[go: up one dir, main page]

JPS6244783B2 - - Google Patents

Info

Publication number
JPS6244783B2
JPS6244783B2 JP59273282A JP27328284A JPS6244783B2 JP S6244783 B2 JPS6244783 B2 JP S6244783B2 JP 59273282 A JP59273282 A JP 59273282A JP 27328284 A JP27328284 A JP 27328284A JP S6244783 B2 JPS6244783 B2 JP S6244783B2
Authority
JP
Japan
Prior art keywords
aqueous
weight
parts
monomer
antimony oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59273282A
Other languages
Japanese (ja)
Other versions
JPS61151259A (en
Inventor
Kyoshi Kawamura
Masuji Izumibayashi
Masanori Sagara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP59273282A priority Critical patent/JPS61151259A/en
Publication of JPS61151259A publication Critical patent/JPS61151259A/en
Publication of JPS6244783B2 publication Critical patent/JPS6244783B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Nonwoven Fabrics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は難燃性且つ低温架橋性の水性樹脂組成
物に関する。更に詳しくは、難燃性であり、低温
でホルマリン等の有害な物質を発生させることな
く架橋することができ、各種基材に対する接着
性、耐水性、耐溶剤性、耐候性、保存安定性に優
れており、コーテイング剤、バインダー、粘接着
剤等の用途に有効に使用することができる水性樹
脂組成物に関する。 <従来の技術とその問題点> 近年、火災防止の観点から建築材料、家具、室
内装飾品、車輛内装材等を中心に難燃規制が強化
されつつある。ビニル化合物を乳化重合して得ら
れる水性樹脂分散液は各種材料に対するコーテイ
ング剤、バインダー、粘接着剤として広く用いら
れているが、多くのものは可燃性であるため難燃
性を必要とする分野には使用出来ない。水性樹脂
分散液を難燃化する手段として、該分散液にハロ
ゲンおよび/またはリン含有有機化合物を添加す
る方法があるが、この方法では該有機化合物の添
加量に応じて難燃性は付与できるものの、分散液
の分散安定性の悪化、密着性、耐久性の劣化など
の問題がある。 一方、各種基剤に対する接着性や耐水性、耐溶
剤性、耐候性等の耐久性に優れた低温架橋性の水
性樹脂分散液が各種用途で要望されており、本発
明者らは、そのような水性樹脂分散液として、分
子中に重合性不飽和基と珪素原子に直結する加水
分解性基とを有する有機珪素単量体、重合性不飽
和カルボン酸および(メタ)アクリル酸アルキル
エステルを必須成分としてなる水性共重合体分散
液を提案した(特願昭58−78237号)。しかしなが
ら、この水性共重合体分散液は、接着性や耐久性
が従来品より著しく改良されたものの架橋性が不
充分となる場合があり、充分な耐久性を安定して
与えることが難かしく、また難燃性も有していな
い。 <問題点を解決するための手段及び作用> 本発明者らは、前記の如き欠点のない難燃性で
低温架橋性の水性樹脂の開発を目的として研究を
重ねた結果、乳化重合によつて得られる共重合体
であつて、かつ該共重合体中に特定構造の有機珪
素基と必要に応じてカルボキシル基および/また
はハロゲン化炭化水素基を有するものからなる水
性共重合体分散液に水性酸化アンチモンゾルおよ
び必要に応じて水性コロイダルシリカや珪素原子
に直結する加水分解性基を有するシラン化合物を
配合した水性樹脂組成物が、難燃性であり、かつ
共重合体中の有機珪素基と水性酸化アンチモンと
が反応して架橋構造を形成するために、コーテイ
ング剤、バインダー、粘接着剤として優れた性能
を発揮し、保存安定性も優れたものであることを
見出し、本発明に到達したものである。 すなわち、本発明は分子中に重合性不飽和基と
珪素原子に直結する加水分解性基とを有する有機
珪素単量体(A)0.1〜40重量%、重合性不飽和カル
ボン酸(B)0〜20重量%、分子中に重合性不飽和基
と少なくとも1つの水素原子がハロゲン原子で置
換された炭化水素基とを有する有機ハロゲン単量
体(C)0〜80重量%およびその他の重合性単量体(D)
0〜90重量%(但し、(A)、(B)、(C)および(D)成分の
合計は100重量%である)からなる単量体成分を
水性媒体中で乳化重合して得られる水性共重合体
分散液()100重量部(不揮発分換算)、水性酸
化アンチモンゾル()0.1〜100重量部(Sb2O5
含有分換算)、水性コロイダルシリカ()0〜
40重量部(SiO2含有分換算)並びに珪素原子に
直結する加水分解性基を有するシラン化合物
()0〜20重量部からなる水性樹脂組成物を提
供するものである。 本発明において使用する有機珪素単量体(A)は分
子中に少なくとも1個の重合性不飽和基と少なく
とも1個の珪素原子に直結する加水分解性基とを
有する化合物であり、乳化重合の過程またはそれ
以後の過程において、珪素原子に直結する加水分
解性基の一部または全部が加水分解を受けてシラ
ノール基を形成し、これが縮合架橋反応し共有結
合を形成することにより、優れた耐水性、耐溶剤
性、耐摩耗性及び各種基材に対する接着性を発揮
するものである。有機珪素単量体(A)としては、例
えばビニルトリメトキシシラン、ビニルトリエト
キシシラン、ビニルトリブトキシシラン、ビニル
トリス(β−メトキシエトキシ)シラン、アリル
トリエトキシシラン、トリメトキシシリルプロピ
ルアリルアミン、γ−(メタ)アクリロキシプロ
ピルトリメトキシシラン、γ−(メタ)アクリロ
キシプロピルトリエトキシシラン、γ−(メタ)
アクリロキシプロピルメチルジメトキシシラン、
γ−(メタ)アクリロキシプロピルメチルジエト
キシシラン、γ−(メタ)アクリロキシプロピル
トリス(β−メトキシエトキシ)シラン、N−β
−(N−ビニルベンジルアミノ)エチル−γ−ア
ミノプロピルトリメトキシシラン、N−ビニルベ
ンジル−γ−アミノプロピルトリエトキシシラ
ン、2−スチリルエチルトリメトキシシラン、3
−(N−スチリルメチル−2−アミノエチルアミ
ノ)プロピルトリメトキシシラン、(メタ)アク
リロキシエチルジメチル(3−トリメトキシシリ
ルプロピル)アンモニウムクロライド、ビニルト
リアセトキシシラン、ビニルトリクロルシランな
どを挙げることができ、これらの群から選ばれる
1種または2種以上の混合物を使用することがで
きる。本発明においては、有機珪素単量体(A)を単
量体成分中0.1〜40重量%の割合、より好ましく
は0.1〜20重量%の割合で使用する。有機珪素単
量体(A)が0.1重量%未満では架橋密度が不充分
で、耐水性、耐溶剤性、耐摩耗性の不充分なもの
しか得られず、また40重量%を超えて多量に使用
しても、本発明の範囲内の場合に比べて耐水性、
耐溶剤性、耐摩耗性は向上せず、逆に樹脂皮膜の
脆さ、価格の上昇などの欠点が現われるので好ま
しくない。 本発明においては必要に応じて重合性不飽和カ
ルボン酸(B)を使用してもよい。重合性不飽和カル
ボン酸(B)は、分子中にカルボキシル基を1個以上
有するものが用いられ、前記有機珪素単量体(A)の
縮合架橋反応を促進し、各種基材に対する接着性
を向上させ、かつ水性共重合体分散液の凍結安定
性、機械的安定性、化学的安定性の向上に寄与
し、また塩基性物質を適当量加えることにより水
性共重合体分散液の粘度を所望の範囲に調節する
ことを可能にする作用を有する。重合性不飽和カ
ルボン酸(B)としては、例えばアクリル酸、メタク
リル酸、クロトン酸などの如き不飽和一塩基性
酸;マレイン酸、フマル酸、イタコン酸などの如
き不飽和二塩基性酸;炭素数1〜17個のアルキル
アルコールと不飽和二塩基性酸のモノエステル化
合物;エチレングリコール、ジエチレングリコー
ル、プロピレングリコールの如き2価アルコール
とメチルアルコール、エチルアルコール、ブチル
アルコールの如き低級1価アルコールとのモノエ
ーテルと不飽和二塩基性酸とのモノエステル化合
物などを挙げることができ、これらの群から選ば
れた1種または2種以上の混合物を使用すること
ができる。本発明において、重合性不飽和カルボ
ン酸(B)は、単量体成分中20重量%以下の割合で使
用する。重合性不飽和カルボン酸(B)の割合を20重
量%を超えて多量に使用すると、耐水性が不良と
なる。 本発明においては必要に応じて有機ハロゲン単
量体(C)を使用してもよい。有機ハロゲン単量体(C)
は、分子中に重合性不飽和基と少なくとも1つの
水素原子がハロゲン原子で置換された炭化水素基
とを有する化合物であるが、該炭化水素基のすべ
ての水素原子がハロゲン原子で置換されたもので
あつてもよいことは言うまでもない。有機ハロゲ
ン単量体(C)は、乳化重合により得られる水性共重
合体分散液()中の共重合体を構成する一成分
として、難燃性を効果的に付与する作用を有す
る。有機ハロゲン単量体(C)の中でも、該単量体(C)
中に含まれるハロゲン原子としては臭素もしくは
塩素であるものが、難燃効果及び安定性等の取り
扱い易さの点から好ましい。 具体的に有機ハロゲン単量体(C)としては、例え
ば2・3−ジブロモプロピル(メタ)アクリレー
ト、2・3−ジブロモブチル(メタ)アクリレー
ト、3・4−ジブロモブチル(メタ)アクリレー
ト、2・3−ジブロモ−3−メチル−ブチル(メ
タ)アクリレート、5・6−ジブロモヘキシル
(メタ)アクリレート、2・3−ジブロモプロピ
ル(メタ)アクリレート、2・3−ジクロロプロ
ピル(メタ)アクリレートの如きハロゲン化アル
キル(メタ)アクリレート類;2・4・6−トリ
ブロモフエニル(メタ)アクリレート、2・4・
6−トリクロロフエニル(メタ)アクリレート、
ペンタブロモフエニル(メタ)アクリレート、ペ
ンタクロロフエニル(メタ)アクリレートの如き
ハロゲン化フエニル(メタ)アクリレート類;2
−ヒドロキシ−3−トリブロモフエノキシプロピ
ル(メタ)アクリレート、2−ヒドロキシ−3−
トリクロロフエノキシプロピル(メタ)アクリレ
ート、3−ヒドロキシ−2−トリブロモフエノキ
シプロピル(メタ)アクリレート、3−ヒドロキ
シ−2−トリクロロフエノキシプロピル(メタ)
アクリレート、2−トリブロモフエノキシエチル
(メタ)アクリレート、2−トリクロロフエノキ
シエチル(メタ)アクリレート、2−ペンタブロ
モフエノキシエチル(メタ)アクリレート、2−
ペンタクロロフエノキシエチル(メタ)アクリレ
ート、4−トリブロモフエノキシブチル(メタ)
アクリレート、4−トリクロロフエノキシブチル
(メタ)アクリレートの如きハロゲン化フエノキ
