JPS6245673B2 - - Google Patents
Info
- Publication number
- JPS6245673B2 JPS6245673B2 JP10381980A JP10381980A JPS6245673B2 JP S6245673 B2 JPS6245673 B2 JP S6245673B2 JP 10381980 A JP10381980 A JP 10381980A JP 10381980 A JP10381980 A JP 10381980A JP S6245673 B2 JPS6245673 B2 JP S6245673B2
- Authority
- JP
- Japan
- Prior art keywords
- resistance
- sheet
- low
- heating element
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010438 heat treatment Methods 0.000 claims description 37
- 239000000203 mixture Substances 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000004020 conductor Substances 0.000 claims description 12
- 239000005060 rubber Substances 0.000 claims description 12
- 229920005992 thermoplastic resin Polymers 0.000 claims description 9
- 229920002725 thermoplastic elastomer Polymers 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 239000011888 foil Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 230000001747 exhibiting effect Effects 0.000 claims description 2
- 238000007740 vapor deposition Methods 0.000 claims 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 230000020169 heat generation Effects 0.000 description 6
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 6
- 239000011889 copper foil Substances 0.000 description 5
- -1 polyethylene Polymers 0.000 description 5
- 230000037303 wrinkles Effects 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Landscapes
- Surface Heating Bodies (AREA)
Description
【発明の詳細な説明】
本発明は通電により発熱し、温度上昇に伴つて
抵抗値の増加する所謂正の抵抗温度係数(以下
PTC特性と称す)を有する自己温度制御型発熱
素子の改良に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention has a so-called positive temperature coefficient of resistance (hereinafter referred to as "positive temperature coefficient of resistance"), which generates heat when energized and whose resistance value increases as the temperature rises.
The present invention relates to improvements in self-temperature-controlled heating elements that have PTC characteristics (referred to as PTC characteristics).
従来、この種の発熱素子としてはポリエチレ
ン、ポリプロピレン或いはゴムとカーボン粉末と
の均一な混合物をシート状に成形し、その両端に
電極を取り付けた単層型の発熱素子が知られてい
る。 Conventionally, as this type of heating element, a single-layer type heating element is known in which a uniform mixture of polyethylene, polypropylene, or rubber and carbon powder is formed into a sheet shape, and electrodes are attached to both ends of the sheet.
ところで、この単層型自己温度制御型発熱素子
においては、局部的な異常発熱が生じ易く、一旦
このような異常発熱が生ずると、それが急速に拡
大するばかりでなく、温度が更に上昇して素子の
構成材料である熱可塑性樹脂或いはゴムの融点以
上に達して遂には焼損に至り、使用不能になると
いう事故がしばしば発生していた。 By the way, in this single-layer self-temperature-controlled heating element, localized abnormal heat generation is likely to occur, and once such abnormal heat generation occurs, it not only rapidly expands, but also causes the temperature to rise further. Accidents have frequently occurred in which the temperature of the thermoplastic resin or rubber, which is the constituent material of the device, reaches or exceeds the melting point, eventually leading to burnout and rendering the device unusable.
そして、この自己温度制御型発熱素子の焼損事
故の発生頻度は、電極間距離が大きくなるほど高
まることが知られている。 It is known that the frequency of occurrence of burnout accidents in self-temperature-controlled heating elements increases as the distance between the electrodes increases.
そこで、電極間距離を小さくするため、PTC
特性を有する発熱体の両面に該発熱体と同じ大き
さの金属箔電極を各々密着せしめた複層型発熱素
子が提案されている。 Therefore, in order to reduce the distance between the electrodes, PTC
A multilayer heating element has been proposed in which metal foil electrodes of the same size as the heating element are closely attached to both sides of a heating element having a characteristic.
成程、この復層型発熱素子によれば、発熱体の
厚みが電極間距離となるので、前記単層型発熱素
子に比べ、その距離は非常に短かく、焼損防止手
段として有望視されている。 According to this multi-layer heating element, the thickness of the heating element corresponds to the distance between the electrodes, so the distance is much shorter than that of the single-layer heating element, and it is seen as a promising means for preventing burnout. There is.
