イオン粒子が多く存
在しており、このため、成膜の過程において、前記電子
やイオン粒子は形成中あるいは形成後の堆積膜に衝突し
、その結果としてグングリングボンド、ボイド等の構造
欠陥をつくってしまい、形成される膜の品質を低下させ
てしまう。このことが、高品質でしかも特性の均一な堆
積膜を形成する際に大きな問題となっていた。
That is, when a high frequency voltage is applied to the cylinder 15, the reaction chamber B
The gas molecules of the raw material gas (for example, run gas) introduced into the chamber are excited and decomposed to become plasma, and become electrons, ion particles, neutral radical particles, etc. These particles are deposited on rotating cylindrical substrates 12, 12 . ... fly to the vicinity of each surface and form a deposited film. Here, what contributes to the formation of the deposited film is mainly neutral radical particles, but there are also many electrons and ion particles in the plasma, so in the process of film formation, the electrons and ion particles The ion particles collide with the deposited film during or after formation, resulting in the creation of structural defects such as gungling bonds and voids, which deteriorate the quality of the formed film. This has been a major problem in forming a deposited film of high quality and uniform properties.

〔発明の目的〕[Purpose of the invention]

本発明は、上述のごとき従来の装置における諸問題を克
服して、半導体ディバイス、電子写真用感光ディバイス
、画像入力用ラインセンサー、撮像ディバイス、光起電
力素子、その他の各種エレクトロニクス素子、光学素子
等に用いる素子部材としての堆積膜を、プラズマCVD
法により、定常的に安定して形成しうろ装置を提供する
ことを目的とするものである。
The present invention overcomes the problems in conventional devices as described above, and provides semiconductor devices, photosensitive devices for electrophotography, line sensors for image input, imaging devices, photovoltaic devices, various other electronic devices, optical devices, etc. The deposited film as an element member used for
The purpose of this invention is to provide a wafer device that can be formed stably on a regular basis.

即ち、本発明の主たろ目的は、プラズマ衝繋による堆積
膜の損傷をなくし、均一かつ均質にして、良質の、優れ
た所望の特性を有する堆積膜を定常的に安定して形成し
つるプラズマCVD法による堆積膜の形成装置を提供す
ることにある。
That is, the main object of the present invention is to eliminate damage to the deposited film due to plasma collision, to make it uniform and homogeneous, and to constantly and stably form a deposited film of good quality and excellent desired characteristics. An object of the present invention is to provide an apparatus for forming a deposited film using a CVD method.

まだ、本発明の他の目的は、形成される堆積膜の膜厚及
び膜質の制御を容易に行なうことができ、膜厚分布が均
一でかつ膜質が均一な堆積膜を形成することができるプ
ラズマCVD法による堆積膜の形成装置を提供すること
にある。
Still another object of the present invention is to provide a plasma that can easily control the thickness and quality of the deposited film to be formed, and can form a deposited film with a uniform thickness distribution and uniform quality. An object of the present invention is to provide an apparatus for forming a deposited film using a CVD method.

〔発明の構成、効果〕[Structure and effect of the invention]

本発明者は、第5乃至6図に図示の従来のプラズマCV
D法による堆積膜形成装置についての前述の諸問題を克
服して、上述の目的を達成すべく鋭意研究を重ねだ結果
、前記従来装置の中央部に荷電粒子捕収電極を設けた場
合、該従来装置についてのAiT述の諸問題を解決して
、上述の本発明の目的を達成できる知見を得、本発明を
完成するに至った。
The present inventor has discovered the conventional plasma CV shown in FIGS. 5 and 6.
As a result of extensive research in order to overcome the above-mentioned problems with the D-method deposited film forming apparatus and achieve the above objectives, we found that when a charged particle collection electrode is provided in the center of the conventional apparatus, The present invention has been completed by solving the various problems described by AiT regarding the conventional device and by obtaining knowledge that enables the above-mentioned object of the present invention to be achieved.