シアルキル(メタ)アクリレート類;モノブロム
スチレン、ジブロムスチレン、トリブロムスチレ
ン、モノクロルスチレン、ジクロルスチレン、ト
リクロルスチレン、テトラクロルスチレン、ジブ
ロムα−メチルスチレン、トリブロムα−メチル
スチレンの如きハロゲン化ビニル芳香族化合物
類;トリブロモフエニルビニルスルホネート、ト
リクロロフエニルビニルスルホネート、トリブロ
モフエニルα−メチルビニルスルホネート、トリ
クロロフエニルα−メチルビニルスルホネート、
ペンタブロモフエニルビニルスルホネート、ペン
タクロロフエニルビニルスルホネート、ペンタブ
ロモフエニルα−メチルビニルスルホネート、ペ
ンタクロロフエニルα−メチルビニルスルホネー
トの如きハロゲン化フエニルビニルスルホン酸エ
ステル類;ジ(2・3−ジブロモプロピル)・ア
リルホスフエート、ジ(2・3−ジクロロプロピ
ル)・アリルホスフエートの如きハロゲン化アル
キル含リン不飽和化合物類;塩化ビニル、臭化ビ
ニルの如きハロゲン化ビニル;塩化ビニリデン、
臭化ビニリデンの如きハロゲン化ビニリデンなど
を挙げることができ、これらの群から選ばれる1
種または2種以上の混合物を使用することができ
る。本発明において、有機ハロゲン単量体(C)は必
ずしも使用する必要のないものであるが、単量体
(C)を使用することによつて水性共重合体により高
度の難燃性を付与できるものであり、特に合成繊
維、プラスチツクフイルム等の有機質基材のコー
テイング剤、バインダー等に使用する場合は、単
量体(C)を使用するのが好ましい。単量体(C)は単量
体成分中80重量%以下の割合で使用する。80重量
%を超えて多量に使用しても、本発明の範囲内の
場合に比べて難燃性は向上せず、逆にコーテイン
グ剤やバインダー等の接着性、耐久性の劣化など
の欠点が現われるので好ましくない。 本発明においては必要に応じて単量体成分中90
重量%以下の割合で重合性単量体(A)を使用しても
よい。重合性単量体(D)としては、例えばアクリル
酸もしくはメタクリル酸のメチル、エチル、プロ
ピル、イソプロピル、ブチル、イソブチル、オク
チル、2−エチルヘキシル、ラウリル、ステアリ
ルあるいはシクロヘキシルエステルの如き(メ
タ)アクリル酸アルキルエステル類;(メタ)ア
クリル酸ヒドロキシエチル、(メタ)アクリル酸
ヒドロキシプロピル、(メタ)アクリル酸グリシ
ジル、アクリル酸もしくはメタクリル酸とポリプ
ロピレングリコールとのモノもしくはジエステ
ル、アクリル酸もしくはメタクリル酸とポリエチ
レングリコールとのモノもしくはジエステル、ア
クリル酸もしくはメタクリル酸とエチレングリコ
ール、1・3−プチレングリコール、1・6−ヘ
キサングリコール、ネオペンチルグリコールなど
の2価アルコールとのジエステル、アクリル酸も
しくはメタクリル酸とトリメチロールプロパンと
のトリエステル、スチレン、ビニルトルエン、ア
クリロニトリル、メタクリロニトリル、酢酸ビニ
ル、プロピオン酸ビニル、エチレン、プロピレ
ン、ブタジエン、イソプレン、ジシクロペンタジ
エン、ジビニルベンゼン、ジアリルフタレート、
(メタ)アクリルアミドなどを挙げることがで
き、これらの群から選ばれる1種または2種以上
の混合物を使用することができる。 重合性単量体(D)の割合を90重量%を超えて多量
に使用すると、該単量体(D)の種類によつては難燃
性、耐久性が不良となることがある。 本発明では、有機珪素単量体(A)と必要に応じて
重合性不飽和カルボン酸(B)、有機ハロゲン単量体
(C)および重合性単量体(D)を水性媒体中で乳化重合
する。 乳化重合は公知の重合開始剤、乳化剤、その他
必要であれば各種の添加剤を使用して、公知の方
法に従つて行うことができる。 乳化重合によつて得られるものをそのまま水性
共重合体分散液()として用いることもできる
が、塩基性物質を加えてPHを高くすることにより
水性共重合体分散液()の凍結安定性、機械的
安定性、化学的安定性を向上させることができ、
また基材に対する接着性が向上する場合もあるの
で、通常PHが5以上になるよう塩基性物質を加え
るのが好ましい。塩基性物質としては、例えばア
ンモニア、エチルアミン、ジエチルアミン、トリ
エチルアミン、エタノールアミン、トリエタノー
ルアミン、ジエチルエタノールアミン、苛性ソー
ダ、苛性カリなどを使用することができる。 本発明においては、上記のようにして得られた
水性共重合体分散液()に水性酸化アンチモン
ゾル()を配合する。水性酸化アンチモンゾル
()は五酸化アンチモン(化学式Sb2O5)のコロ
イドであり、難燃性を付与すると共に上記共重合
体中の有機珪素基と反応する性質があるため、難
燃化剤兼架橋剤として作用するものである。水性
酸化アンチモンゾル()は水性共重合体分散液
()に安定に配合することができ、得られた水
性樹脂組成物は沈澱物、ゲル化物を生ずることな
く長期間安定に保存可能であり、該組成物から得
られる皮膜は、共重合体と酸化アンチモンが架橋
一体化しているために難燃性、耐水性、耐久性、
耐摩耗性等の諸性能において共重合体単独の場合
よりも優位の水準にあるものである。水性酸化ア
ンチモンゾル()としては、通常水性分散液の
形態で供給されている、例えば日産化学工業社製
の水性酸化アンチモンゾル「A−1530」、「A−
1550」、「A−2550」、「1−1530ZA」、「NC F/
R−104」などをそのまま使用することができ
る。 水性共重合体分散液()と水性酸化アンチモ
ンゾル()を配合する方法としては、乳化重合
した後の水性共重合体分散液()と水性酸化ア
ンチモンゾル()を単に混合する方法であつて
も良く、また水性酸化アンチモンゾル()の存
在下に水性共重合体分散液()を乳化重合する
方法であつても良い。後者の方法は単量体滴下
法、プレエマルシヨン法あるいはそれらの組合わ
せなど公知の方法を利用することができる。例え
ば水性酸化アンチモンゾル()を含む水性媒体
中に単量体成分を滴下して重合する方法、または
水性酸化アンチモンゾル()と単量体成分との
プレミツクスを滴下して重合する方法、若しくは
水性酸化アンチモンゾル()と単量体成分をそ
れぞれ別個に滴下して重合する方法を採用するこ
とができる。水性酸化アンチモンゾル()存在
下での乳化重合においても乳化剤および重合触媒
としては公知のものを全て使用することができ、
また、必要に応じて慣用の添加剤を使用すること
も自由である。このように水性酸化アンチモンゾ
ル()の存在下に乳化重合を行つたのち、その
まま水性樹脂組成物とすることができるが、塩基
性物質を加えてPHを高くすることにより水性樹脂
組成物の凍結安定性、機械的安定性および化学的
安定性などを向上させることができ、また基材に
対する接着性が向上する場合もあるので、通常PH
が5以上になるよう塩基性物質を加えるのが好ま
しい。塩基性物質としては、前述したものを全て
使用することができる。水性酸化アンチモンゾル
()の存在下に水性共重合体分散液()を乳
化重合させる方法は、水性共重合体分散液()
の乳化重合の操作と、水性共重合体分散液()
と水性酸化アンチモンゾル()との混合の操作
が同時に行えるため、工程を簡略化できる利点が
ある。また場合によつては、水性共重合体分散液
()と水性酸化アンチモンゾル()との単な
る混合に比べて架橋度が更に向上することがあ
る。 本発明において水性酸化アンチモンゾル()
は、水性共重合体分散液()100重量部(不揮
発分換算)に対して0.1〜100重量部(Sb2O5含有
分換算)の割合で使用する。水性酸化アンチモン
ゾル()が0.1重量部未満では難燃性、架橋性
が充分でなく、また100重量部を超えて多量に使
用しても、本発明の範囲内の場合にくらべて性能
が向上せず、逆に価格の上昇などの欠点が現われ
る。 このようにして得られた水性共重合体分散液
()と水性酸化アンチモンゾル()からなる
水性樹脂組成物は、そのままでも低温架橋性、各
種基材に対する接着性、耐久性の優れた難燃性の
水性樹脂組成物を提供するものであるが、該水性
樹脂組成物に必要に応じて水性コロイダルシリカ
()を配合しても良い。シリカ成分は上記共重
合体中に形成されたシラノール基と架橋反応する
ため、架橋密度を高め、耐久性を更に向上する効
果がある。 本発明において使用する水性コロイダルシリカ
()は、一般にいわれているケイ酸の縮合体で
あつて粒子径が5〜100mμ、とくに7〜50mμ
の範囲のものが好ましく、通常水性分散液の形態
で供給されているものをそのまま使用することが
できる。このような水性コロイダルシリカ()
としては、例えば市販品として「スノーテツクス
O」「スノーテツクスN」「スノーテツクス
NCS」「スノーテツクス20」「スノーテツクス
C」(以上日産化学社製)、「Cataloid SN」
「Catalid Si−500」(以上触媒化成工業社製)等
および表面処理されたコロイダルシリカ、例えば
アルミン酸で処理された「Cataloid SA」(触媒
化成工業社製)等を挙げることができ、これらの
群から選ばれた1種または2種以上を使用するこ
とができる。 水性共重合体分散液()と水性酸化アンチモ
ンゾル()からなる水性樹脂組成物に水性コロ
イダルシリカ()を配合する方法としては、前
記の水性共重合体分散液()と水性酸化アンチ
モンゾル()との配合方法をそのまま採用する
ことができる。 本発明において水性コロイダルシリカ()
は、水性共重合体分散液()100重量部(不揮
発分換算)に対して40重量部(SiO2含有分換
算)以下の範囲、好ましくは0.1〜30重量部の範
囲で使用する。40重量部を超えて多量に使用して
も、本発明の範囲内の場合に比べて強度、耐久性
が向上せず、逆に組成物の不安定化、価格の上昇
などの欠点が現われるので好ましくない。 このようにして得られた水性共重合体分散液
()に水性酸化アンチモンゾル()を配合し
た水性樹脂組成物および該組成物に必要に応じて
水性コロイダルシリカ()を配合した水性樹脂
組成物は、これら単独で用いても充分優れた性能
を発揮し得るものであるが、シラン化合物()
を併用することによつて各種基材に対する接着
性、耐水性、耐溶剤性を更に向上させることがで
きる。また、シラン化合物()は更に別の効果
をも有する。 すなわち、前記水性共重合体分散液()に水
性酸化アンチモンゾル()を配合した水性樹脂
組成物あるいは該組成物に必要に応じて水性コロ
イダルシリカ()を配合した水性樹脂組成物は
一定期間、例えば一年以上貯蔵した後に使用する
と、場合によつては基材に対する初期の接着性を
保持していないことがあり、このような場合、一
定基期間貯蔵後の該水性樹脂組成物にシラン化合
物()を配合することにより、初期の接着性を
回復させることができる。 本発明において使用するシラン化合物()と
しては、例えば前記した有機珪素単量体(A)として
用いられる化合物の他、アミノメチルトリエトキ
シシラン、N−β−アミノエチルアミノメチルト
リメトキシシラン、γ−アミノプロピルトリメト
キシシラン、N−β−アミノエチル−γ−アミノ
プロピルトリメトキシシラン、N−β−アミノエ
チル−γ−アミノプロピルメチルジメトキシシラ
ンなどの如きアミノアルキルアルコキシシラン;
γ−グリシドキシプロピルトリメトキシシラン、
γ−グリシドキシプロピルメチルジメトキシシラ
ン、β−(3・4−エポキシシクロヘキシル)エ
チルトリメトキシシラン、β−(3・4−エポキ
シシクロヘキシル)エチルメチルジメトキシシラ