ところが、この複層型発熱素子においては、発
熱体の両面に該発熱体と同じ大きさの金属箔電極
が密着せしめられているので、素子としての可撓
性が低下してしまう。従つて、この発熱素子を湾
曲状で用いた場合には、湾曲内側の金属箔電極に
シワが発生したり、湾曲外側の金属箔電極に亀裂
が発生したりするという問題があつた。 However, in this multilayer heating element, since metal foil electrodes of the same size as the heating element are closely attached to both sides of the heating element, the flexibility of the element is reduced. Therefore, when this heating element is used in a curved shape, there are problems in that wrinkles occur in the metal foil electrode on the inside of the curve, and cracks occur in the metal foil electrode on the outside of the curve.
本発明は従来品の有する問題を解決した自己温
度制御型発熱素子に係り、熱可塑性樹脂および/
またはゴムと導電体の混合物から成るシート或い
は布状基材に前記混合物を含浸塗布して成るシー
トであつて、正の温度係数を有する高抵抗シート
の両面に、熱可塑性樹脂および/またはゴムと導
電体の混合物から成るシート或いは布状基材に該
混合物を含浸塗布して成るシートであつて且つ前
記高抵抗シートの電気抵抗がXΩ−cmであるとき
にX×10-3Ω−cm以下の電気抵抗を示す低抵抗シ
ートが密着されており、更に両低抵抗シートに
各々電極が設けられていることを特徴とするもの
である。 The present invention relates to a self-temperature-controlled heating element that solves the problems of conventional products.
or a sheet made of a mixture of rubber and a conductor, or a sheet made by impregnating and coating a cloth-like substrate with the mixture, wherein both sides of the high-resistance sheet having a positive temperature coefficient are coated with thermoplastic resin and/or rubber. A sheet made of a mixture of conductors or a sheet made by impregnating and coating a cloth-like base material with the mixture, and when the electrical resistance of the high-resistance sheet is XΩ-cm, the electrical resistance is not more than X×10 -3 Ω-cm. A low resistance sheet exhibiting an electrical resistance of
本発明において用いられる高抵抗シートおよび
低抵抗シートは、いずれもポリエチレン、ポリプ
ロピレン、エチレン−酢酸ビニル共重合体、エチ
レン−エチルアクリレート共重合体、ポリエチレ
ンテレフタレート、ポリフツ化ビニリデン等の熱
可塑性樹脂および/またはゴムにカーボン粉末、
カーボンビーンズ、金属粉末、カーボン短繊維等
の微細な導電体を均一に混合して、厚さ0.05〜5
mm程度のシート状に成形したもの、或いは前記熱
可塑性樹脂および/またはゴムと導電体の混合物
の分散液を織布、不織布、網目状基布に塗布含浸
せしめたものであり、可撓性に富むものである。 Both the high-resistance sheet and the low-resistance sheet used in the present invention are made of thermoplastic resin such as polyethylene, polypropylene, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, polyethylene terephthalate, polyvinylidene fluoride, etc. Carbon powder on rubber
Fine conductors such as carbon beans, metal powder, carbon short fibers, etc. are mixed uniformly to a thickness of 0.05 to 5.
It is formed into a sheet shape of about mm, or it is made by coating and impregnating a woven fabric, nonwoven fabric, or mesh base fabric with a dispersion of the mixture of the thermoplastic resin and/or rubber and a conductor, and it becomes flexible. It is rich.
なお、熱可塑性樹脂および/またはゴムに対す
る導電体の混合量は、高抵抗シートの場合には樹
脂および/またはゴム100重量部に対し15〜60重
量部程度であり、低抵抗シートの場合は高抵抗シ
ートよりも電気抵抗が低くなるように、即ち、高
抵抗シートの電気抵抗(体積抵抗)がXΩ−cmの
とき、低抵抗シートのそれがX×10-3Ω−cm以下
になるようにするため、前者の場合よりも多目と
し、通常30〜100重量部程度混合される。 The amount of conductor mixed with the thermoplastic resin and/or rubber is approximately 15 to 60 parts by weight per 100 parts by weight of resin and/or rubber in the case of high resistance sheets, and about 15 to 60 parts by weight in the case of low resistance sheets. So that the electrical resistance is lower than that of the resistance sheet, that is, when the electrical resistance (volume resistance) of the high resistance sheet is X Ω-cm, that of the low resistance sheet is less than X × 10 -3 Ω-cm. Therefore, it is mixed in a larger amount than in the former case, usually about 30 to 100 parts by weight.