即ち本発明の装置は、反応室内に設置された基体上に、
高周波またはマイクロ波を用いて堆積膜を形成するプラ
ズマCVD法による堆積膜形成装置において、該反応室
の中心部に荷電粒子を捕収するための電極を設け、該電
極を中心にして同心円上に回動可能な基体設置手段を設
けてなることを特徴とする。
That is, in the apparatus of the present invention, on a substrate installed in a reaction chamber,
In a deposited film forming apparatus using a plasma CVD method that uses high frequency waves or microwaves to form a deposited film, an electrode for capturing charged particles is provided in the center of the reaction chamber, and a concentric circle is formed around the electrode. It is characterized by being provided with a rotatable base body installation means.

か(する本発明の装置においては、成膜に望ましくない
荷電粒子は捕収電極に捕束されてしまうので、そうした
荷電粒子が基体面に達する機会はなくなり、したがって
それらが形成中あるいは形成後の堆積膜に衝突して堆積
膜に構造欠陥をもたらすことがなくなり、1だ、放射さ
れる高周波またはマイクロ波の電界強度分布の基体近傍
での一様化が促進されるので、前述の従来装置に比較し
て成膜速度を著しく改善することができると共に、品質
、厚さ、そして電気的、光学的、光導電的%性等の全て
の点で優れた堆積膜製品を常時安定して量産できる。
In the apparatus of the present invention, charged particles that are undesirable for film formation are captured by the collection electrode, so there is no chance for such charged particles to reach the substrate surface, and therefore, they may not be present during or after formation. This eliminates the possibility of colliding with the deposited film and causing structural defects in the deposited film, and (1) uniformity of the electric field strength distribution of the emitted high frequency or microwave near the substrate is promoted, which makes it possible to improve the efficiency of the conventional device described above. In addition to being able to significantly improve the film formation speed in comparison, it is also possible to constantly and stably mass produce deposited film products that are excellent in all aspects such as quality, thickness, and electrical, optical, and photoconductive properties. .

本発明の装置により堆積膜を形成するについて使用され
る原料カスは、旨周波またはマイクロ波のエネルギーに
より励起種化し、化学的相互作用して基体表面上に所期
の堆積膜を形成する類のものであれば何れのものであっ
ても採用することができるが、例えばa−8i (H,
X)膜を形成する場合であれば、具体的には、ケイ素に
水素、ハロゲン、あるいは炭化水素等が結合した7ラン
類及びハロゲン化シラン類等のガス状態のもの、または
容易にガス化しつるものをガス化したものを用いること
ができる。これらの原料ガスは1種を使用してもよ(、
あるいは2種以上を併用してもよい。
The raw material waste used to form the deposited film by the apparatus of the present invention is of the kind that is excited by frequency or microwave energy and chemically interacts with it to form the desired deposited film on the substrate surface. Any type of material can be used as long as it is, but for example, a-8i (H,
X) If a film is to be formed, specifically, materials in a gaseous state such as 7ranes and halogenated silanes in which hydrogen, halogen, or hydrocarbon, etc. are bonded to silicon, or materials that are easily gasified. Gasified materials can be used. You can use one type of these raw material gases (
Alternatively, two or more types may be used in combination.

また、これ等の原料ガスは、He、Ar等の不活性ガス
により稀釈して用いることもある。さらに、a−3i 
(E(、x)膜はP型不純物元素又はn型不純物元素を
ドーピングすることが可能であり、これ等の不純物元素
を構成成分として含有する原料ガスを、単独で、あるい
は前述の原料ガスまたは/および稀釈用ガスと混合して
反応室内に導入することができろ。
Further, these raw material gases may be used after being diluted with an inert gas such as He or Ar. Furthermore, a-3i
(The E(, / and can be mixed with a diluting gas and introduced into the reaction chamber.