ンなどの如きエポキシアルキルアルコキシシラ
ン;γ−メルカプトプロピルトリメトキシシラ
ン、γ−メルカプトプロピルメチルジメトキシシ
ランなどの如きメルカプトアルキルアルコキシシ
ラン;テトラメトキシシラン、テトラエトキシシ
ラン、テトラプロポキシシラン、テトラブトキシ
シランなどの如きテトラアルコキシシラン;メチ
ルトリメトキシシラン、メチルトリエトキシシラ
ン、メチルトリメトキシエトキシシラン、エチル
トリメトキシシランなどの如きアルキルトリアル
コキシシラン;ジメチルジメトキシシラン、ジメ
チルジエトキシシランなどの如きジアルキルジア
ルコキシシラン;γ−クロロプロピルトリメトキ
シシラン、3・3・3−トリクロロプロピルトリ
メトキシシランなどの如きハロゲン化アルキルア
ルコキシシラン;メチルトリアセトキシシラン、
ジメチルジアセトキシシランなどの如きアルキル
アシロキシシラン;トリメトキシシラン、トリエ
トキシシランなどの如きヒドロシラン化合物など
を挙げることができ、これらの群より選ばれる1
種または2種以上の混合物を使用することができ
る。 これらのシラン化合物()の使用量は、所望
の効果を充分発揮せしめ、しかも価格を適当な範
囲に収めるため、水性共重合体分散液()100
重量部(不揮発分換算)に対し、20重量部以下が
好ましい。 このようにして得られた水性共重合体分散液
()に水性酸化アンチモンゾル()を配合し
た水性樹脂組成物および該組成物に必要に応じて
水性コロイダルシリカ()やシラン化合物
()を配合した水性樹脂組成物は、そのままで
もコーテイング剤、バインダー、粘接着剤等とし
て用いることもできるが、その他に公知の粘度調
節剤、撥水剤、架橋剤、発泡剤、無機充填剤など
を加えることができ、また適宜機械発泡あるいは
希釈して用いることもできる。 <発明の効果> 本発明の水性樹脂組成物は、有機珪素単量体(A)
を必須とし、必要により重合性不飽和カルボン酸
(B)、有機ハロゲン単量体(C)および重合性単量体(D)
を用いて導かれた水性共重合体分散液()に水
性酸化アンチモンゾル()および必要に応じて
更に水性コロイダルシリカ()やシラン化合物
()を配合してなるものであるために、難燃性
であり、低温架橋性、各種基材に対する接着性や
耐水性、耐溶剤性等の耐久性や保存安定性に優
れ、更に架橋に際してホルマリン等の有害な物質
を発生せず、水性であるために火災や環境汚染な
どの必要がないなどの優れた特徴を有しており、
難燃性を要求される各種コーテイング剤、バイン
ダー、粘接着剤等として極めて有効に利用でき
る。具体的な用途としては、例えばカーシートの
バツクコート、カーペツトのバツクコート、フロ
ツク加工用バインダー、不織布用バインダー、難
燃処理加工用コーテイング剤やバインダー;壁
材、天井材、床材等の建築内装材の表面保護や美
粧用コーテイング剤;車輛内装材または建材とし
て用いられる各種積層材の粘着剤や接着剤などを
挙げることができる。また、本発明の水性樹脂組
成物は、パルプ、木綿、麻、羊毛などの天然繊
維;ポリエステル、ナイロン、アクリル、レーヨ
ン、ポリプロピレン等の合成繊維;ガラス、岩
綿、セラミツク等の無機繊維およびこれら繊維よ
り得られる布あるいは紙;ポリエステル、ポリプ
ロピレン、ポリ塩化ビニル、アクリル等のプラス
チツク製のフイルムやシートや成型品;鉄、アル
ミ等の金属;スレート、アスベスト、石膏、モル
タル、硅カル、ガラス等の無機質材料等の広汎な
種類の素材に適用することができるものである。 以下実施例により、本発明を詳細に説明する
が、本発明の範囲がこれら実施例のみに限定され
るものではない。なお、例中特にことわりのない
限り%は重量%を、部は重量部をそれぞれ示すも
のとする。また各々の性能試験は下記に示す方法
で行つた。 1カーペツトバツクコーテイング用性能試験 加工条件 バインダー組成物100部に重質炭酸カルシウ
ム20部、28%アンモニア水を適量加え、均一に
混合し、粘度20000cpsに調整し、基布がレー
ヨン、パイルがナイロンのタフテツドカーペツ
トの裏面に塗布量1000g/m2になるように均一
に塗布し、次いで熱風乾燥機で100℃で20分間
加熱乾燥した。 抜糸強度 JIS L−1021「敷物試験方法」に従いカーペ
ツトの抜糸強度を測定した。 耐候性試験後の抜糸強度は、試験片をサンシ
ヤイン型ウエザオメーターに1000時間かけた後
常温で24時間放置し測定した。 難燃性試験 FMVSS−302法に従つて難燃性を測定し
た。 判定は (1) 燃焼距離2インチ以下(不燃) (2) 60秒以下で消炎する(難燃) (3) 4インチ/分以下の燃焼速度である(遅
燃) (4) 4インチ/分以上の燃焼速度である(可
燃) とした。 2 ガラスマツトバインダー用性能試験 加工条件 ガラス繊維を交錯させたガラスマツトに、不
揮発分8%となるように水希釈したバインダー
組成物を含浸し、規定付着量になるように調整
した後180℃で2分間乾燥し、バインダー組成
物(不揮発分)の付着量が15%のガラスマツト
を得た。 耐水性試験 かたさは1cm×12cmの帯状に切断した試験片
の両端から1cmの位置を固定せずに支持し、試
験片の中央に5gのおもりを置き、中央部が低
下したmm数を読んで測定した。耐水性は、試験
片を1週間水中に浸漬した後、常温で24時間放
置した後のかたさが、水浸漬前のかたさに対し
て何パーセント保持されているかで評価した。 難燃性試験 JIS L−1091 A−3法に従つて難燃性を測
定した。(炭化距離を測定し、短いものほど難
燃性がある。) 3 合成皮革用性能試験 加工条件 離型紙の上に20μの厚さに溶剤型ポリウレタ
ン樹脂を塗布した後乾燥し、スキン層を形成さ
せる。しかる後、バインダー組成物に28%アン
モニア水を添加して粘度12000cpsに調整した
ものをドクターナイフにより該スキン層の上に
塗布量150g/m2になるように均一に塗布し、
直ちに綿/ポリエステル織布をはり合わせ、
110℃で5分間加熱乾燥した。冷却後、離型紙
を剥離して合成皮革を得た。 剥離強度 JIS K−6772記載の剥離試験条件に従つて測
定した。ジヤングル試験後剥離強度は、50℃、
相対湿度98%以上の恒温恒湿室に試験片を30日
間入れた後、室温で24時間放置し測定した。 難燃性試験 前記カーペツトバツクコーテイング用と同様
の方法で難燃性を測定、評価した。 実施例 1 滴下ロート、撹拌機、不活性ガス導入管、温度
計および還流冷却器を備えたフラスコに水100
部、乳化剤としてナトリウムドデシルサルフエー
ト2.0部および重合触媒として過硫酸カリウム0.5
部を仕込み、ゆるやかに窒素ガスを吹込みながら
75℃に加熱し、撹拌して均一な水溶液とし、つい
でそこへ滴下ロートより予め調製しておいたビニ
ルトリメトキシシラン3部、アクリル酸2部、
2・4・6−トリブロモフエニルメタクリレート
15部およびアクリル酸ブチル80部から成る単量体
混合物を3時間かけて滴下した。その後温度を75
℃に保持し、さらに1時間撹拌し、そこへ水性酸
化アンチモンゾル「A−2550」(日産化学社製、
粒子径20〜50mμ、Sb2O5濃度48%)20部を滴下
ロートより30分間かけて滴下し、さらに1時間撹
拌した後30℃に冷却し、濃度28%のアンモニア水
を加えてPHを8.0に調整し、不揮発分50.1%、粘
度2120cps(B型粘度計、12rpm、25℃;以下の
実施例においても全く同様である)の水性樹脂組
成物(1)を得た。この組成物(1)をバインダー組成物
として行つた性能試験結果は第2表に示した通り
であつた。 実施例 2〜4 単量体混合物組成、水性酸化アンチモンゾルの
種類と使用比率、乳化剤、重合触媒、重合温度、
水および塩基性物質を第1表に示した通りとする
他は、実施例1と同様の操作をくり返して水性樹
脂組成物(2)〜(4)を得た。これらの組成物(2)〜(4)を
バインダー組成物として行つた性能試験結果は第
2表に示した通りであつた。
<Industrial Application Field> The present invention relates to a flame-retardant and low-temperature crosslinkable aqueous resin composition. More specifically, it is flame retardant, can be crosslinked at low temperatures without emitting harmful substances such as formalin, and has excellent adhesion to various substrates, water resistance, solvent resistance, weather resistance, and storage stability. The present invention relates to an aqueous resin composition that is excellent and can be effectively used for applications such as coating agents, binders, and adhesives. <Prior art and its problems> In recent years, flame retardant regulations have been tightened mainly for building materials, furniture, interior decoration products, vehicle interior materials, etc. from the viewpoint of fire prevention. Aqueous resin dispersions obtained by emulsion polymerization of vinyl compounds are widely used as coating agents, binders, and adhesives for various materials, but many of them are flammable and therefore require flame retardancy. It cannot be used in the field. One way to make an aqueous resin dispersion flame-retardant is to add a halogen- and/or phosphorus-containing organic compound to the dispersion; with this method, flame retardancy can be imparted depending on the amount of the organic compound added. However, there are problems such as deterioration of the dispersion stability of the dispersion liquid and deterioration of adhesion and durability. On the other hand, there is a demand for low-temperature