本発明において、低抵抗シートの電気抵抗を高
抵抗シートの電気抵抗がXΩ−cmであるときX×
10-3Ω−cm以下に設定する理由は、通電時に高抵
抗シートのみをその全面にわたり均一に発熱させ
るためであり、両シートの電気抵抗の差が小さす
ぎて上記関係を逸脱すると、通電時に電極近傍の
みが発熱するだけで、目的とする自己温度制御型
発熱素子が得られないので好ましくない。 In the present invention, when the electrical resistance of the low resistance sheet is XΩ-cm, the electrical resistance of the high resistance sheet is
The reason for setting it below 10 -3 Ω-cm is to ensure that only the high-resistance sheet generates heat uniformly over its entire surface when energized.If the difference in electrical resistance between the two sheets is too small and deviates from the above relationship, the This is not preferable because only the vicinity of the electrode generates heat, and the desired self-temperature-controlled heating element cannot be obtained.
本発明においては、高抵抗シートおよび低抵抗
シートの電気抵抗を前記のように設定すると、通
電時に高抵抗シートのみがその全面において均一
に発熱するのであつて、低抵抗シートは電流を素
子の厚さ方向に流す役目をするが、それ自体は実
質上発熱しない。この理由は必らずしも明らかで
はないが、高抵抗シートと低抵抗シートの電気抵
抗を前記のように設定すると、低抵抗シート面の
電位分布が殆んど無くなり、低抵抗シート内では
電力消費が実質的に起らず、このために発熱を生
じないものと推論される。 In the present invention, when the electrical resistance of the high-resistance sheet and the low-resistance sheet is set as described above, only the high-resistance sheet generates heat uniformly over its entire surface when current is applied, while the low-resistance sheet spreads the current through the thickness of the element. Although it functions to flow in the horizontal direction, it does not generate any heat itself. The reason for this is not necessarily clear, but when the electrical resistance of the high-resistance sheet and the low-resistance sheet are set as described above, the potential distribution on the surface of the low-resistance sheet almost disappears, and the electric potential inside the low-resistance sheet is It is inferred that virtually no consumption occurs and therefore no heat generation occurs.
以下、図面により本発明の実例を説明する。第
1図および第2図において、1は通常104〜1010
Ω−cm程度の電気抵抗を有する高抵抗シートであ
り、その両面には低抵抗シート2,2′が各々熱
融着或いは導電性接着剤による接着等の手段によ
り密着されており、低抵抗シート2,2′には
各々電極3,3′が設けられている。なお、図示
してないが各電極3,3′には各々リード線の一
端が接続されている。本発明においては、低抵抗
シートに2個以上の電極を取り付けることもでき
る。 Hereinafter, examples of the present invention will be explained with reference to the drawings. In Figures 1 and 2, 1 is usually 10 4 to 10 10
It is a high-resistance sheet with an electrical resistance of about Ω-cm, and low-resistance sheets 2 and 2' are adhered to both sides of the sheet by means such as heat fusion or conductive adhesive. 2 and 2' are provided with electrodes 3 and 3', respectively. Although not shown, one end of a lead wire is connected to each electrode 3, 3'. In the present invention, two or more electrodes can also be attached to the low resistance sheet.
この自己温度制御型発熱素子においては、高抵
抗シート1の厚みが電極間距離となるので、その
距離は非常に短かく、素子の焼損防止ができる。 In this self-temperature-controlled heating element, the thickness of the high-resistance sheet 1 corresponds to the distance between the electrodes, so the distance is very short and the element can be prevented from burning out.
また、高抵抗シート1および両低抵抗シート
2,2′はいずれも熱可塑性樹脂および/または
ゴムと導電体の混合物から成るシート或いは該混
合物の分散液を基布に含浸塗布せしめたシート状
物で可撓性に富むので、これら高抵抗シート1お
よび両低抵抗シート2,2′を密着せしめた素子
も可撓性に富み、湾曲状で使用した場合でも、低
抵抗シート2,2′にシワ、亀裂が発生すること
はないのである。 The high-resistance sheet 1 and both low-resistance sheets 2 and 2' are both sheets made of a mixture of a thermoplastic resin and/or rubber and a conductor, or a sheet-like material in which a base fabric is impregnated and coated with a dispersion of the mixture. Since the high resistance sheet 1 and both low resistance sheets 2, 2' are closely attached together, the element is also highly flexible, and even when used in a curved shape, the low resistance sheets 2, 2' No wrinkles or cracks will occur.
