[go: up one dir, main page]

JPS6246957A - Positive characteristic semiconductor ceramic with reductionresistance - Google Patents

Positive characteristic semiconductor ceramic with reductionresistance

Info

Publication number
JPS6246957A
JPS6246957A JP60183471A JP18347185A JPS6246957A JP S6246957 A JPS6246957 A JP S6246957A JP 60183471 A JP60183471 A JP 60183471A JP 18347185 A JP18347185 A JP 18347185A JP S6246957 A JPS6246957 A JP S6246957A
Authority
JP
Japan
Prior art keywords
positive characteristic
characteristic semiconductor
zinc
semiconductor porcelain
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60183471A
Other languages
Japanese (ja)
Other versions
JPH078744B2 (en
Inventor
誠 堀
長屋 年厚
逸平 緒方
丹羽 準
直人 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP60183471A priority Critical patent/JPH078744B2/en
Priority to EP85116071A priority patent/EP0186095B1/en
Priority to AU51364/85A priority patent/AU572013B2/en
Priority to DE8585116071T priority patent/DE3579427D1/en
Priority to CA000498513A priority patent/CA1272589A/en
Publication of JPS6246957A publication Critical patent/JPS6246957A/en
Priority to US07/096,242 priority patent/US4834052A/en
Publication of JPH078744B2 publication Critical patent/JPH078744B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、キュリ一温度を越えると電気抵抗値が8しく
増大するPTC特性を有する正特性゛に導体化器に関す
るものであり、主として還元性雰囲気下で使用される自
己温度制御型ヒータ、温度センサ等に利用される耐還元
性を有する正特性半導体磁器に関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a positive conductor having a PTC characteristic in which the electrical resistance value increases by 8 times when the Curie temperature is exceeded. The present invention relates to a positive characteristic semiconductor porcelain having reduction resistance and used in self-temperature control type heaters, temperature sensors, etc. used in a hostile atmosphere.

[従来の技術] 従来チタン酸バリウムにY、La 、Sm 、Ce、Q
a等の希土類元素あるいはNb 、Ta等の遷移元素を
添加し、大気中、1200〜1400℃で焼成した磁器
において、キュリ一点で電気抵抗1直が急に増加する、
いわゆる正特性(PTC特性)を示すことが知られてい
る。そしてこの特性を利用し、ヒータ、温度センサ等に
使用されている。
[Prior art] Conventionally, Y, La, Sm, Ce, and Q were added to barium titanate.
In porcelain to which rare earth elements such as a or transition elements such as Nb and Ta are added and fired at 1200 to 1400°C in the atmosphere, the electrical resistance increases suddenly at one point.
It is known to exhibit so-called positive characteristics (PTC characteristics). Taking advantage of this characteristic, it is used in heaters, temperature sensors, etc.

従来の、チタン酸バリウム半導体を特徴とする特性半導
体!&器を使用した半導体素子は、水素ガス、或はガソ
リン等の還元性雰囲気中で使用された場合には、その特
徴であるPTC特性が劣化するという問題点があった。
A characteristic semiconductor featuring a conventional barium titanate semiconductor! Semiconductor devices using a 2-type device have a problem in that when used in a reducing atmosphere such as hydrogen gas or gasoline, the characteristic PTC characteristic thereof deteriorates.

例えば自己温度制御型ヒーターとして使用した場合には
、PTC特性の劣化(以下R−T劣化と言う)により、
制御されるべき温度になっても抵抗値が上がらず、最悪
の場合には、通電によりPTC素子が溶損づるという問
題があった。また、R−T劣化は還元性雰囲気中だ【プ
で生じるものではなく、窒素又はアルゴンガス等の中性
雰囲気中に43いても、程度の差はあれ、R−T劣化が
生じることもわかっている。
For example, when used as a self-temperature-controlled heater, due to deterioration of PTC characteristics (hereinafter referred to as R-T deterioration),
Even if the temperature reaches the temperature that should be controlled, the resistance value does not increase, and in the worst case, there is a problem that the PTC element may melt due to energization. In addition, RT deterioration does not occur in a reducing atmosphere (43), but it is also known that RT deterioration occurs to varying degrees even in a neutral atmosphere such as nitrogen or argon gas. ing.

以上のことからチタン酸バリウム半導体を主成分とする
正特性半導体磁器を使用した半導体素子の使用環境は限
定されざるを19なかった。また上記還元性雰囲気の環
境にて使用される場合には、第4図に示すように、樹脂
或は金属等のケース4に該素子11を封入し、環境から
遮蔽して使用せざるを得なかった。その為に放熱性の悪
化に伴う性能の低下、部品点数及び組付工数の増加に伴
うコスト高、等の問題点が生じていた。
As a result of the above, the environment in which semiconductor elements using positive characteristic semiconductor porcelain whose main component is barium titanate semiconductor has been limited has been limited. Furthermore, when used in the above-mentioned reducing atmosphere environment, the element 11 must be enclosed in a case 4 made of resin or metal and shielded from the environment as shown in Fig. 4. There wasn't. This has led to problems such as a decrease in performance due to poor heat dissipation, and high costs due to an increase in the number of parts and assembly man-hours.

[発明が解決しようとする問題点] 本発明は、上記問題点を克服するものであり、耐還元性
が良好で、かつ所定のケースに素子を封入する必要もな
い正特性半導体磁器を提供することを目的とする。
[Problems to be Solved by the Invention] The present invention overcomes the above-mentioned problems and provides a positive characteristic semiconductor porcelain that has good reduction resistance and does not require encapsulating an element in a predetermined case. The purpose is to

また本発明は、上記従来技術を克服するために本出願と
同一出願人が出願した未公知先出願に係わる耐還元性を
有する正特性半導体磁器(特許出願No、59−281
418)の改良に関する。
Furthermore, in order to overcome the above-mentioned prior art, the present invention relates to a positive characteristic semiconductor porcelain having reduction resistance (Patent Application No. 59-281) related to an unknown earlier application filed by the same applicant as the present application.
418).

該未公知先出願に係わる正特性半導体磁器において、フ
ラックス成分は、0.14〜2.88mff1部(7)
TiOzと、0.1〜1 、6Wflfll(7)A 
R203と、0.1〜1.61fM部(7)SiOzと
、から構成されている。本発明においては、この3成分
から成るフラックス成分に、さらに亜鉛化合物を追加し
て、所望の目的を達成するものである。
In the positive characteristic semiconductor porcelain related to the unknown earlier application, the flux component is 0.14 to 2.88 mff 1 part (7)
TiOz and 0.1~1,6Wffll(7)A
It is composed of R203 and 0.1 to 1.61 fM part (7) SiOz. In the present invention, a zinc compound is further added to the flux component consisting of these three components to achieve the desired purpose.