基体については、導電性のものであっても、半導電性の
ものであっても、あるいは電気絶縁性のものであっても
よく、具体的には金属、セラミックス、ガラス等が挙げ
られる。そして成膜操作時の基体温度は、特に制限され
ないが、30〜450℃の範囲とするのが一般的であり
、好ましくは50〜350℃である。
The substrate may be conductive, semiconductive, or electrically insulating, and specific examples thereof include metal, ceramics, glass, and the like. The substrate temperature during the film forming operation is not particularly limited, but is generally in the range of 30 to 450°C, preferably 50 to 350°C.

また、堆積膜を形成するにあたっては、原料ガスを導入
するrq+jに反応室内の圧力を5X10−6Torr
以下、好ましくはlX1O−6Torr以下とし、原料
ガスを導入した時には反応室内の圧力を1X 10 ”
〜I Torr、好ましくは5 X 10−” 〜I 
Tarrとするのが望ましい。
In addition, when forming a deposited film, the pressure inside the reaction chamber is set to 5X10-6 Torr at rq+j where the raw material gas is introduced.
Hereinafter, it is preferably 1X1O-6 Torr or less, and when the raw material gas is introduced, the pressure inside the reaction chamber is 1X10''.
~I Torr, preferably 5 X 10-” ~I
It is desirable to set it to Tarr.

なお、本発明の装置による堆積膜形成は、通常は、前述
したように原料ガスを事前処理(励起種化)することな
(反応室に導入し、そこで高周波またはマイクロ波のエ
ネルキーにより励起種化し、化学的相互作用を生起せし
めることにより行われるが、二種以上の原料ガスを使用
する場合、その中の一種を事前に励起種化し、次いで反
応室に導入するようにすることも可能である。
Note that the deposited film formation by the apparatus of the present invention is usually performed without pre-treating (exciting speciation) the raw material gas as described above (introducing it into a reaction chamber, where it is excited and specidizing with high frequency or microwave energy). This is carried out by causing chemical interaction, but when using two or more types of raw material gases, it is also possible to excitedly species one of them in advance and then introduce it into the reaction chamber. .

以下、本発明のプラズマCVD法による堆積膜形成装置
を、第1乃至4図に図示の実施例により更に詳しく説明
するが、前記装置はこれらによって限定されるものでは
ない。
Hereinafter, the apparatus for forming a deposited film using the plasma CVD method of the present invention will be explained in more detail with reference to the embodiments shown in FIGS. 1 to 4, but the apparatus is not limited thereto.

第1乃至2図は、本発明のプラズマCVD法による堆積
膜形成装置の断面略図であり、第3乃至4図は、それぞ
れ、それら装置のII−In線、III −In線に沿
った横断面略図である。
1 and 2 are schematic cross-sectional views of a deposited film forming apparatus using the plasma CVD method of the present invention, and FIGS. 3 and 4 are cross-sectional views of the apparatus along the II-In line and the III-In line, respectively. This is a schematic diagram.

第1図において、Aは、側壁1、底壁1′及び着脱自在
の蓋部2で密封形成されてなる反応室Bを有する本発明
のプラズマCVD法による堆積膜形成装置全体を示す。
In FIG. 1, A shows the entire apparatus for forming a deposited film by the plasma CVD method of the present invention, which has a reaction chamber B sealed with a side wall 1, a bottom wall 1', and a removable lid part 2.

ろは、誘電体窓であって、該窓を介して、高周波または
マイクロ波発振器32から導波路61を伝搬して来る高
周波またはマイクロ波が反応室B内に放射される。4は
、第6図に示されるように、誘電体窓3を円軸的に包囲
し導波路31から絶縁され且つ反応室B内に開口してい
る排気間隙部であり、該間隙部4は、排気装置42にバ
ルブ43を介して接続されている導管41に連通してい
る。5は、原料ガスの反応室B内への導入口であり、バ
ルブ52を介してガス供給源51に接続されている。
The lower side is a dielectric window through which high frequency or microwave waves propagating through the waveguide 61 from the high frequency or microwave oscillator 32 are radiated into the reaction chamber B. As shown in FIG. 6, reference numeral 4 denotes an exhaust gap portion that circularly surrounds the dielectric window 3, is insulated from the waveguide 31, and is open into the reaction chamber B. , communicates with a conduit 41 which is connected via a valve 43 to an exhaust device 42 . 5 is an inlet for introducing raw material gas into the reaction chamber B, and is connected to a gas supply source 51 via a valve 52 .