本発明における低抵抗シートの電気抵抗は、高
抵抗シートのそれがXΩ−cmのときに、X×10-3
Ω−cm以下になるように設定されるものであり、
熱可塑性樹脂および/またはゴムに対する導電体
の混合量を増加させることにより、その電気抵抗
が10oΩ−cm程度のものまで得られる。 The electrical resistance of the low-resistance sheet in the present invention is X×10 -3 when that of the high-resistance sheet is XΩ-cm.
It is set so that it is less than Ω-cm,
By increasing the amount of conductor mixed with the thermoplastic resin and/or rubber, the electrical resistance can be obtained up to about 10 Ω -cm.
しかしながら、導電体の混合量の増加はシート
成形の困難さを引き起すため、低抵抗シートの電
気抵抗の一層の低下を望む場合には、例えば第3
図に示すように、両低抵抗シート2,2′の電極
取り付け面上に金属蒸着層4,4′を設けること
により、その目的を達成できる。また、両低抵抗
シートの電極取り付け面上に抵抗シートを得るの
に用いるのと同様な導電体を密に散布して定着せ
しめてもよい。 However, since an increase in the amount of conductor mixed causes difficulty in sheet forming, if it is desired to further reduce the electrical resistance of a low-resistance sheet, for example, a third
As shown in the figure, this objective can be achieved by providing metal vapor deposited layers 4, 4' on the electrode attachment surfaces of both low resistance sheets 2, 2'. Alternatively, a conductor similar to that used to obtain the resistance sheet may be densely scattered and fixed on the electrode attachment surfaces of both low resistance sheets.
また、第3図と同じ目的を達成するため第4図
に示す如く、低抵抗シート2,2′中に電極3,
3′とほぼ直交するように、直径0.01〜2mm程度
の金属細線5,5′を所定間隔毎に多数本埋め込
むことができる。なお、この場合に、幅30mm以
下、厚さ5〜100μ程度の金属帯状体を電極とほ
ぼ直交するように多数本埋め込むこともでき、更
に、厚さ10〜100μで且つ網目の大きさが0.5〜10
mm程度の金属網状体を埋め込むことができる。 In addition, in order to achieve the same purpose as shown in FIG. 3, as shown in FIG.
A large number of thin metal wires 5, 5' each having a diameter of about 0.01 to 2 mm can be embedded at predetermined intervals so as to be substantially orthogonal to 3'. In this case, it is also possible to embed a large number of metal strips with a width of 30 mm or less and a thickness of about 5 to 100 μm so as to be almost perpendicular to the electrodes, and further, a metal strip with a thickness of 10 to 100 μm and a mesh size of 0.5 μm. ~Ten
A metal mesh of about mm can be embedded.
なお、本発明の自己温度制御型発熱素子は使用
に際し、通常その外面が絶縁被覆せられるもので
あり、その被覆によりシート相互が密着され電気
的接触が保証されるならば、シート同志を重ね合
わせるだけでもよい。 In addition, when the self-temperature-controlled heating element of the present invention is used, its outer surface is usually covered with an insulating coating, and the sheets can be stacked together if the coating ensures close contact between the sheets and electrical contact. It's fine just by itself.
本発明は上記のように構成されており、電極間
距離が短かいので、発熱素子の焼損事故を防止で
き、しかも可撓性に富むので湾曲状にしても、シ
ワ、亀裂が発生するようなことがなく安全に使用
できる等の特徴を有する。 The present invention is constructed as described above, and since the distance between the electrodes is short, it is possible to prevent burnout of the heating element, and since it is highly flexible, it does not cause wrinkles or cracks even when curved. It has the characteristics that it can be used safely without any problems.
以下、実施例により本発明を更に詳細に説明す
る。なお、実施例中の「部」は全て「重量部」を
意味する。 Hereinafter, the present invention will be explained in more detail with reference to Examples. In addition, all "parts" in the examples mean "parts by weight."
実施例 1
エチレン−エチルアクリレート共重合体(日本
ユニカー社製、商品名DPDJ−6169)100部と、
平均粒子径0.03μのカーボン粉末(カボツト社
製、商品名バルカンXC−72)20部からなる混合
物を厚さ0.2mm、長さおよび幅が各々10cmのシー
ト状に成形し、高抵抗シートを得る。この高抵抗
シートはPTC特性を有し、その抵抗−温度曲線
(印加電圧AC100V)の測定結果を第5図中の曲
線Aで表示した。Example 1 100 parts of ethylene-ethyl acrylate copolymer (manufactured by Nippon Unicar Co., Ltd., trade name DPDJ-6169),
A mixture consisting of 20 parts of carbon powder with an average particle size of 0.03 μm (manufactured by Kabot Co., Ltd., trade name Vulcan . This high-resistance sheet has PTC characteristics, and the measurement results of its resistance-temperature curve (applied voltage AC 100 V) are shown as curve A in FIG.