[問題点を解決するための手段] 本発明の耐還元性を有する正特性半導体磁器はチタン酸
バリウム系組成物と、 該チタン酸バリウム系組成物100撮影部に対し、0.
2〜1 、6’fim部ノア)Ltミt (A 、l!
 t O3)、0゜14〜2.88重撮影の二酸化チタ
ン(Ti 02 ) 、0.1〜1.6fflffi部
ノ二is化珪素(SiO2)、および上記チタン酸バリ
ウム系絹成物100モルに対し、含まれる亜鉛にl!i
liして該亜鉛含ffMr(0,05〜0.5モルであ
る亜鉛化合物とから構成されるフラックス成分と、から
なることを特徴とする。
[Means for Solving the Problems] The positive characteristic semiconductor porcelain having reduction resistance of the present invention includes a barium titanate-based composition, and a 0.00000000000000000000000 barium titanate-based composition.
2-1, 6'fim section Noah) Ltmit (A, l!
tO3), titanium dioxide (Ti02) of 0°14 to 2.88 times, silicon dioxide (SiO2) of 0.1 to 1.6fflffi, and 100 mol of the above barium titanate-based silk composition. On the other hand, the zinc contained in l! i
and a flux component consisting of the zinc-containing ffMr (0.05 to 0.5 mol of a zinc compound).

本発明の耐還元性を有する正特性半導体磁器に使用され
るチタン酸バリウムの主剤となる1欠間バリウム(Ba
 CO3)及び酸化チタン(TiOz)は、通常等モル
配合される。しかし使用目的によっては等モルである必
要はなく、一般式(1)あるいは(2)に示されるよう
なチタン酸バリウム系組成物とすることもできる。
One-intermittent barium (Ba
CO3) and titanium oxide (TiOz) are usually mixed in equimolar amounts. However, depending on the purpose of use, it is not necessary that the moles be equimolar, and a barium titanate composition as shown in general formula (1) or (2) may be used.

Bat  xM3xTiO3−−−−−−<1>BaT
i  l  yMsyo3  ・・−・・・(2)ここ
でMS及びMSは通常使用される希土類元素及び遷移元
素から選ばれる半導体イビ剤であり、MSとしてはYl
La、5IIISCe1Ga等の希土類元素の何れでら
よく、MSとしては、Nb、Ta等の遷移元素の何れで
−bよい。またX及びyの値はそれぞれ0.○01〜0
.005.0.0005〜0.005の範囲が望ましい
Bat xM3xTiO3---<1>BaT
i l yMsyo3 ... (2) Here, MS and MS are semiconductor cracking agents selected from commonly used rare earth elements and transition elements, and MS is Yl
Any rare earth element such as La, 5IIISCe1Ga, etc. may be used, and as the MS, any transition element such as Nb or Ta may be used. Also, the values of X and y are each 0. ○01~0
.. A range of 0.005.0.0005 to 0.005 is desirable.

本発明の最大の特徴であるフラックス成分は、アルミナ
(A文203)、二酸化チタン(Ti 02)、二酸化
珪素(Sin2)および亜鉛化合物とから構成され、各
フラックス成分の添加割合は、チタン酸バリウム系組成
物100m聞部に対し、Al zo3が0.2〜1.6
重i1部、T’i0zが0.14〜2.88重量部、S
i 02が0.1〜1.61ffi部および亜鉛化合物
がチタン酸バリウム系組成物を100モルとする場合、
含まれる亜鉛に換算して該亜鉛含量が0.05〜0.5
モルである。該フラックス成分は各成分とも該範囲内で
添加されることが必要であり、添加量が該範囲より少な
くなっても、また、多過ぎても、好ましくない。さらに
該フラックス成分の添加量の増大に伴い、該正特性半導
体磁器の比抵抗が大きくなる傾向がある。この不具合を
解決するには該フラックス成分は、チタン酸バリウム系
組成物100重量部に対し、A文203が0.2〜0.
4重量部、Ti Ozが0.14〜1.15重量部、及
ヒ5iOzが0.2〜0.8重量部およびチタン酸バリ
ウム系組成物を100モルとする場合、含まれる亜鉛に
換算して該亜鉛金回が0.05〜0゜2モル含まれてい
ることが望ましい。各成分がこの含有量の範囲にあれば
得られる正特性半導体磁器の比抵抗はその多くが100
Ω・cm以下となり自動車部品への応用に適している。
The flux component, which is the most distinctive feature of the present invention, is composed of alumina (A 203), titanium dioxide (Ti 02), silicon dioxide (Sin2), and a zinc compound, and the addition ratio of each flux component is barium titanate. Al zo3 is 0.2 to 1.6 per 100 m of the system composition.
Weight i 1 part, T'i0z 0.14 to 2.88 weight part, S
When i 02 is 0.1 to 1.61 parts ffi and the zinc compound is 100 mol of the barium titanate-based composition,
The zinc content is 0.05 to 0.5 in terms of zinc contained.
It is a mole. Each of the flux components needs to be added within the range, and it is not preferable if the amount added is less than the range or too much. Furthermore, as the amount of the flux component added increases, the specific resistance of the positive characteristic semiconductor ceramic tends to increase. In order to solve this problem, the flux component should have a content of 0.2 to 0.
4 parts by weight, 0.14 to 1.15 parts by weight of TiOz, 0.2 to 0.8 parts by weight of 5iOz, and 100 moles of the barium titanate-based composition, converted to the contained zinc. It is preferable that the zinc gold content is contained in an amount of 0.05 to 0.2 mol. If each component is within this content range, the resistivity of the positive characteristic semiconductor porcelain obtained is often 100.
It is less than Ωcm, making it suitable for application to automobile parts.