crosslinkable aqueous resin dispersions with excellent durability such as adhesion to various base materials, water resistance, solvent resistance, weather resistance, etc., and the present inventors have As an aqueous resin dispersion, organic silicon monomers having polymerizable unsaturated groups and hydrolyzable groups directly bonded to silicon atoms in the molecule, polymerizable unsaturated carboxylic acids, and (meth)acrylic acid alkyl esters are essential. We proposed an aqueous copolymer dispersion as a component (Japanese Patent Application No. 78237/1982). However, although this aqueous copolymer dispersion has significantly improved adhesion and durability compared to conventional products, its crosslinking properties may be insufficient, making it difficult to stably provide sufficient durability. It also does not have flame retardancy. <Means and effects for solving the problems> As a result of repeated research aimed at developing a flame-retardant and low-temperature crosslinkable aqueous resin that does not have the above-mentioned drawbacks, the present inventors discovered that An aqueous copolymer dispersion of the resulting copolymer having an organosilicon group with a specific structure and, if necessary, a carboxyl group and/or a halogenated hydrocarbon group, is added to the aqueous copolymer dispersion liquid. The aqueous resin composition containing antimony oxide sol and, if necessary, aqueous colloidal silica or a silane compound having a hydrolyzable group directly bonded to a silicon atom is flame retardant and has a high affinity with the organosilicon group in the copolymer. We discovered that because it reacts with aqueous antimony oxide to form a crosslinked structure, it exhibits excellent performance as a coating agent, binder, and adhesive, and also has excellent storage stability, leading to the present invention. This is what I did. That is, the present invention uses 0.1 to 40% by weight of an organosilicon monomer (A) having a polymerizable unsaturated group and a hydrolyzable group directly bonded to a silicon atom in the molecule, and 0% by weight of a polymerizable unsaturated carboxylic acid (B). ~20% by weight, 0 to 80% by weight of organic halogen monomer (C) having a polymerizable unsaturated group and a hydrocarbon group in which at least one hydrogen atom has been replaced with a halogen atom in the molecule, and other polymerizable Monomer (D)
Obtained by emulsion polymerization of a monomer component consisting of 0 to 90% by weight (however, the total of components (A), (B), (C), and (D) is 100% by weight) in an aqueous medium. Aqueous copolymer dispersion () 100 parts by weight (in terms of nonvolatile content), aqueous antimony oxide sol () 0.1 to 100 parts by weight (Sb 2 O 5
content), aqueous colloidal silica () 0~
The present invention provides an aqueous resin composition comprising 40 parts by weight (in terms of SiO 2 content) and 0 to 20 parts by weight of a silane compound () having a hydrolyzable group directly bonded to a silicon atom. The organosilicon monomer (A) used in the present invention is a compound that has at least one polymerizable unsaturated group and at least one hydrolyzable group directly bonded to a silicon atom in its molecule, and is suitable for emulsion polymerization. During this process or subsequent processes, some or all of the hydrolyzable groups directly bonded to silicon atoms undergo hydrolysis to form silanol groups, which undergo a condensation and crosslinking reaction to form covalent bonds, resulting in excellent water resistance. It exhibits properties such as hardness, solvent resistance, abrasion resistance, and adhesion to various base materials. Examples of the organic silicon monomer (A) include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltributoxysilane, vinyltris(β-methoxyethoxy)silane, allyltriethoxysilane, trimethoxysilylpropylallylamine, γ-( Meta)acryloxypropyltrimethoxysilane, γ-(meth)acryloxypropyltriethoxysilane, γ-(meth)
acryloxypropylmethyldimethoxysilane,
γ-(meth)acryloxypropylmethyldiethoxysilane, γ-(meth)acryloxypropyltris(β-methoxyethoxy)silane, N-β
-(N-vinylbenzylamino)ethyl-γ-aminopropyltrimethoxysilane, N-vinylbenzyl-γ-aminopropyltriethoxysilane, 2-styrylethyltrimethoxysilane, 3
-(N-styrylmethyl-2-aminoethylamino)propyltrimethoxysilane, (meth)acryloxyethyldimethyl(3-trimethoxysilylpropyl)ammonium chloride, vinyltriacetoxysilane, vinyltrichlorosilane, etc. , one kind or a mixture of two or more kinds selected from these groups can be used. In the present invention, the organosilicon monomer (A) is used in a proportion of 0.1 to 40% by weight, more preferably 0.1 to 20% by weight, in the monomer components. If the organosilicon monomer (A) is less than 0.1% by weight, the crosslinking density will be insufficient and only a product with insufficient water resistance, solvent resistance, and abrasion resistance will be obtained; Even when used, water resistance compared to that within the scope of the present invention,