一方、これとは別に上記共重合体100部とカー
ボン粉末60部から成る混合物を前記高抵抗シート
と同寸法のシート状に成形し、2枚の低抵抗シー
トを得、各々の片面の一端に厚さ35μ、幅10mmの
銅箔電極を取り付ける。この低抵抗シートの抵抗
−温間曲線を前記と同様に測定した結果を、第5
図中のBで表示する。 Separately, a mixture of 100 parts of the copolymer and 60 parts of carbon powder was formed into a sheet having the same dimensions as the high-resistance sheet to obtain two low-resistance sheets. Attach a copper foil electrode with a thickness of 35μ and a width of 10mm. The resistance-warm curve of this low-resistance sheet was measured in the same manner as above.
It is indicated by B in the figure.
次に、高抵抗シートの両面に低抵抗シートを
各々配置し、温度150℃、圧力10Kg/cm2の条件で
10分間加熱加圧し、熱融着によりシート相互を密
着せしめ、第2図と同構造の自己温度制御型発熱
素子を得た。 Next, a low resistance sheet was placed on both sides of the high resistance sheet, and the temperature was 150℃ and the pressure was 10Kg/ cm2 .
The sheets were heated and pressurized for 10 minutes to adhere the sheets to each other by heat fusion, thereby obtaining a self-temperature-controlled heating element having the same structure as shown in FIG. 2.
この発熱素子は、第5図中の曲線AおよびBか
ら判るように、使用温度領域において高抵抗シー
トの電気抵抗がXΩ−cmであるとき、低抵抗シー
トのそれはX×10-3Ω−cm以下になるように設定
されている。 As can be seen from curves A and B in Fig. 5, in this heating element, when the electrical resistance of the high-resistance sheet is X Ω-cm in the operating temperature range, that of the low-resistance sheet is X × 10 -3 Ω-cm. It is set as below.
而して、この発熱素子の各電極にリード線の一
端を接続し、該リード線の他端からAC100Vの電
圧を印加すると時間の経過に伴つて素子の表面温
度が上昇し、2分後に85℃に達し、そのまま4時
間通電を続けたが、表面温度は85±2℃に維持さ
れ、焼損事故は生じなかつた。 When one end of the lead wire is connected to each electrode of this heating element and a voltage of 100 VAC is applied from the other end of the lead wire, the surface temperature of the element rises over time, and after 2 minutes it reaches 85 ℃, and the current was continued for 4 hours, but the surface temperature was maintained at 85±2℃ and no burnout occurred.
更に、この発熱素子を曲率半径5mmになるよう
に湾曲させて上記と同時間通電を行なつたが、素
子の表面温度は85±2℃に維持され、フラツト状
で発熱させたときと同様、均一な発熱状態を示し
た。また、素子にシワ、亀裂が生ずるようなこと
もなかつた。 Furthermore, this heating element was curved to have a radius of curvature of 5 mm and energized for the same period of time as above, but the surface temperature of the element was maintained at 85 ± 2°C, and the temperature was the same as when heating in a flat shape. It showed a uniform heat generation state. Further, no wrinkles or cracks were caused in the element.
実施例 2
エチレン−酢酸ビニル共重合体(日本ユニカー
社製、商品名DQDJ−1830)100部と、実施例1
で用いたと同じカーボン粉末20部から成る混合物
を厚さ0.2mm、長さおよび幅が各々10cmのシート
状に成形し、初期抵抗値(20℃AC100V)が2×
106Ω−cmで且つPTC特性を有する高抵抗シート
を得る。Example 2 100 parts of ethylene-vinyl acetate copolymer (manufactured by Nippon Unicar Co., Ltd., trade name DQDJ-1830) and Example 1
A mixture consisting of 20 parts of the same carbon powder as used in was molded into a sheet with a thickness of 0.2 mm and a length and width of 10 cm each, and the initial resistance value (20°C AC 100 V) was 2 ×
A high resistance sheet having a resistance of 10 6 Ω-cm and PTC characteristics is obtained.