上記フラックス成分の一つである亜鉛化合物は、通常酸
化亜鉛(Zn O)であるが、これにより限定されるも
のではなく、所定の焼結条件下において亜鉛化合物とし
て本発明の正特性半導体磁器中に含まれるものであれば
よい。該亜鉛化合物の原料としては、ZnOでもよいし
、炭酸亜鉛(ZnCO3)、硝酸亜鉛(Zn  (NO
3) t ) 、塩化亜鉛(Zn CR2)’Nシュウ
酸亜鉛(Zn  (C204))又は弗化亜鉛(ZnF
t)等であってもよいし、またそれらの混合物であって
もよい。該原料は多くは仮焼又は焼成等の製造工程で多
くは酸化亜鉛になるが、原料の種類、焼成条件等により
ZnOにならないもの(例えばZnFz等)でもよいし
、その一部がZnOとならないものでもよい。
The zinc compound, which is one of the flux components mentioned above, is usually zinc oxide (ZnO), but is not limited to this. It is acceptable as long as it is included in The raw material for the zinc compound may be ZnO, zinc carbonate (ZnCO3), zinc nitrate (Zn (NO
3) t ), zinc chloride (Zn CR2)'N zinc oxalate (Zn (C204)) or zinc fluoride (ZnF
t), etc., or a mixture thereof. Most of these raw materials are converted into zinc oxide during manufacturing processes such as calcination or firing, but depending on the type of raw material, firing conditions, etc., it may be something that does not turn into ZnO (for example, ZnFz, etc.), or some of it may not turn into ZnO. It can be anything.

該原料としては、通常、ZnO又はZnCO3を用いる
As the raw material, ZnO or ZnCO3 is usually used.

上記フラックス成分のAJ2203、Ti O2又は5
iOzにおいても、焼成後の正特性半導体磁器中に含ま
れる成分が、各々ARzO3、Ti O2又はSi O
2であればよ(、その原料としては酸化物に限定されな
い。従って、該原料としてはA1等の各金属の水酸化物
等であってもよい。
AJ2203, TiO2 or 5 of the above flux components
In iOz, the components contained in the positive characteristic semiconductor porcelain after firing are ARzO3, TiO2 or SiO2, respectively.
2 (but the raw material is not limited to oxides. Therefore, the raw material may be hydroxides of various metals such as A1).

上記フラックス成分はチタン酸バリウムの主剤となるB
aCo3及びTi0z等と共に混合され、焼成される。
The above flux component is B, which is the main ingredient of barium titanate.
It is mixed with aCo3, TiOz, etc., and fired.

上記フラックス成分は、上記4成分を上記範囲内で添加
する事によって極めて良好な耐還元性を有する正特性半
導体磁器を1qることができるものである。また、上記
範囲内で上記各成分の比率、又はフラックス全体として
の添加量を変化させることにより、正特性半導体磁器の
結晶粒子の成長度合等の調整が可能となり、種々の性能
を有する正特性半導体磁器を得ることが可能となる。
By adding the above-mentioned four components within the above-mentioned ranges, the above-mentioned flux components can produce 1 q of positive characteristic semiconductor porcelain having extremely good reduction resistance. In addition, by changing the ratio of each of the above components or the total addition amount of the flux within the above range, it is possible to adjust the growth degree of crystal grains of positive characteristic semiconductor porcelain, thereby producing positive characteristic semiconductors with various performances. It becomes possible to obtain porcelain.

本発明の正特性半導体磁器には上記の成分以外に、チタ
ン酸ストロンチウム又はチタン酸鉛等のチタン酸塩、ジ
ルコン酸バリウム等のジルコン酸塩、錫酸バリウム等の
錫酸塩、等を含んでもよい。
In addition to the above-mentioned components, the positive characteristic semiconductor porcelain of the present invention may also contain titanates such as strontium titanate or lead titanate, zirconates such as barium zirconate, and stannates such as barium stannate. good.

なお、鉛成分に″ついては、仮焼後に添加して焼成時に
Ba Ti 03と固溶させるよりも、仮焼前に添加し
、仮焼時に固溶させた方が、耐還元性に有効である。
Regarding the lead component, adding it before calcination and making it a solid solution during calcination is more effective for reduction resistance than adding it after calcination and making it a solid solution with Ba Ti 03 during calcination. .

また、キュリ一点制御剤としてPb 、 Sr 、 z
rS3n等の元素を添加することも好ましく、PTC特
性を向上させる添加剤としてM n % F e −C
O等の元素を微量添加することも好ましい。
In addition, Pb, Sr, z as curri single point control agents
It is also preferable to add elements such as rS3n, and M n % Fe -C as an additive to improve PTC properties.
It is also preferable to add a trace amount of elements such as O.

本発明の正特性半導体磁器は従来と同様の方法で混合、
成形及び焼成して得られ゛る。゛その半導体化の過程は
次の通りである。
The positive characteristic semiconductor porcelain of the present invention is mixed in the same manner as before.
It is obtained by molding and firing.゛The process of making it into a semiconductor is as follows.

まず800〜1100℃の温度にてチタン酸バリウムが
生成するが、この状態ではまだ結晶格子が乱れている。
First, barium titanate is generated at a temperature of 800 to 1100°C, but in this state the crystal lattice is still disordered.

1200〜1280℃になるとフラックス成分の一部が
溶融し始め、チタン酸バリウムは急激に成長しながら半
導体化する。そしてフラックス成分が完全に溶融し、チ
タン酸バリウム粒子は該フラックス成分の液相内にて半
導体化する。このようにして焼成された後冷却行程に入
ると、フラックス成分の液相はチタン酸バリウム半導体
粒子を被覆しながら固化し、一体化する。
When the temperature reaches 1,200 to 1,280°C, a part of the flux component begins to melt, and barium titanate rapidly grows and becomes a semiconductor. Then, the flux component is completely melted, and the barium titanate particles are converted into a semiconductor in the liquid phase of the flux component. After being fired in this way, when a cooling process is started, the liquid phase of the flux component solidifies while covering the barium titanate semiconductor particles and becomes integrated.

本発明の正特性半導体ta器が耐還元性を有する機構に
ついては明確ではないが、フラックス成分がチタン酸バ
リウム半導体粒界を被覆し、還元性雰囲気から保護して
いる為であると推察される。
Although the mechanism by which the positive characteristic semiconductor TA device of the present invention has reduction resistance is not clear, it is presumed that it is because the flux component coats the barium titanate semiconductor grain boundaries and protects them from the reducing atmosphere. .

また、従来の正特性半導体磁器では吸水率が約0゜5m
m%であったのに対し、本発明の正特性半導体磁器の吸
水率は約0.01重量%以下とほとんど0%に近く、吸
水率が著しく低下している。この理由によって還元性物
質の侵入が少なくなっていることも耐還元性を有する一
因と考えられる。
In addition, conventional positive characteristic semiconductor porcelain has a water absorption rate of approximately 0°5m.
m%, whereas the water absorption rate of the positive characteristic semiconductor porcelain of the present invention is approximately 0.01% by weight or less, which is almost 0%, which is a significant decrease in water absorption rate. For this reason, the fact that the intrusion of reducing substances is reduced is considered to be one of the reasons for the reduction resistance.