Solvent resistance and abrasion resistance are not improved, and on the contrary, disadvantages such as brittleness of the resin film and increase in price appear, so this is not preferable. In the present invention, a polymerizable unsaturated carboxylic acid (B) may be used if necessary. The polymerizable unsaturated carboxylic acid (B) used is one having one or more carboxyl groups in its molecule, which promotes the condensation crosslinking reaction of the organosilicon monomer (A) and improves adhesiveness to various substrates. It also contributes to improving the freezing stability, mechanical stability, and chemical stability of the aqueous copolymer dispersion, and also increases the viscosity of the aqueous copolymer dispersion to the desired level by adding an appropriate amount of a basic substance. It has the function of allowing adjustment within the range of . Examples of the polymerizable unsaturated carboxylic acid (B) include unsaturated monobasic acids such as acrylic acid, methacrylic acid, and crotonic acid; unsaturated dibasic acids such as maleic acid, fumaric acid, and itaconic acid; Monoester compound of number 1 to 17 alkyl alcohol and unsaturated dibasic acid; monoester compound of dihydric alcohol such as ethylene glycol, diethylene glycol, propylene glycol and lower monohydric alcohol such as methyl alcohol, ethyl alcohol, butyl alcohol Examples include monoester compounds of ethers and unsaturated dibasic acids, and one type or a mixture of two or more types selected from these groups can be used. In the present invention, the polymerizable unsaturated carboxylic acid (B) is used in a proportion of 20% by weight or less in the monomer components. If the proportion of the polymerizable unsaturated carboxylic acid (B) exceeds 20% by weight and is used in a large amount, water resistance will be poor. In the present invention, an organic halogen monomer (C) may be used if necessary. Organic halogen monomer (C)
is a compound that has a polymerizable unsaturated group and a hydrocarbon group in which at least one hydrogen atom has been replaced with a halogen atom in the molecule, but all hydrogen atoms in the hydrocarbon group have been replaced with a halogen atom. Needless to say, it may be something. The organic halogen monomer (C) has the effect of effectively imparting flame retardancy as a component constituting the copolymer in the aqueous copolymer dispersion () obtained by emulsion polymerization. Among the organic halogen monomers (C), the monomer (C)
The halogen atoms contained therein are preferably bromine or chlorine from the viewpoint of flame retardant effect, stability, and ease of handling. Specifically, the organic halogen monomer (C) includes, for example, 2,3-dibromopropyl (meth)acrylate, 2,3-dibromobutyl (meth)acrylate, 3,4-dibromobutyl (meth)acrylate, 2. Halogenated compounds such as 3-dibromo-3-methyl-butyl (meth)acrylate, 5,6-dibromohexyl (meth)acrylate, 2,3-dibromopropyl (meth)acrylate, 2,3-dichloropropyl (meth)acrylate Alkyl (meth)acrylates; 2,4,6-tribromophenyl (meth)acrylate, 2,4,
6-trichlorophenyl (meth)acrylate,
Halogenated phenyl (meth)acrylates such as pentabromophenyl (meth)acrylate and pentachlorophenyl (meth)acrylate; 2
-Hydroxy-3-tribromophenoxypropyl (meth)acrylate, 2-hydroxy-3-
Trichlorophenoxypropyl (meth)acrylate, 3-hydroxy-2-tribromophenoxypropyl (meth)acrylate, 3-hydroxy-2-trichlorophenoxypropyl (meth)
Acrylate, 2-tribromophenoxyethyl (meth)acrylate, 2-trichlorophenoxyethyl (meth)acrylate, 2-pentabromophenoxyethyl (meth)acrylate, 2-
Pentachlorophenoxyethyl (meth)acrylate, 4-tribromophenoxybutyl (meth)
acrylate, halogenated phenoxyalkyl (meth)acrylates such as 4-trichlorophenoxybutyl (meth)acrylate; monobromostyrene, dibromostyrene, tribromostyrene, monochlorostyrene, dichlorostyrene, trichlorostyrene, tetra Halogenated vinyl aromatic compounds such as chlorostyrene, dibromo α-methylstyrene, tribromo α-methylstyrene; tribromophenyl vinyl sulfonate, trichlorophenyl vinyl sulfonate, tribromophenyl α-methylvinyl sulfonate, trichlorophenyl α-methyl vinyl sulfonate,
Halogenated phenyl vinyl sulfonic acid esters such as pentabromophenyl vinyl sulfonate, pentachlorophenyl vinyl sulfonate, pentabromophenyl α-methyl vinyl sulfonate, pentachlorophenyl α-methyl vinyl sulfonate; di(2,3-dibromo halogenated alkyl phosphorus-containing unsaturated compounds such as propyl) allyl phosphate and di(2,3-dichloropropyl) allyl phosphate; vinyl halides such as vinyl chloride and vinyl bromide; vinylidene chloride,
Examples include vinylidene halides such as vinylidene bromide, and one selected from these groups.
Species or mixtures of two or more species can be used. In the present invention, the organic halogen monomer (C) does not necessarily need to be used, but the monomer