一方、これとは別に上記共重合体100部とカー
ボン粉末60部から成る混合物を前記高抵抗シート
と同寸法のシート状に成形し、2枚の低抵抗シー
トを得、各々の一端に厚さ35μ、幅10mmの銅箔電
極を取り付ける。 Separately, a mixture of 100 parts of the copolymer and 60 parts of carbon powder was formed into a sheet having the same dimensions as the high-resistance sheet to obtain two low-resistance sheets. Attach a copper foil electrode of 35μ and width of 10mm.
なお、低抵抗シートの成形に際しては、直径
0.1mm、長さ10cmの銅線を5mm間隔で、電極と直
交する方向に多数本埋置せしめた。この低抵抗シ
ートの初期抵抗値は10Ω−cmであつた。 In addition, when forming a low resistance sheet, the diameter
A large number of copper wires of 0.1 mm and length of 10 cm were buried at 5 mm intervals in a direction perpendicular to the electrodes. The initial resistance value of this low resistance sheet was 10 Ω-cm.
次に、高抵抗シートの両面に低抵抗シートを
各々配置し、温度160℃、圧力10Kg/cm2の条件で
3分間加熱加圧し、熱融着によりシート相互を密
着せしめ、第4図と同構造の自己温度制御型発熱
素子を得た。 Next, low-resistance sheets were placed on both sides of the high-resistance sheet, and heated and pressed for 3 minutes at a temperature of 160℃ and a pressure of 10Kg/cm 2 to adhere the sheets to each other by heat fusion, as shown in Figure 4. A self-temperature-controlled heating element with this structure was obtained.
この発熱素子における高抵抗シートおよび低抵
抗シートの抵抗−温度曲線は図示してないが、使
用温度領域においては、高抵抗シートの電気抵抗
がXΩ−cmのとき、低抵抗シートのそれはX×
10-3Ω−cm以下である。 The resistance-temperature curves of the high-resistance sheet and the low-resistance sheet in this heating element are not shown, but in the operating temperature range, when the electrical resistance of the high-resistance sheet is XΩ-cm, that of the low-resistance sheet is
10 -3 Ω-cm or less.
而して、この発熱素子の各電極にリード線の一
端を接続し、該リード線の他端からAC100Vの電
圧を印加すると時間の経過に伴つて素子の表面温
度が上昇し、3分後に80℃に達し、そのまま5時
間通電を続けたが、表面温度は80±3℃に維持さ
れ、焼損事故は生じなかつた。 When one end of the lead wire is connected to each electrode of this heating element and a voltage of 100 VAC is applied from the other end of the lead wire, the surface temperature of the element rises over time, and after 3 minutes it reaches 80 V. ℃, and the current was continued for 5 hours, but the surface temperature was maintained at 80±3℃ and no burnout occurred.
更に、この発熱素子を曲率半径7mmになるよう
に湾曲させて上記と同時間通電を行なつたが、素
子の表面温度は80±3℃に維持され、フラツト状
で発熱させたときと同様、均一な発熱状態を示し
た。また、素子にシワ、亀裂が生ずるようなこと
もなかつた。 Furthermore, this heating element was curved to have a radius of curvature of 7 mm and energized for the same time as above, but the surface temperature of the element was maintained at 80 ± 3°C, and the temperature was the same as when it was heated in a flat shape. It showed a uniform heat generation state. Further, no wrinkles or cracks were caused in the element.
比較例 1
実施例1で用いたと同じ共重合体100部とカー
ボン粉末40部から成る混合物を厚さ0.2mm、長さ
および幅が各々10cmのシート状に成形し、2枚の
低抵抗シートを得、各々の片面の一端に厚さ35
μ、幅10mmの銅箔電極を取り付ける。この低抵抗
シートの抵抗−温度曲線を第5図中に曲線Cで表
示する。Comparative Example 1 A mixture of 100 parts of the same copolymer and 40 parts of carbon powder used in Example 1 was formed into a sheet with a thickness of 0.2 mm and a length and width of 10 cm, and two low-resistance sheets were formed. 35mm thick at one end of each side
μ, attach a copper foil electrode with a width of 10 mm. The resistance-temperature curve of this low resistance sheet is indicated by curve C in FIG.