[発明の効果] 本発明の正特性半導体磁器は還元性雰囲気中で使用され
てもR−T劣化がほとんど生じず、優れたPTC特性を
有している。従って窒素、炭酸ガス等の中性雰囲気のみ
ならず水素ガス又はガソリン等の還元性雰囲気において
も、樹脂や金属で密封する必要はなく、露出構造にて使
用づることが可能であるので、性能が向上するとともに
、製品設計の自由度が拡大する他、コス1〜の低減等に
対し特に効果がある。
[Effects of the Invention] The positive characteristic semiconductor porcelain of the present invention exhibits almost no RT deterioration even when used in a reducing atmosphere, and has excellent PTC characteristics. Therefore, it does not need to be sealed with resin or metal, and can be used in an exposed structure, improving performance not only in neutral atmospheres such as nitrogen or carbon dioxide gas, but also in reducing atmospheres such as hydrogen gas or gasoline. In addition to increasing the degree of freedom in product design, it is particularly effective in reducing costs by 1 or more.

また、本発明の正特性半導体磁器は、不純物、焼成条件
、及び半導体化剤の添加量等の影響を受けにくい為、安
価な工業用原料が使用できるなど、従来に比べ製造がは
るかに容易となる。
In addition, the positive characteristic semiconductor porcelain of the present invention is less affected by impurities, firing conditions, and the amount of semiconducting agent added, so it is much easier to manufacture than conventional materials, such as using inexpensive industrial raw materials. Become.

以上により、本発明の耐還元性を有する正特性半導体磁
器は、例えば、自動車用部品として吸気加熱ヒータ、燃
料ヒータ又は温度センサ等種々の製品への応用が可能で
ある。
As described above, the reduction-resistant positive characteristic semiconductor porcelain of the present invention can be applied to various products such as intake air heaters, fuel heaters, and temperature sensors as automobile parts, for example.

[試験例] 以下試験例により本発明の正特性半導体磁器の性能を説
明する。
[Test Example] The performance of the positive characteristic semiconductor porcelain of the present invention will be explained below using a test example.

(試験例1)−水素ガス中における耐還元性の検討 本試験例においてBaCO3、Tloz、A、i!20
3、Si 02、酸化イツトリウム(Y2O2>、zn
O又はZn CO3およびPbO又LtPbTiO3を
原料とした。なおこれらは全て工業用原料を用いた。こ
れらの原料をそれぞれ第1〜3表に示した55種類の組
成に配合し、それぞれメノウ玉石と共にボールミルにて
湿式で20時間粉砕混合を行なった。そして、これらの
混合物を乾燥した後約1100℃の調度で4時間仮焼し
た。こうしてj!7られた仮焼物に耐電圧(R,T1特
性)を向上させるため二酸化マンガン(MnO2)を微
■添加し、再びメノウ玉石とボールミルにて湿式で20
時間粉砕混合を行なった。乾燥後それぞれの混合粉末に
結合剤として10%のポリビニルアルコール水溶液を1
屯め%添加混合し、800k(1/ Cm ’の圧力で
プレス成形した。これらの成形物を空気中で約1320
℃にて約1時間焼成し、直径25mm、厚さ2.5mm
の円板状正特性半導体磁器を製造した。
(Test Example 1) - Examination of reduction resistance in hydrogen gas In this test example, BaCO3, Tloz, A, i! 20
3, Si 02, yttrium oxide (Y2O2>, zn
The raw materials were O or Zn CO3 and PbO or LtPbTiO3. Note that all of these used industrial raw materials. These raw materials were blended into 55 different compositions shown in Tables 1 to 3, and pulverized and mixed together with agate boulders in a wet manner for 20 hours in a ball mill. After drying these mixtures, they were calcined at about 1100° C. for 4 hours. Thus j! A slight amount of manganese dioxide (MnO2) was added to the calcined product to improve the withstand voltage (R, T1 characteristics), and it was wet-processed again using agate boulders and a ball mill for 20 minutes.
Time pulverization mixing was performed. After drying, add 10% polyvinyl alcohol aqueous solution as a binder to each mixed powder.
The mixture was press-molded at a pressure of 800k (1/cm').
Baked at ℃ for about 1 hour, diameter 25mm, thickness 2.5mm
A disk-shaped positive characteristic semiconductor porcelain was manufactured.

なお試験例No、24に係わる正特性半導体磁器の比抵
抗は42Ω・cm1キュリ一点は200℃、耐電圧は1
50Vであり、又、吸水率は0.01W【%とほとんど
零に近〈従来素子(0,5wt%)に比べ極めて低くか
った。
The specific resistance of the positive characteristic semiconductor porcelain related to Test Example No. 24 is 42Ω・cm1 Curie at 200℃, and the withstand voltage is 1
50V, and the water absorption rate was 0.01W%, which was almost zero (very low compared to the conventional element (0.5wt%)).

得られた55種類の正特性半導体磁器の特性を調べるた
め、各正特性半導体磁器の両面にN+ −AO両電極N
t無電解メッキ、Δgペースト)を付与し、大気中20
℃における電気抵抗値(比抵抗RO)を測定し、結果を
第1表、第2表、第3表に示す。また水素ガス雰囲気中
に各正特性半導体磁器を投入し、300℃にて、各正特
性半導体磁器の投入直後の電気抵抗値(R+ )及び3
0分後の電気抵抗値(R2)を測定し、次式(3)より
抵抗変化率〈ΔR)を測定した。
In order to investigate the characteristics of the 55 types of positive characteristic semiconductor porcelain obtained, N+ -AO double electrodes N were placed on both sides of each positive characteristic semiconductor porcelain.
t electroless plating, Δg paste) and 20 min in air.
The electrical resistance value (specific resistance RO) at ℃ was measured, and the results are shown in Tables 1, 2, and 3. In addition, each positive characteristic semiconductor porcelain was placed in a hydrogen gas atmosphere, and at 300°C, the electric resistance value (R+) and 3
The electrical resistance value (R2) after 0 minutes was measured, and the rate of change in resistance (ΔR) was measured using the following equation (3).