7は、アルミニウム、ステンレス等の導電性の材料で構
成されてなる荷電粒子を捕収するための電極であり、先
端が誘電体窓乙の上部空間でその中心位置すなわち反応
室Bの中心に位置するように、蓋部2の中心部に着脱自
在式に設けられた絶縁部71を介して反応室Bの空間に
垂下設置されていて、他端は外部に設けられている直流
電源72に接続手段76を介して接続されている。61
は、加熱手段62を内蔵する円筒状基体6の保持手段で
あり、第6図に示されるように、反応室B内にあって、
荷電粒子捕収電極7を取り巻き、且つそれと同軸的に同
一円周上に所定の間隔(少くとも1龍以上)を保って複
数個設置されている。円筒状基体を載置した基体保持手
段6i、6i、・・・は、それぞれ支持脚63゜63、
・・・により支持されており、それら支持脚はそれぞれ
外部の回転駆動手段64,64.・・・に機械連結され
、左右いずれの方向にも回転できるようにされている。
Reference numeral 7 denotes an electrode for capturing charged particles, which is made of a conductive material such as aluminum or stainless steel, and its tip is located at the center of the space above the dielectric window B, that is, at the center of the reaction chamber B. As shown in FIG. They are connected via means 76. 61
is a holding means for the cylindrical substrate 6 containing a heating means 62, and as shown in FIG. 6, is located in the reaction chamber B,
A plurality of electrodes are installed around the charged particle collection electrode 7 and coaxially with the charged particle collection electrode 7 on the same circumference at a predetermined interval (at least one distance). The substrate holding means 6i, 6i, .
. . , and the supporting legs are respectively supported by external rotary drive means 64, 64 . It is mechanically connected to... and can rotate in either left or right direction.

前記支持脚63 、63 、・・・は、それぞれ側壁1
と共に電気的に接地8されていて、同者が同電位に保持
されるようにされている。
The support legs 63 , 63 , . . . are respectively attached to the side wall 1
Both are electrically grounded 8 and held at the same potential.

以上説明の第1図および第3図に図示の、本発明のプラ
ズマCVD法による堆積膜形成装置Aにおいては、原料
ガスの導入された反応室B内に、誘電体窓6を介して高
周波またはマイクロ波が放射されろことによりプラズマ
放電が惹起され、それにより原料ガスが励起 分解され
るが、その際生成する成膜に好ましくない荷電粒子は捕
収電極中に引き寄せられ、排気装置42による排気作用
により系内を下降し、間隙部4から排出され、一方、成
膜に寄与するところの生成される中性ラジカル粒子等、
例えば原料ガスがSiH4である場合Si”、SiH”
、SiH2”等は、反応室Bの側壁方向に、回転してい
る円筒状基体6.6.・・・によろ作用も相俟って進行
してそれぞれの基体表面近傍に一様に分散し、基体表面
との反応、相互間での反応、導入される原料ガス中の特
定成分との反応等を介してそれぞれの基体表面に一様に
均一に堆積して堆積膜が形成されろ。したがって当該本
発明の装置においては、従来装置にみられる電子やイオ
ン粒子の衝突による構造欠陥の問題、不純物混入の問題
は起ることがなく、品質、厚さ、そして電気的、光学的
、光導電的特性の全ての点で優れた所望の堆積膜製品が
常時安定して効率的に得られる。
In the deposited film forming apparatus A according to the plasma CVD method of the present invention shown in FIGS. 1 and 3 described above, high-frequency or Plasma discharge is induced by the microwave radiation, which excites and decomposes the source gas, but the charged particles that are generated at this time and are undesirable for film formation are drawn into the collection electrode and are exhausted by the exhaust device 42. As a result, neutral radical particles, etc., which are generated and which contribute to film formation, descend in the system and are discharged from the gap 4.
For example, if the source gas is SiH4, Si", SiH"
, SiH2'', etc., proceed in the direction of the side wall of the reaction chamber B due to the shoring action of the rotating cylindrical substrate 6, 6, etc., and are uniformly dispersed near the surface of each substrate. A deposited film is formed by uniformly depositing on each substrate surface through reactions with the substrate surface, reactions with each other, reactions with specific components in the introduced raw material gas, etc. In the device of the present invention, problems of structural defects caused by collisions of electrons and ion particles and problems of impurity contamination, which are seen in conventional devices, do not occur, and problems such as quality, thickness, electrical, optical, and photoconductive properties do not occur. A desired deposited film product excellent in all aspects of physical properties can always be obtained stably and efficiently.