次に、実施例1で用いたPTC特性を有する高
抵抗シートの両面に上記低抵抗シートを各々配置
し、実施例1と同条件で密着せしめ、第2図と同
構造の素子を得た。 Next, the above-mentioned low-resistance sheets were placed on both sides of the high-resistance sheet having PTC characteristics used in Example 1, and were brought into close contact with each other under the same conditions as in Example 1, to obtain an element having the same structure as shown in FIG. 2.
この素子には、第5図中の曲線AおよびCから
判るように、高抵抗シートと低抵抗シートの電気
抵抗が本発明で定めるものよりも接近しており、
高抵抗シートの電気抵抗がXΩ−cmであるとき、
低抵抗シートのそれはX×10-3Ω−cm以下にはな
らないものである。 In this element, as can be seen from curves A and C in FIG. 5, the electrical resistances of the high-resistance sheet and the low-resistance sheet are closer than those defined by the present invention,
When the electrical resistance of the high resistance sheet is XΩ-cm,
The resistance of a low resistance sheet is not less than X×10 -3 Ω-cm.
この素子の発熱性能を知るため、実施例1の場
合と同様にして電圧を印加したところ、両電極の
近傍のみが発熱して85℃になるのみで、他の部分
は室温(20℃)とほぼ同温度のままであつた。 To find out the heat generation performance of this element, we applied a voltage in the same way as in Example 1, and found that only the areas near both electrodes generated heat, reaching 85°C, while the rest remained at room temperature (20°C). The temperature remained almost the same.
比較例 2
実施例1で用いたPTC特性を有する高抵抗シ
ートの両面に、厚さ35μで長さおよび幅が各々10
cmの銅箔電極を導電性接着剤により密着せしめた
発熱素子を得る。Comparative Example 2 A sheet with a thickness of 35 μm and a length and width of 10 μm was applied to both sides of the high-resistance sheet having PTC characteristics used in Example 1.
A heating element is obtained in which copper foil electrodes of 1 cm are adhered with a conductive adhesive.
この発熱素子の各電極にリード線の一端を接続
した後、実施例1と同様にして電圧を印加したと
ころ、表面温度が上昇し、3分後に80℃に達し
て、平衡状態となつた。 After connecting one end of the lead wire to each electrode of this heating element, a voltage was applied in the same manner as in Example 1, and the surface temperature rose and reached 80° C. after 3 minutes, reaching an equilibrium state.
ところが、この発熱素子を曲率半径が8mmにな
るように湾曲させたところ、湾曲外側の銅箔電極
に亀裂が発生し、通電不能になつてしまつた。 However, when this heating element was bent to have a radius of curvature of 8 mm, cracks appeared in the copper foil electrode on the outside of the curve, making it impossible to conduct electricity.
第1図は本発明に係る自己温度制御型発熱素子
の実例を示す平面図、第2図は第1図−線で
切断し、矢印方向から見た断面図、第3図および
第4図は他の実例を示す断面図、第5図は抵抗シ
ートの抵抗−温度曲線を示すグラフである。
1…高抵抗シート、2,2′…低抵抗シート、
3,3′…電極。
FIG. 1 is a plan view showing an example of a self-temperature-controlled heating element according to the present invention, FIG. 2 is a sectional view taken along the line of FIG. 1 and viewed from the arrow direction, and FIGS. 3 and 4 are FIG. 5, a sectional view showing another example, is a graph showing a resistance-temperature curve of a resistive sheet. 1...High resistance sheet, 2,2'...Low resistance sheet,
3, 3'...electrode.