By using (C), a high degree of flame retardancy can be imparted to the aqueous copolymer, especially when used as a coating agent or binder for organic base materials such as synthetic fibers and plastic films. Preference is given to using monomer (C). Monomer (C) is used in a proportion of 80% by weight or less in the monomer components. Even if it is used in a large amount exceeding 80% by weight, the flame retardance will not improve compared to the case within the scope of the present invention, and on the contrary, there will be disadvantages such as deterioration of the adhesiveness and durability of coating agents and binders. It is not desirable because it appears. In the present invention, if necessary, 90%
The polymerizable monomer (A) may be used in a proportion of less than % by weight. Examples of the polymerizable monomer (D) include alkyl (meth)acrylates such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, octyl, 2-ethylhexyl, lauryl, stearyl, or cyclohexyl esters of acrylic acid or methacrylic acid. Esters; hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, glycidyl (meth)acrylate, mono- or diester of acrylic acid or methacrylic acid and polypropylene glycol, acrylic acid or methacrylic acid and polyethylene glycol Mono- or diesters, diesters of acrylic acid or methacrylic acid and dihydric alcohols such as ethylene glycol, 1,3-butylene glycol, 1,6-hexane glycol, neopentyl glycol, acrylic acid or methacrylic acid and trimethylolpropane triester of styrene, vinyltoluene, acrylonitrile, methacrylonitrile, vinyl acetate, vinyl propionate, ethylene, propylene, butadiene, isoprene, dicyclopentadiene, divinylbenzene, diallyl phthalate,
Examples include (meth)acrylamide, and one type or a mixture of two or more types selected from these groups can be used. If the proportion of the polymerizable monomer (D) exceeds 90% by weight and is used in a large amount, flame retardancy and durability may become poor depending on the type of the monomer (D). In the present invention, an organic silicon monomer (A) and, if necessary, a polymerizable unsaturated carboxylic acid (B) and an organic halogen monomer are used.
(C) and the polymerizable monomer (D) are emulsion polymerized in an aqueous medium. Emulsion polymerization can be carried out according to known methods using known polymerization initiators, emulsifiers, and other various additives if necessary. Although the aqueous copolymer dispersion obtained by emulsion polymerization can be used as it is as an aqueous copolymer dispersion (), the freezing stability of the aqueous copolymer dispersion () can be improved by adding a basic substance to increase the pH. Can improve mechanical stability, chemical stability,
Furthermore, since the adhesion to the substrate may be improved in some cases, it is usually preferable to add a basic substance so that the pH is 5 or higher. As the basic substance, for example, ammonia, ethylamine, diethylamine, triethylamine, ethanolamine, triethanolamine, diethylethanolamine, caustic soda, caustic potash, etc. can be used. In the present invention, an aqueous antimony oxide sol () is blended into the aqueous copolymer dispersion () obtained as described above. Aqueous antimony oxide sol () is a colloid of antimony pentoxide (chemical formula Sb 2 O 5 ), which imparts flame retardancy and has the property of reacting with the organosilicon groups in the above copolymer, so it is used as a flame retardant. It also acts as a crosslinking agent. The aqueous antimony oxide sol () can be stably blended into the aqueous copolymer dispersion (), and the resulting aqueous resin composition can be stored stably for a long period of time without forming precipitates or gels. The film obtained from the composition has flame retardancy, water resistance, durability, and
It is superior to the copolymer alone in various performances such as abrasion resistance. Examples of aqueous antimony oxide sol (2018) include aqueous antimony oxide sol "A-1530" and "A-
1550”, “A-2550”, “1-1530ZA”, “NC F/
R-104" etc. can be used as is. The method of blending the aqueous copolymer dispersion () and the aqueous antimony oxide sol () is to simply mix the aqueous copolymer dispersion () and the aqueous antimony oxide sol () after emulsion polymerization. Alternatively, it may be a method of emulsion polymerization of an aqueous copolymer dispersion () in the presence of an aqueous antimony oxide sol (). For the latter method, known methods such as a monomer dropping method, a pre-emulsion method, or a combination thereof can be used. For example, a method of polymerizing by dropping a monomer component into an aqueous medium containing an aqueous antimony oxide sol (), a method of polymerizing by dropping a premix of an aqueous antimony oxide sol () and a monomer component, or a method of polymerizing by dropping a premix of an aqueous antimony oxide sol () and a monomer component; A method can be adopted in which the antimony oxide sol (2) and the monomer component are individually dropped and polymerized. All known emulsifiers and polymerization catalysts can be used in emulsion polymerization in the presence of aqueous antimony oxide sol ().