第2図および第4図に図示の装置は、第1図および第6
図に図示の装置の変形であって、該装置も本発明のプラ
ズマCVD法による堆積膜形成装置の好ましい実施例で
ある。
The apparatus shown in FIGS. 2 and 4 is similar to that shown in FIGS.
This is a modification of the apparatus shown in the figure, and is also a preferred embodiment of the apparatus for forming a deposited film by the plasma CVD method of the present invention.

第2図および第4図に図示の装置においては、排気口が
反応室Bの側壁1に開口4しており、高周波まだはマイ
クロ波を反応室B内に放射するための誘電体窓6は、該
反応室の底壁の中央部を切欠してその切欠部に密封嵌合
されていて、該透電体窓乙には高周波またはマイクロ波
発振器62に連通ずる高周波またはマイクロ波の導波路
601が固定されている。そして、荷電粒子捕収電極7
01は、第2図に図示のように先端閉鎖し、多数の穿孔
701’、 701’、・・・を有する管状のものにし
て、該電極の他端には、バルブ52を備えていて原料ガ
ス供給源51に連通ずる原料ガス供給管が配管50され
ている。そして該電極701は、蓋部2の貫通部でそれ
に密封絶縁702されて固定されており、該電極の部材
は外部に設けられている直流電源72と接続手段73に
よって、電気的に接続されている。
In the apparatus shown in FIGS. 2 and 4, the exhaust port is an opening 4 in the side wall 1 of the reaction chamber B, and a dielectric window 6 for radiating high-frequency waves or microwaves into the reaction chamber B is provided. A high frequency or microwave waveguide 601 is sealed in the notch cut out in the center of the bottom wall of the reaction chamber and communicated with a high frequency or microwave oscillator 62 in the conductive window. is fixed. And charged particle collection electrode 7
As shown in FIG. 2, the electrode 01 has a closed end and a tubular shape having a large number of perforations 701', 701', . A raw material gas supply pipe communicating with a gas supply source 51 is provided as piping 50 . The electrode 701 is sealed and insulated 702 and fixed thereto at the penetration part of the lid part 2, and the electrode member is electrically connected to a DC power source 72 provided outside by a connecting means 73. There is.