Claims (1)
混合物から成るシート或いは布状基材に前記混合
物を含浸塗布して成るシートであつて、正の温度
係数を有する高抵抗シートの両面に、熱可塑性樹
脂および/またはゴムと導電体の混合物から成る
シート或いは布状基材に該混合物を含浸塗布して
成るシートであつて且つ前記高抵抗シートの電気
抵抗がXΩ−cmであるときにX×10-3Ω−cm以下
の電気抵抗を示す低抵抗シートが密着されてお
り、更に両低抵抗シートに各々電極が設けられて
いることを特徴とする自己温度制御型発熱素子。 2 少なくとも一方の低抵抗シート内に多数の金
属細線または帯状金属箔或いは金属網状体が埋め
込まれた特許請求の範囲第1項記載の自己温度制
御型発熱素子。 3 少なくとも一方の低抵抗シートの電極取り付
け面上に金属蒸着層が設けられた特許請求の範囲
第1項記載の自己温度制御型発熱素子。 4 少なくとも一方の低抵抗シートの電極取り付
け面上に導電体が密に散布定着された特許請求の
範囲第1項記載の自己温度制御型発熱素子。[Scope of Claims] 1. A sheet made of a mixture of thermoplastic resin and/or rubber and a conductor, or a sheet made by impregnating and coating the mixture on a cloth-like base material, which is a high-resistance sheet having a positive temperature coefficient. A sheet made of a mixture of a thermoplastic resin and/or rubber and a conductor, or a sheet formed by impregnating and coating a cloth-like base material with the mixture on both sides of the sheet, and the electrical resistance of the high-resistance sheet is XΩ-cm. A self-temperature-controlled heating element characterized in that a low-resistance sheet exhibiting an electrical resistance of less than . 2. The self-temperature-controlled heating element according to claim 1, wherein a large number of thin metal wires, band-shaped metal foils, or metal nets are embedded in at least one of the low-resistance sheets. 3. The self-temperature-controlled heating element according to claim 1, wherein a metal vapor deposition layer is provided on the electrode mounting surface of at least one of the low-resistance sheets. 4. The self-temperature-controlled heating element according to claim 1, wherein a conductor is densely spread and fixed on the electrode mounting surface of at least one of the low-resistance sheets.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10381980A JPS5730284A (en) | 1980-07-28 | 1980-07-28 | Self-temperature control type heating element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10381980A JPS5730284A (en) | 1980-07-28 | 1980-07-28 | Self-temperature control type heating element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5730284A JPS5730284A (en) | 1982-02-18 |
JPS6245673B2 true JPS6245673B2 (en) | 1987-09-28 |
Family
ID=14364011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10381980A Granted JPS5730284A (en) | 1980-07-28 | 1980-07-28 | Self-temperature control type heating element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5730284A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60109293U (en) * | 1983-12-28 | 1985-07-24 | 横浜ゴム株式会社 | Long tropical mat for fever pine |
JPH0740507B2 (en) * | 1985-10-18 | 1995-05-01 | 松下電器産業株式会社 | Heating element |
JPS61284082A (en) * | 1985-06-11 | 1986-12-15 | 松下電器産業株式会社 | Positive resistance temperature coefficient heat generating body |
JPH0740506B2 (en) * | 1985-06-24 | 1995-05-01 | 松下電器産業株式会社 | Positive resistance temperature coefficient heating element manufacturing method |
KR100672810B1 (en) * | 2005-07-06 | 2007-01-22 | 썬텍 주식회사 | Method for producing planar heating element and planar heating element manufactured thereby |
JP2008213661A (en) * | 2007-03-05 | 2008-09-18 | Misato Kk | Vehicular planar heat generation body and vehicle heating device using this |
-
1980
- 1980-07-28 JP JP10381980A patent/JPS5730284A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5730284A (en) | 1982-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4628187A (en) | Planar resistance heating element | |
US4534886A (en) | Non-woven heating element | |
US6054690A (en) | Heating element, manufacturing process and application | |
US4654511A (en) | Layered self-regulating heating article | |
US4543474A (en) | Layered self-regulating heating article | |
US4177376A (en) | Layered self-regulating heating article | |
CA1296043C (en) | Electrical devices comprising conductive polymers | |
EP0202896B1 (en) | Electrical sheet heaters | |
US3143640A (en) | Sheet-type heater and overheat protection device | |
CN101336565A (en) | Planar heating element and seat using same | |
JPH0138359B2 (en) | ||
JPS6245673B2 (en) | ||
JP2021136234A (en) | PPTC heaters and materials with stable power and self-limiting behavior | |
JPH06508960A (en) | circuit protection device | |
JP3930047B2 (en) | Electronic devices and assemblies | |
JPS6134235B2 (en) | ||
JPH0624152Y2 (en) | Sheet heating element | |
JPH046787A (en) | Planar heater | |
JPH084717Y2 (en) | Flexible heater | |
JP2578871Y2 (en) | Planar heating element | |
CN222464856U (en) | Self-temperature-limiting heating film, heating module and heating equipment | |
JPH08180964A (en) | Sheet-like heating element | |
JPS6242459Y2 (en) | ||
JPH03151601A (en) | Organic positive characteristics thermistor | |
JPH02267881A (en) | Flat heater |