ΔR=100X(Rz−R+)/R+  ・・・(3)
ここでR2がR1に近い程、すなわちΔRが0に近い程
、耐還元性に優れている。
ΔR=100X(Rz-R+)/R+...(3)
Here, the closer R2 is to R1, that is, the closer ΔR is to 0, the better the reduction resistance is.

各正特性半導体磁器の評価は△RがO〜−10%を(0
)、−10〜−50%を(Δ)、−50%〜を(X)と
して第1表、第2表及び第3表に示す。
The evaluation of each positive characteristic semiconductor porcelain is that △R is O ~ -10% (0
), −10 to −50% is shown as (Δ), and −50% to −50% is shown as (X) in Tables 1, 2, and 3.

第1表において、チタン酸バリウム系組成物100[’
1部に対しフラックス成分としてAltO3が0.2〜
1.6重量部(以下重量%という。)Ti Ozが0.
14〜2.881ffi%、Si Ozが0.1〜1.
6[ft%、およびチタン酸バリウム系組成物100モ
ルに対し亜鉛化合物が0.05〜0.3モル(以下モル
%という。)含まれる正特性半導体磁器(N019〜2
2.24〜27.29.30,34〜55)は、主剤成
分が同一組成であるこれ以外の正特性半導体磁器(No
、12.17.18.28.31〜33(上記のうち対
応するNo、はNo、19〜22.29.30.34〜
55)、No 、16 (同No、:26.27))に
比べ△Rは−0,3〜−9,5と小さく(比較例では−
11〜−31)、明らかにll14 還元性に優れてい
る。また、特に望ましい範囲であるAg2O3が0.2
〜0.411%、r+otがo。
In Table 1, barium titanate-based composition 100['
AltO3 is 0.2 to 1 part as a flux component
1.6 parts by weight (hereinafter referred to as weight %) TiOz is 0.
14-2.881ffi%, SiOz is 0.1-1.
Positive characteristic semiconductor porcelain (N019-2
2.24-27.29.30, 34-55) are other positive characteristic semiconductor porcelains (No.
, 12.17.18.28.31-33 (corresponding No. of the above is No, 19-22.29.30.34-
55), No. 16 (Same No.: 26.27)), △R is small at -0.3 to -9.5 (-
11 to -31), clearly excellent in reducing properties of ll14. In addition, Ag2O3, which is a particularly desirable range, is 0.2
~0.411%, r+ot is o.

14〜1.15重量%、5iOzが0.2〜0゜8重量
%およびZn化合物が0.05〜0.2モ    □ル
%含まれる正特性半導体磁器(No、19〜21.24
〜27.29.35.36.39.40.43〜45.
49〜51)は、比抵抗(RO)が100Ω・cm以下
であり、かつ△Rもさらに小さく (−0,3〜−8,
8、その多くは絶対値が6以下)耐還元性にさらに優れ
ているので、自動車用部品への応用に最適である。
Positive characteristic semiconductor porcelain (No. 19 to 21.24) containing 14 to 1.15% by weight, 0.2 to 0.8% by weight of 5iOz, and 0.05 to 0.2 mol % of a Zn compound.
~27.29.35.36.39.40.43~45.
49 to 51) have a specific resistance (RO) of 100Ω・cm or less, and ΔR is even smaller (-0, 3 to -8,
8, most of which have an absolute value of 6 or less) and have excellent reduction resistance, making them ideal for application to automobile parts.

(試験例2)−サワーガソリン中における耐還元性の検
討 次に試験例1に用いたものと同一の組成の原料を使用し
、試験例1と同様に混合、成形、焼成を行なって、直径
25mm1厚さ2.5ffiI11の円板状正特性半導
体磁器を製造した。得られた正特性半導体磁器は試験例
1と同様に表面にNI−A(l電極が付与され、大気中
において、各正特性半導体磁器の電気抵抗値を室温から
300℃までの間はぼ連続的に測定して、第2図の概念
図に示す実線〈イ)のPTC特性を表わす曲線を求めた
。次に各正特性半導体磁器をサワーガソリン中に浸漬し
、30Vの電圧を200時間以上付与する浸漬通電耐久
試験を行なった。ここでり°ワーガソリンとは、酸化が
進んで過酸化物や酸が生成したガソリンのことであり、
促進試験用として使用されるものである。浸漬通電耐久
試験後の正特性半導体磁器は大気中において、電気抵抗
値を室温から300℃までの間はぼ連続的に測定され、
第2図の破線(ロ)のPTC特性を表わす曲線を得た。
(Test Example 2) - Examination of reduction resistance in sour gasoline Next, raw materials with the same composition as those used in Test Example 1 were used, mixed, molded, and fired in the same manner as in Test Example 1. A disk-shaped positive characteristic semiconductor porcelain having a size of 25 mm and a thickness of 2.5 ffiI was manufactured. The obtained positive characteristic semiconductor porcelain was provided with an NI-A (l electrode) on its surface in the same manner as in Test Example 1, and the electrical resistance value of each positive characteristic semiconductor porcelain was approximately continuous from room temperature to 300°C in the atmosphere. A curve representing the PTC characteristics as a solid line (A) shown in the conceptual diagram of FIG. 2 was obtained. Next, each of the positive characteristic semiconductor ceramics was immersed in sour gasoline, and an immersion current durability test was conducted in which a voltage of 30 V was applied for over 200 hours. Ware gasoline is gasoline that has been oxidized to produce peroxides and acids.
This is used for accelerated testing. After the immersion current durability test, the electrical resistance of the positive characteristic semiconductor porcelain was measured almost continuously in the atmosphere from room temperature to 300°C.
A curve representing the PTC characteristics indicated by the broken line (b) in FIG. 2 was obtained.

(qられた2つの曲線の差から第2図に示すR−T劣化
(A>を求め、結果を第1〜3表に示す。なお、R−T
劣化(A)は次式により求められる。
(RT deterioration (A) shown in Figure 2 is calculated from the difference between the two curves obtained by q), and the results are shown in Tables 1 to 3.
Deterioration (A) is determined by the following formula.

log   (R−wax  /R′ sin  ) 
 −1oo   (Riax  /R1n )−R−T
劣化(A) (R・・・耐久試験前の抵抗値、R′・・・耐久試験後
の抵抗値、laX・・・最大値、1n・・・最小値)第
1〜3表において、測定結果の記載が無い箇所があるが
、これは比抵抗が1000・01以上の正特性半導体磁
器については、浸漬通電耐久試験で十分な発熱が得られ
ず、信頼性のあるデータとならない為測定しなかったも
のである。また、結果の判定は(A)の度合が1以内を
(○)、1〜2を(Δ)、2以上を(X)とした。
log (R-wax/R'sin)
-1oo (Riax /R1n) -R-T
Deterioration (A) (R...resistance value before durability test, R'...resistance value after durability test, laX...maximum value, 1n...minimum value) Measured in Tables 1 to 3. There are some places where the results are not listed, but this is because positive characteristic semiconductor porcelain with a specific resistance of 1000.01 or more does not generate enough heat in the immersion current durability test and does not provide reliable data. It's something that didn't exist. In addition, the results were judged as (◯) if the degree of (A) was 1 or less, (Δ) if it was 1 to 2, and (X) if the degree was 2 or more.