以上説明の第2図および第4図に図示の本発明のプラズ
マCVD法による堆積膜形成装置Aにおいては、誘電体
窓6を介して反応室B内に高周波またはマイクロ波が放
射されることによりプラズマ放電が惹起される。そして
、荷電粒子電極701の孔701’、701’、・・・
を介して図示の矢印方向に放出される原料ガスは前記の
惹起されるプラズマ放電の作用により励起・分解され、
その際生成する成膜に好ましくない荷電粒子は捕収電極
701の部材壁面沿いに引き寄せられ、一方、成膜に寄
与するところの中性ランカル粒子等、例えば原料ガスが
S i H4である場合Si”、SIH”、SiH2”
等は、孔701’、 701’、・・・を介して反応室
Bの側壁方向に水平状に放出される原料ガス流の作用、
そして回転している円筒状基体6,6.・・・の作用、
更に排気装置による排気作用が相俟って反応室Bの側壁
方向に進行してそれぞれの基体表面近傍に一様に分散し
、基体表面との反応、相互間での反応、導入原料ガス中
の特定成分との反応等を介してそれぞれの基体表面に一
様にして均一に堆積して、第1図および第6図に図示の
装置におけると同様に、所望の堆積膜が形成されろ。
In the deposited film forming apparatus A using the plasma CVD method of the present invention illustrated in FIGS. 2 and 4 described above, high frequency waves or microwaves are radiated into the reaction chamber B through the dielectric window 6. A plasma discharge is induced. Then, the holes 701', 701', . . . of the charged particle electrode 701
The raw material gas discharged in the direction of the arrow shown in the figure is excited and decomposed by the action of the plasma discharge caused above.
Charged particles that are generated at this time and are unfavorable for film formation are attracted along the wall surface of the member of the collection electrode 701, while neutral Rancal particles that contribute to film formation, for example, Si when the source gas is Si H4. ”, SIH”, SiH2”
etc. are the effects of the raw material gas flow discharged horizontally in the direction of the side wall of the reaction chamber B through the holes 701', 701', .
And rotating cylindrical bases 6,6. The action of...
Furthermore, due to the exhaust action of the exhaust device, the gas proceeds toward the side wall of the reaction chamber B and is uniformly dispersed near each substrate surface, causing reactions with the substrate surface, reactions with each other, and reactions in the introduced raw material gas. A desired deposited film is formed by uniformly depositing it on the surface of each substrate through reaction with a specific component, etc., as in the apparatuses shown in FIGS. 1 and 6.

以下に、本発明のプラズマCVD法による堆積膜形成装
置を操作して堆積膜を形成するところを例を挙げて説明
するが、以下の例は該装置の操作に限定的意義を持つも
のではない。
Hereinafter, the formation of a deposited film by operating the deposited film forming apparatus using the plasma CVD method of the present invention will be explained using an example, but the following example does not have a limiting meaning to the operation of the apparatus. .

実施例 第1図および第6図に図示の本発明のプラズマCVD法
による堆積膜形成装置を操作してAt円筒基体表面に光
導電性の堆積膜を形成した。
EXAMPLE A photoconductive deposited film was formed on the surface of an At cylindrical substrate by operating the deposited film forming apparatus using the plasma CVD method of the present invention shown in FIGS. 1 and 6.

即ち、5朋の間隙を保って配設されている基体保持手段
61.61 、・・・にAt薄板円筒基体6,6.・・
・を載置し、反応室B内を排気装置42を作動し且つバ
ルブ43を調節して約10−5Torrの真空度にした
。ついで、加熱手段62により基体温度を約300℃に
保持した。次に、堆積膜形成用の原料カスであるSiH
4を水素ガスで希釈して導入口5より反応室A内に導入
した。ガスの流量が安定したところで排気バルブ46を
調節して反応室Bの内圧を約2 X 10−’ Tor
rとした。該内圧が一定になったところで基体保持手段
6L61゜・・・の回転を開始し、次いで電極7に負の
直流電圧を印加すると共に、2.45 [)Hzのマイ
クロ波を反応室B内に放射した。この状態で20分間保
持し、円筒基体6,6.・・・表面にa−8i(H,X
)の堆積膜を形成した。その後、該基体を所定温度に冷
却したところで、それらを系外に取り出し、テストした
ところ、いずれの基体についても均一にして均質な堆積
膜が形成されており、それらはいずれも緒特性に富むも
のであった。
That is, the thin At cylindrical substrates 6, 6, . . . are attached to the substrate holding means 61, 61, .・・・
・ was placed in the reaction chamber B, and the exhaust device 42 was operated and the valve 43 was adjusted to create a vacuum of about 10 −5 Torr. Then, the substrate temperature was maintained at about 300° C. by heating means 62. Next, SiH, which is the raw material waste for forming the deposited film, is
4 was diluted with hydrogen gas and introduced into the reaction chamber A through the inlet 5. When the gas flow rate becomes stable, adjust the exhaust valve 46 to reduce the internal pressure of reaction chamber B to approximately 2 x 10-' Torr.
It was set as r. When the internal pressure becomes constant, the rotation of the substrate holding means 6L61° is started, and then a negative DC voltage is applied to the electrode 7, and a microwave of 2.45 [) Hz is applied to the reaction chamber B. radiated. This state is maintained for 20 minutes, and the cylindrical bases 6, 6. ...a-8i(H,X
) was formed. After that, when the substrates were cooled to a predetermined temperature, they were taken out of the system and tested, and it was found that uniform and homogeneous deposited films were formed on all substrates, and all of them were rich in properties. Met.