Additionally, conventional additives may be used as needed. After emulsion polymerization in the presence of aqueous antimony oxide sol (), it is possible to obtain an aqueous resin composition as it is, but it is possible to freeze the aqueous resin composition by adding a basic substance to increase the pH. PH is usually used because it can improve stability, mechanical stability, chemical stability, etc., and may also improve adhesion to substrates.
It is preferable to add a basic substance so that the value becomes 5 or more. As the basic substance, all those mentioned above can be used. A method of emulsion polymerizing an aqueous copolymer dispersion () in the presence of an aqueous antimony oxide sol () is a method for emulsion polymerizing an aqueous copolymer dispersion ()
Operation of emulsion polymerization and aqueous copolymer dispersion ()
This has the advantage that the process can be simplified because the mixing operation of the antimony oxide sol and the aqueous antimony oxide sol (2) can be performed at the same time. In some cases, the degree of crosslinking may be further improved compared to simply mixing the aqueous copolymer dispersion () and the aqueous antimony oxide sol (). In the present invention, aqueous antimony oxide sol ()
is used in an amount of 0.1 to 100 parts by weight (in terms of Sb 2 O 5 content) per 100 parts by weight (in terms of non-volatile content) of the aqueous copolymer dispersion. If the aqueous antimony oxide sol () is less than 0.1 part by weight, the flame retardancy and crosslinking properties will not be sufficient, and even if it is used in a large amount exceeding 100 parts by weight, the performance will be improved compared to the case within the scope of the present invention. On the contrary, disadvantages such as price increases will appear. The aqueous resin composition composed of the aqueous copolymer dispersion () and the aqueous antimony oxide sol () obtained in this way is flame retardant and has excellent low-temperature crosslinkability, adhesion to various substrates, and durability. However, if necessary, aqueous colloidal silica may be blended into the aqueous resin composition. Since the silica component crosslinks with the silanol groups formed in the copolymer, it has the effect of increasing crosslinking density and further improving durability. The aqueous colloidal silica used in the present invention is a condensate of silicic acid, which is generally said to have a particle size of 5 to 100 mμ, particularly 7 to 50 mμ.
It is preferable to use a dispersion in the form of an aqueous dispersion. Such aqueous colloidal silica ()
For example, commercially available products include ``Snowtex O'', ``Snowtex N'', and ``Snowtex
NCS,” “Snowtex 20,” “Snowtex C” (manufactured by Nissan Chemical Co., Ltd.), “Cataloid SN”
"Catalid Si-500" (manufactured by Catalysts Kasei Kogyo Co., Ltd.) etc. and surface-treated colloidal silica such as "Cataloid SA" (manufactured by Catalysts Kasei Kogyo Co., Ltd.) treated with aluminic acid can be mentioned. One or more selected from the group can be used. A method for blending aqueous colloidal silica () into an aqueous resin composition consisting of an aqueous copolymer dispersion () and an aqueous antimony oxide sol () is as follows: ) can be used as is. In the present invention, aqueous colloidal silica ()
is used in a range of 40 parts by weight or less (in terms of SiO 2 content), preferably in a range of 0.1 to 30 parts by weight, based on 100 parts by weight (in terms of non-volatile content) of the aqueous copolymer dispersion. Even if it is used in a large amount exceeding 40 parts by weight, the strength and durability will not be improved compared to the case within the scope of the present invention, and disadvantages such as destabilization of the composition and increase in price will appear. Undesirable. An aqueous resin composition in which an aqueous antimony oxide sol () is blended into the aqueous copolymer dispersion () obtained in this manner, and an aqueous resin composition in which an aqueous colloidal silica () is blended into the composition as required. can exhibit sufficiently excellent performance even when used alone, but silane compounds ()
By using these together, the adhesion to various substrates, water resistance, and solvent resistance can be further improved. Moreover, the silane compound () also has other effects. That is, an aqueous resin composition in which an aqueous antimony oxide sol () is blended into the aqueous copolymer dispersion () or an aqueous resin composition in which an aqueous colloidal silica () is blended into the composition as necessary, can be used for a certain period of time. For example, if the aqueous resin composition is used after being stored for a year or more, it may not retain its initial adhesion to the substrate in some cases. By blending (), the initial adhesiveness can be restored. Examples of the silane compound () used in the present invention include, for example, the compound used as the organosilicon monomer (A) described above, aminomethyltriethoxysilane, N-β-aminoethylaminomethyltrimethoxysilane, γ- Aminoalkylalkoxysilanes such as aminopropyltrimethoxysilane, N-β-aminoethyl-γ-aminopropyltrimethoxysilane, N-β-aminoethyl-γ-aminopropylmethyldimethoxysilane;
γ-glycidoxypropyltrimethoxysilane,
Epoxyalkylalkoxysilanes such as γ-glycidoxypropylmethyldimethoxysilane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, β-(3,4-epoxycyclohexyl)ethylmethyldimethoxysilane; γ-mercapto Mercaptoalkylalkoxysilanes such as propyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane; Tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane; methyltrimethoxysilane, methyltriethoxysilane; Alkyltrialkoxysilanes such as silane, methyltrimethoxyethoxysilane, ethyltrimethoxysilane; dialkyldialkoxysilanes such as dimethyldimethoxysilane, dimethyldiethoxysilane; γ-chloropropyltrimethoxysilane, 3-3-3- halogenated alkyl alkoxysilanes such as trichloropropyltrimethoxysilane; methyltriacetoxysilane;
Examples include alkyl acyloxysilanes such as dimethyldiacetoxysilane; hydrosilane compounds such as trimethoxysilane and triethoxysilane, and one selected from these groups.
Species or mixtures of two or more species can be used. The amount of these silane compounds () to be used is determined in order to fully exhibit the desired effect and keep the price within an appropriate range.
It is preferably 20 parts by weight or less based on parts by weight (in terms of non-volatile content). An aqueous resin composition in which the aqueous copolymer dispersion () thus obtained is blended with an aqueous antimony oxide sol (), and an aqueous colloidal silica () or a silane compound () is blended into the composition as necessary. The aqueous resin composition can be used as it is as a coating agent, binder, adhesive, etc., but it is also possible to add a known viscosity modifier, water repellent, crosslinking agent, foaming agent, inorganic filler, etc. It can also be used after being mechanically foamed or diluted as appropriate. <Effects of the Invention> The aqueous resin composition of the present invention contains organosilicon monomer (A)
is required, and polymerizable unsaturated carboxylic acid is required if necessary.
(B), organic halogen monomer (C) and polymerizable monomer (D)
Because it is made by blending an aqueous antimony oxide sol () with an aqueous copolymer dispersion () derived using It has excellent durability and storage stability, such as low-temperature crosslinkability, adhesion to various substrates, water resistance, and solvent resistance.Furthermore, it does not generate harmful substances such as formalin during crosslinking, and is water-based. It has excellent characteristics such as no need for fire or environmental pollution.