第1〜3表において、本発明の正特性半導体磁器(No
、19〜21.24〜27.29.35〜37.39.
40,49〜51)はこれ以外の正特性半導体磁器(例
えばNO,12,16,32,33)に比べR−T劣化
は対数値で+0.2〜−0.7と小さく(比較例では−
0,9〜−3゜2)明らかに耐還元性に優れている。ま
た特に望ましい範囲であるAX t 03が0.2〜0
.41ffi%、Ti0zが0.14〜1.15重桓%
、5iQzが0.2〜0.8重量%およびzn化合物が
0.05〜0.2モル%含まれる正特性半導体磁器(N
o、19〜21.24〜27.29.35.36.39
.40.49〜51)は、R−T劣化が+0.2〜−0
.6特にNo、49を除いて10.2〜−一0.4であ
り、耐還元性に特に優れていることがわかる。
In Tables 1 to 3, positive characteristic semiconductor porcelain of the present invention (No.
, 19-21.24-27.29.35-37.39.
40, 49 to 51) have a small RT deterioration of +0.2 to -0.7 in logarithm compared to other positive characteristic semiconductor porcelains (e.g. NO, 12, 16, 32, 33) (in the comparative example, −
0.9 to -3°2) Obviously excellent reduction resistance. In addition, AX t 03, which is a particularly desirable range, is 0.2 to 0.
.. 41ffi%, Ti0z is 0.14-1.15%
, 0.2 to 0.8 wt% of 5iQz and 0.05 to 0.2 mol% of a zn compound (N
o, 19-21.24-27.29.35.36.39
.. 40.49-51), RT deterioration is +0.2--0
.. 6, especially excluding No. 49, it is 10.2 to -10.4, and it can be seen that the reduction resistance is particularly excellent.

(試験例1および2の結果の検討) (1)原料亜鉛化合物の検討 原料亜鉛化合物は、ZnOでもZnCO3でもほぼ同等
の性能を示した(No、24と25、NO626と27
)。
(Study of the results of Test Examples 1 and 2) (1) Study of raw material zinc compounds The raw material zinc compounds showed almost the same performance for both ZnO and ZnCO3 (No. 24 and 25, No. 626 and 27).
).

〈2)各フラックス成分の組成割合の検討亜鉛化合物(
Zn O)は、チタン酸バリウム系組成物を100モル
とす6と0.05.0.1.0.2.0.3.0.5モ
ル%の場合(各々No。
<2) Examination of the composition ratio of each flux component Zinc compound (
ZnO) is 6 and 0.05, 0.1, 0.2, 0.3, and 0.5 mol% (respectively No.

19〜23)′には、耐還元性に優れる。しかしそれが
0.01.0.02モル%(各々No、17.18)の
場合には、水素おびサワーガソリン両者に対する性能判
定はΔとなり、両者に対する耐還元性は不十分である。
19-23)' have excellent reduction resistance. However, when it is 0.01 and 0.02 mol% (No, 17.18, respectively), the performance judgment against both hydrogen and sour gasoline is Δ, and the reduction resistance against both is insufficient.

AitO3の組成割合は、0.1重量%の場合(No、
31〜33)、水素に対する耐還元性はΔであり、サワ
ーガソリンに対する還元性はΔ又はXであり、耐還元性
は良くない。
The composition ratio of AitO3 is 0.1% by weight (No,
31-33), the reduction resistance to hydrogen is Δ, and the reduction resistance to sour gasoline is Δ or X, and the reduction resistance is not good.

第1〜3表の試験例において、°フラックス成分がAf
fite3、Ti Ot、Si OzおJ:U亜鉛化合
物の場合、本発明の正特性半導体磁器における各7ラツ
クス成分の割合は、Affi203が0.2〜1.6重
機%、Ti0tが0.14〜2.88重fft%5io
xが0.1〜1,6f!1%オヨヒznO等が0.05
〜0.5モル%のとき、水素およびサワーガソリンに対
する耐還元性は優れる。
In the test examples in Tables 1 to 3, the flux component is Af
In the case of fit3, TiOt, SiOz and J:U zinc compounds, the proportions of each of the 7 lux components in the positive characteristic semiconductor porcelain of the present invention are 0.2 to 1.6% for Affi203 and 0.14 to 0.14% for TiOt. 2.88 fft%5io
x is 0.1~1.6f! 1% OyohiznO etc. is 0.05
When it is 0.5 mol %, the reduction resistance to hydrogen and sour gasoline is excellent.

(3)鉛の添加方法 キューリ一点の高い正特性半導体磁器については、仮焼
後にpb7i03を添加する(No、10〜12.24
.25)よりも、PbOを仮焼前に添加し、仮焼時に3
aTi○3と固溶させた方(No、13〜15.26.
27)がpbの飛散が少なく吸水率も低くなり耐還元性
に対し有効である。
(3) How to add lead For semiconductor porcelain with positive characteristics with a high Curie point, add pb7i03 after calcination (No. 10 to 12.24
.. 25), PbO was added before calcination, and 3
The one in solid solution with aTi○3 (No, 13 to 15.26.
27) has less scattering of PB and a lower water absorption rate, which is effective for reducing resistance.