【図面の簡単な説明】 第1乃至2図は、本発明のプラズマCVD法による堆積
膜形成装置の断面略図であり、第3乃至4図は、それぞ
れ、それら装置の■−■線、■−■線に沿った横断面略
図である。第5図は、従来のプラズマCVD法による堆
積膜形成装置の断面略図であり、第6図は該装置の[−
1線に沿った横断面略図である。 第1乃至4図において、 1・・・側壁、1′・・・底壁、2・・・蓋部、6・・
・誘電体窓、31・・・導波路、62・・・高周波また
はマイクロ波発振器、4・・・排気間隙部、41・・・
導管、42・・・排気装置、43・・・バルブ、5・・
原料ガス導入口、51・・・原料ガス供給源、52・・
)iルブ、6・・・円筒状基体、61・・・基体保持手
段、62・・・加熱手段、66・・・支持脚、64・・
・回転駆動手段、7・・・荷電粒子捕収電極、71・・
・絶縁部、72・・・直流電源、76・・・リード線、
A・・・装置全体、B・・・反応室、′501・・・導
波路、50・・・配管結合部、701・・・荷電粒子捕
収電極、701′・・・穿孔、702・・・絶縁部。 第1乃至2図において、 11・・側壁、11′・・・底壁、11a・・・蓋部、
12・・・円筒基体、13・・・金属製円筒、13a・
・・穿孔、14・・・排気系、15・・・ガス導入系、
16・・・回転機構、17・・・加熱手段、18・・・
高周波電力発生源、19・・・接地。
[BRIEF DESCRIPTION OF THE DRAWINGS] Figures 1 and 2 are schematic cross-sectional views of the apparatus for forming a deposited film using the plasma CVD method of the present invention, and Figures 3 and 4 are the lines -■ and -, respectively, of the apparatus. ■It is a schematic cross-sectional view along the line. FIG. 5 is a schematic cross-sectional view of a deposited film forming apparatus using a conventional plasma CVD method, and FIG.
It is a schematic cross-sectional view taken along one line. In Figures 1 to 4, 1... side wall, 1'... bottom wall, 2... lid, 6...
- Dielectric window, 31... Waveguide, 62... High frequency or microwave oscillator, 4... Exhaust gap, 41...
Conduit, 42...Exhaust device, 43...Valve, 5...
Raw material gas inlet, 51... Raw material gas supply source, 52...
) i-lube, 6... Cylindrical base, 61... Base holding means, 62... Heating means, 66... Support leg, 64...
- Rotation drive means, 7... Charged particle collection electrode, 71...
・Insulation part, 72...DC power supply, 76...Lead wire,
A... Entire device, B... Reaction chamber, '501... Waveguide, 50... Piping connection part, 701... Charged particle collection electrode, 701'... Perforation, 702...・Insulation section. In FIGS. 1 and 2, 11...side wall, 11'...bottom wall, 11a...lid part,
12... Cylindrical base body, 13... Metal cylinder, 13a.
...perforation, 14...exhaust system, 15...gas introduction system,
16... Rotating mechanism, 17... Heating means, 18...
High frequency power generation source, 19...ground.