〈試験例3) 試験例1に使用した正特性半導体磁器のうち従来の組成
としてNo、12を、本発明の組成としてNo、24を
選び、試験例1と同様に混合、成形、焼成を行なって、
直径25m1ll、厚さ2.5miの円板状正特性半導
体磁器を製造した。得られた2種類の正特性半導体磁器
の両面にNi −Ag電極を付与し、還元性雰囲気であ
る水素ガス中において、300℃で30分間’!’−,
II”l シた。その30分の間の各正特性半導体磁器
の電気抵抗値をほぼ連続的に測定し、還元性15囲気へ
投入した直後の、電気抵抗値を基準として抵抗変化率を
求め、結果を第1図に示す。第1図J:り明らかに、従
来の組成の正特性半導体磁器No、12は水素ガス中に
おいて68%の抵抗変化率(△R)の減少を示している
が、本発明の正特性半導体6fi器No、24は水素ガ
ス中で抵抗変化率(△R)は4.4%減少しているにす
ぎず、はとんど変化はなかった。
<Test Example 3) Among the positive characteristic semiconductor porcelains used in Test Example 1, No. 12 was selected as the conventional composition, and No. 24 was selected as the composition of the present invention, and mixed, molded, and fired in the same manner as in Test Example 1. hand,
A disk-shaped positive characteristic semiconductor porcelain having a diameter of 25 ml and a thickness of 2.5 mi was manufactured. Ni-Ag electrodes were applied to both sides of the obtained two types of positive characteristic semiconductor ceramics, and they were heated at 300°C for 30 minutes in a reducing atmosphere of hydrogen gas! '−,
The electrical resistance value of each positive characteristic semiconductor porcelain was measured almost continuously during that 30 minutes, and the rate of change in resistance was determined based on the electrical resistance value immediately after being placed in the reducing atmosphere. The results are shown in Fig. 1. Fig. 1 J: Clearly, positive characteristic semiconductor porcelain No. 12 with the conventional composition shows a 68% decrease in resistance change rate (ΔR) in hydrogen gas. However, in the positive characteristic semiconductor 6fi device No. 24 of the present invention, the resistance change rate (ΔR) decreased by only 4.4% in hydrogen gas, and there was almost no change.

プなわら、本発明の正特性半導体磁器は水素ガスの還元
性雰囲気中でも電気抵抗値がほとんど変化せず、耐還元
性に優れている。
In particular, the positive characteristic semiconductor porcelain of the present invention has excellent resistance to reduction, with almost no change in electrical resistance even in a reducing atmosphere of hydrogen gas.

尚、耐還元性が向上した機構については明確ではないが
、A、1i203、Ti O2、St Oz及UZn化
合物のフラックスの添加により吸水率が著しく低下し、
還元物質の侵入が減少したことも一因であると考えられ
る。
Although the mechanism by which the reduction resistance improved is not clear, the addition of fluxes of A, 1i203, TiO2, StOz and UZn compounds significantly reduced the water absorption rate.
It is thought that one of the reasons is that the intrusion of reducing substances has decreased.

(試験例4) 本発明によりガソリン中にて露出構造で正特性半導体磁
器を使用することが可能となったため、従来の密封構造
(第4図〉の吸気加熱ヒータ(ガソリンの混合気を加熱
すると−タ)と露出構造(第3図)のヒータについてエ
ンジンのトルク性能を比較した結果を第5図に示す。こ
の場合のエンジン条件は、1600rpm  (150
0cc) 、4゜5ko・11 SW/チョーク、A/
F : 11〜12とし、また11ミ特性’I’ lK
磁器はともにNo、24の組成のものを用いた。
(Test Example 4) The present invention has made it possible to use positive characteristic semiconductor porcelain in an exposed structure in gasoline. Figure 5 shows the results of a comparison of engine torque performance for heaters with an exposed structure (Figure 3) and heaters with an exposed structure (Figure 3).The engine conditions in this case were 1600 rpm (150 rpm).
0cc), 4゜5ko・11 SW/Choke, A/
F: 11 to 12, and 11 characteristics 'I' lK
Porcelain with a composition of No. 24 was used in both cases.

この結果によれば本発明に係わる正特性半導体磁器を用
いれば、露出構造が可能となり、従来の密封構造と比べ
てエンジントルク性能は良好となった。
According to the results, by using the positive characteristic semiconductor porcelain according to the present invention, an exposed structure is possible, and the engine torque performance is better than that of a conventional sealed structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は水素ガス中での電気抵抗(「(の変化を表わす
線図、第2図はサワーガソリン中でのR−T劣化を示す
線図である。 第3図は本発明の耐還元性を有する正特性半導体磁器を
、露出構造で吸気加熱ヒータに応用した説明図である。 第4図は本発明の耐還元性を有する正特性半導体磁器を
、密封構造で吸気加熱ヒータに応用した説明図である。 第5図は第3図および第4図に示した吸気加熱ヒータを
用いた場合のエンジントルク性能を示すね図である。 1.11・・・正特性半導体磁器 2.21・・・ガソリンエンジンのヒートインシュレー
タ 3.31・・・ばね 4・・・ケース (A)・・・R−T劣化 (イ)・・・初期状態 (ロ)・・・耐久試験後 特許出願人   日本電装株式会社 代理人    弁理士  大川 広 間     弁理士  丸山明夫 第1図 第2図 温度(0C) 第3図 第4図 目亜■
Figure 1 is a diagram showing changes in electrical resistance in hydrogen gas. Figure 2 is a diagram showing RT deterioration in sour gasoline. Figure 3 is a diagram showing the resistance to reduction of the present invention. Fig. 4 is an explanatory diagram in which the positive characteristic semiconductor porcelain having a resistance to reduction of the present invention is applied to an intake air heating heater in an exposed structure. It is an explanatory diagram. Figure 5 is a diagram showing the engine torque performance when the intake air heating heater shown in Figures 3 and 4 is used. 1.11...Positive characteristic semiconductor porcelain 2.21 ... Gasoline engine heat insulator 3.31 ... Spring 4 ... Case (A) ... R-T deterioration (a) ... Initial state (b) ... Patent applicant after durability test Nippondenso Co., Ltd. Agent Patent Attorney Hiroma Okawa Patent Attorney Akio Maruyama Figure 1 Figure 2 Temperature (0C) Figure 3 Figure 4 A

Claims (4)