Claims (1)

【特許請求の範囲】[Claims] 反応室内に設置された基体上に、高周波またはマイクロ
波を用いて堆積膜を形成するプラズマCVD法による堆
積膜形成装置において、該反応室の中心部に荷電粒子を
捕収するための電極を設け、該電極を中心にして同軸円
周状に回動可能な基体設置手段を設けてなることを特徴
とする、プラズマCVD法による堆積膜形成装置。
In a deposited film forming apparatus using a plasma CVD method that forms a deposited film on a substrate placed in a reaction chamber using high frequency waves or microwaves, an electrode for capturing charged particles is provided in the center of the reaction chamber. . A deposited film forming apparatus using a plasma CVD method, comprising: a base mounting means that is rotatable coaxially and circumferentially about the electrode.
JP18586085A 1985-08-26 1985-08-26 Deposited film forming apparatus by plasma CVD method Expired - Lifetime JPH0643632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18586085A JPH0643632B2 (en) 1985-08-26 1985-08-26 Deposited film forming apparatus by plasma CVD method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18586085A JPH0643632B2 (en) 1985-08-26 1985-08-26 Deposited film forming apparatus by plasma CVD method

Publications (2)

Publication Number Publication Date
JPS6247484A true JPS6247484A (en) 1987-03-02
JPH0643632B2 JPH0643632B2 (en) 1994-06-08

Family

ID=16178144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18586085A Expired - Lifetime JPH0643632B2 (en) 1985-08-26 1985-08-26 Deposited film forming apparatus by plasma CVD method

Country Status (1)

Country Link
JP (1) JPH0643632B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277578A (en) * 1988-09-12 1990-03-16 Mitsubishi Electric Corp Thin film forming device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277578A (en) * 1988-09-12 1990-03-16 Mitsubishi Electric Corp Thin film forming device
US4962727A (en) * 1988-09-12 1990-10-16 Mitsubishi Denki Kabushiki Kaisha Thin film-forming apparatus

Also Published As

Publication number Publication date
JPH0643632B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
JPH06287760A (en) Plasma treating device and treatment
JPS61164219A (en) Apparatus for manufacturing thin-film transistor array
JP2582553B2 (en) Functional deposition film forming apparatus by plasma CVD
JPS6247484A (en) Device for forming deposited film by plasma cvd
JPH0633246A (en) Formation of deposited film and deposited film forming device
JPH024976A (en) Thin film formation
JPH06295866A (en) Plasma reaction system
JP3572204B2 (en) Plasma CVD apparatus and thin film electronic device manufacturing method
JP2689419B2 (en) Ion doping equipment
JPS6247485A (en) Device for forming deposited film by plasma cvd
JPS62235471A (en) Deposited film forming device by plasma cvd method
JPH051072Y2 (en)
JPH0686665B2 (en) Functional deposited film forming apparatus by microwave plasma CVD method
JPH0693454A (en) Glow discharge method and glow discharge device
JPH09256160A (en) Plasma cvd device and deposited film forming method by plasma cvd
JP2609866B2 (en) Microwave plasma CVD equipment
JPH05343194A (en) Microwave plasma processing apparatus and processing method thereof
JPS6362880A (en) Device for forming functional deposited film by microwave plasma cvd
JPS62119918A (en) Device for plasma chemical vapor deposition
JPS63479A (en) Device for forming functional deposited film by plasma cvd method
JPS62294180A (en) Device for forming deposited film by plasma cvd
JPS6244577A (en) Mass production apparatus for deposited film by plasma cvd method
JPS6233772A (en) Deposited film forming device by microwave plasma cvd method
JPS61295374A (en) Formation apparatus for accumulated film by glow discharge decomposition method
JPS6010617A (en) Substrate heating method in plasma cvd apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term