【特許請求の範囲】[Claims] (1)チタン酸バリウム系組成物と、 該チタン酸バリウム系組成物100重量部に対し、0.
2〜1.6重量部のアルミナ(Al_2O_3)、0.
14〜2.88重量部の二酸化チタン(TiO_2)、
0.1〜1.6重量部の二酸化珪素(SiO_2)、お
よび上記チタン酸バリウム系組成物100モルに対し、
含まれる亜鉛に換算して該亜鉛含量が0.05〜0.5
モルである亜鉛化合物とから構成されるフラックス成分
と、からなることを特徴とする耐還元性を有する正特性
半導体磁器。
(1) A barium titanate composition, and 0.00 parts by weight per 100 parts by weight of the barium titanate composition.
2 to 1.6 parts by weight of alumina (Al_2O_3), 0.
14 to 2.88 parts by weight of titanium dioxide (TiO_2),
0.1 to 1.6 parts by weight of silicon dioxide (SiO_2) and 100 mol of the above barium titanate composition,
The zinc content is 0.05 to 0.5 in terms of zinc contained.
1. A positive characteristic semiconductor porcelain having reduction resistance, characterized in that it consists of a flux component composed of a zinc compound that is mol.
(2)フラックス成分は、チタン酸バリウム系組成物1
00重量部に対し、0.2〜0.4重量部のアルミナ(
Al_2O_3)、0.14〜1.15重量部の二酸化
チタン(TiO_2)、0.2〜0.8重量部の二酸化
珪素(SiO_2)、および上記チタン酸バリウム系組
成物100モルに対し、含まれる亜鉛に換算して該亜鉛
含量が0.05〜0.2モルである亜鉛化合物とから構
成される特許請求の範囲第1項記載の耐還元性を有する
正特性半導体磁器。
(2) The flux component is barium titanate composition 1
0.2 to 0.4 parts by weight of alumina (
Al_2O_3), 0.14 to 1.15 parts by weight of titanium dioxide (TiO_2), 0.2 to 0.8 parts by weight of silicon dioxide (SiO_2), and 100 moles of the above barium titanate composition. 2. The positive characteristic semiconductor porcelain having reduction resistance according to claim 1, comprising a zinc compound having a zinc content of 0.05 to 0.2 mol in terms of zinc.
(3)亜鉛化合物は、酸化亜鉛(ZnO)である特許請
求の範囲第1項記載の耐還元性を有する正特性半導体磁
器。
(3) The positive characteristic semiconductor porcelain having reduction resistance according to claim 1, wherein the zinc compound is zinc oxide (ZnO).
(4)チタン酸バリウム系組成物は一般式Ba_1_−
_xM^3×TiO_3あるいはBaTi_1_−_y
M^5_yO_3(ただしM^3はY、La、Sm、C
e、Ga等の希土類元素、M^5はNb、Ta等の遷移
元素、xは0.001〜0.005、yは0.0005
〜0.005をそれぞれ示す)なる組成を有する特許請
求の範囲第1項記載の耐還元性を有する正特性半導体磁
器。
(4) The barium titanate composition has the general formula Ba_1_-
_xM^3×TiO_3 or BaTi_1_-_y
M^5_yO_3 (However, M^3 is Y, La, Sm, C
e, rare earth elements such as Ga, M^5 are transition elements such as Nb and Ta, x is 0.001 to 0.005, y is 0.0005
The positive characteristic semiconductor porcelain having reduction resistance as claimed in claim 1, having a composition of
JP60183471A 1984-12-26 1985-08-21 Positive characteristic semiconductor porcelain with reduction resistance Expired - Lifetime JPH078744B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60183471A JPH078744B2 (en) 1985-08-21 1985-08-21 Positive characteristic semiconductor porcelain with reduction resistance
EP85116071A EP0186095B1 (en) 1984-12-26 1985-12-17 Anti-reducing semiconducting porcelain having a positive temperature coefficient of resistance
AU51364/85A AU572013B2 (en) 1984-12-26 1985-12-17 Anti-reducing semi conducting porcelain with a positive temperature coefficient of resistance
DE8585116071T DE3579427D1 (en) 1984-12-26 1985-12-17 REDUCTION RESISTANT SEMICONDUCTOR PORCELAIN WITH POSITIVE TEMPERATURE COEFFICIENT OF THE RESISTANCE.
CA000498513A CA1272589A (en) 1984-12-26 1985-12-23 Anti-reducing semiconducting porcelain having a positive temperature coefficient of resistance
US07/096,242 US4834052A (en) 1984-12-26 1987-09-08 Internal combustion engine having air/fuel mixture with anti-reducing semiconducting porcelain having a positive temperature coefficient of resistance and method for using such porcelain for heating air/fuel mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60183471A JPH078744B2 (en) 1985-08-21 1985-08-21 Positive characteristic semiconductor porcelain with reduction resistance

Publications (2)

Publication Number Publication Date
JPS6246957A true JPS6246957A (en) 1987-02-28
JPH078744B2 JPH078744B2 (en) 1995-02-01

Family

ID=16136374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60183471A Expired - Lifetime JPH078744B2 (en) 1984-12-26 1985-08-21 Positive characteristic semiconductor porcelain with reduction resistance

Country Status (1)

Country Link
JP (1) JPH078744B2 (en)

Also Published As

Publication number Publication date
JPH078744B2 (en) 1995-02-01

Similar Documents

Publication Publication Date Title
JPS6246957A (en) Positive characteristic semiconductor ceramic with reductionresistance
US3374185A (en) Electroconductive composition containing bapbo3
JPS623569B2 (en)
JPH058524B2 (en)
JPH01143202A (en) Positive temperature coefficient(ptc) thermister for moderate high temperature
JPH0311081B2 (en)
JP2934387B2 (en) Manufacturing method of semiconductor porcelain
JPH03155352A (en) Small direct current motor
JPH0423401A (en) Manufacturing method of positive temperature coefficient thermistor
JPS606535B2 (en) porcelain composition
JP2572796B2 (en) Barium titanate-based semiconductor porcelain
JPS6256359A (en) Antireductive positive characteristic semiconductor ceramic
JPH0788250B2 (en) Positive characteristic semiconductor porcelain with reduction resistance
JP3111630B2 (en) Barium titanate-based semiconductor porcelain and method of manufacturing the same
JP3273468B2 (en) Barium titanate-based semiconductor porcelain composition
JPS61271802A (en) Voltage non-linear resistor ceramic composition
JP2725406B2 (en) Voltage-dependent nonlinear resistor element and method of manufacturing the same
JPH05301766A (en) Barium titanate-based semiconductive porcelain and its production
JPH02106903A (en) High temperature PTC thermistor and its manufacturing method
JPS6217368B2 (en)
JP3036051B2 (en) Barium titanate-based semiconductor porcelain composition
JP2725407B2 (en) Voltage-dependent nonlinear resistor element and method of manufacturing the same
JPH04299803A (en) Positive temperature coefficient thermistor and manufacture thereof
JPH05315106A (en) Barium titanate ceramic semiconductor and its manufacture
JPH04299802A (en) Positive temperature coefficient thermistor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term