It can be used extremely effectively as various coating agents, binders, adhesives, etc. that require flame retardancy. Specific applications include, for example, back coats for car seats, back coats for carpets, binders for flock processing, binders for non-woven fabrics, coating agents and binders for flame retardant processing; building interior materials such as wall materials, ceiling materials, and floor materials. Examples include surface protection and cosmetic coating agents; pressure-sensitive adhesives and adhesives for various laminated materials used as vehicle interior materials or building materials. In addition, the aqueous resin composition of the present invention can be applied to natural fibers such as pulp, cotton, hemp, and wool; synthetic fibers such as polyester, nylon, acrylic, rayon, and polypropylene; inorganic fibers such as glass, rock wool, and ceramics, and these fibers. cloth or paper obtained from; plastic films, sheets and molded products such as polyester, polypropylene, polyvinyl chloride, and acrylic; metals such as iron and aluminum; inorganic materials such as slate, asbestos, plaster, mortar, silicon, and glass. It can be applied to a wide variety of materials such as materials. The present invention will be explained in detail below with reference to Examples, but the scope of the present invention is not limited only to these Examples. In the examples, unless otherwise specified, % means % by weight and parts means parts by weight, respectively. Each performance test was conducted using the method shown below. 1 Performance test processing conditions for carpet bag coating 20 parts of heavy calcium carbonate and an appropriate amount of 28% ammonia water were added to 100 parts of the binder composition, mixed uniformly, and the viscosity was adjusted to 20,000 cps. The base fabric was rayon and the pile was nylon. It was applied uniformly to the back side of a tufted carpet at a coating amount of 1000 g/m 2 , and then dried by heating at 100° C. for 20 minutes in a hot air dryer. Stitch Removal Strength The thread removal strength of the carpet was measured according to JIS L-1021 "Rug Test Method". The suture removal strength after the weather resistance test was measured by subjecting the test piece to a sunshine weather meter for 1000 hours and then leaving it at room temperature for 24 hours. Flame retardancy test Flame retardancy was measured according to FMVSS-302 method. Judgments are: (1) Burn distance is 2 inches or less (non-flammable) (2) Flame extinguishes in 60 seconds or less (flammable) (3) Burning rate is 4 inches/minute or less (slow burn) (4) 4 inches/minute The combustion speed was determined to be combustible. 2 Performance test processing conditions for glass mat binder A glass mat interlaced with glass fibers was impregnated with a binder composition diluted with water to have a non-volatile content of 8%, and after adjusting to the specified adhesion amount, it was heated at 180℃ for 2 hours. After drying for a minute, a glass mat having a binder composition (non-volatile content) adhesion of 15% was obtained. Water Resistance Test Hardness was determined by supporting a test piece cut into a strip of 1 cm x 12 cm without fixing it at a position 1 cm from both ends, placing a 5 g weight in the center of the test piece, and reading the number of mm that the center part decreased. It was measured. Water resistance was evaluated by immersing a test piece in water for one week and then leaving it at room temperature for 24 hours. Flame retardancy test Flame retardancy was measured according to JIS L-1091 A-3 method. (The carbonization distance is measured, and the shorter it is, the more flame retardant it is.) 3 Performance test processing conditions for synthetic leather Solvent-based polyurethane resin is applied to a thickness of 20 μm on release paper and dried to form a skin layer. let After that, the binder composition was adjusted to have a viscosity of 12,000 cps by adding 28% ammonia water, and was evenly applied onto the skin layer using a doctor knife at a coating amount of 150 g/m 2 .
Immediately glue the cotton/polyester fabric together,
It was dried by heating at 110°C for 5 minutes. After cooling, the release paper was peeled off to obtain synthetic leather. Peel strength Measured according to the peel test conditions described in JIS K-6772. The peel strength after the jungle test is 50℃,
After placing the test piece in a constant temperature and humidity room with a relative humidity of 98% or higher for 30 days, it was left at room temperature for 24 hours and measured. Flame Retardancy Test Flame retardancy was measured and evaluated in the same manner as for the carpet bag coating. Example 1 100 ml of water was added to a flask equipped with a dropping funnel, a stirrer, an inert gas inlet, a thermometer and a reflux condenser.
2.0 parts of sodium dodecyl sulfate as an emulsifier and 0.5 parts of potassium persulfate as a polymerization catalyst.
while slowly blowing in nitrogen gas.
Heat to 75°C and stir to form a homogeneous aqueous solution, then add 3 parts of vinyltrimethoxysilane, 2 parts of acrylic acid, and 2 parts of acrylic acid prepared in advance through a dropping funnel.
2,4,6-tribromophenyl methacrylate
A monomer mixture consisting of 15 parts and 80 parts of butyl acrylate was added dropwise over 3 hours. Then increase the temperature to 75
It was kept at ℃ and stirred for another 1 hour, and then aqueous antimony oxide sol "A-2550" (manufactured by Nissan Chemical Co., Ltd.,
20 parts of Sb 2 O 5 (particle size 20 to 50 mμ, concentration 48%) were added dropwise from the dropping funnel over 30 minutes, stirred for an additional hour, cooled to 30°C, and added with ammonia water with a concentration of 28% to adjust the pH. 8.0 to obtain an aqueous resin composition (1) with a nonvolatile content of 50.1% and a viscosity of 2120 cps (B-type viscometer, 12 rpm, 25°C; the same applies to the following examples). The performance test results of this composition (1) as a binder composition were as shown in Table 2. Examples 2 to 4 Monomer mixture composition, type and usage ratio of aqueous antimony oxide sol, emulsifier, polymerization catalyst, polymerization temperature,
Aqueous resin compositions (2) to (4) were obtained by repeating the same operations as in Example 1, except that water and basic substances were changed as shown in Table 1. The performance test results of these compositions (2) to (4) as binder compositions are shown in Table 2.

【表】【table】

【表】 実施例 5 水性酸化アンチモンゾル「A−2550」20部のか
わりに水性酸化アンチモンゾル「A−2550」15部
および水性コロイダルシリカ「スノーテツクス
C」(日産化学社製、粒子径10〜20mμ、SiO2
有量20%)20部とする他は、実施例1と同様の操
作をくり返して、PH8.0、不揮発分47.0%、粘度
520cpsの水性樹脂組成物(5)を得た。この組成物
(5)をバインダー組成物として行つた性能試験結果
は第2表に示した通りであつた。 実施例 6 2個の滴下ロート、撹拌機、不活性ガス導入
管、温度計および還流冷却器を備えたフラスコに
水190部、水性酸化アンチモンゾル「A−2550」
(日産化学社製、粒子径20〜50mμ、Sb2O5濃度
48%)30部、水性コロイダルシリカ「Cataloid
SN」(触媒化成工業社製、粒子径10〜20mμ、
SiO2含有量20%)10部、乳化剤としてナトリウ
ムドデシルベンゼンスルホネート4.0部および重
合触媒として過硫酸アンモニウム1.0部を仕込
み、ゆるやかに窒素ガスを吹込みながら65℃に加
熱し、撹拌して均一な水溶性とした後、1つの滴
下ロートより予め調製しておいたビニルトリアセ
トキシシラン6部、アクリル酸3部、4−トリブ
ロモフエノキシブチルメタクリレート30部、アク
リル酸エチル141部、メタクリル酸メチル20部か
ら成る単量体混合物を、もう一方の滴下ロートよ
り亜硫酸水素ナトリウム0.2部を水10部に溶解し
た水溶液を、それぞれ2時間かけて滴下した。そ
の後、温度を65℃に保持し、さらに2時間撹拌し
た後30℃に冷却し、濃度28%のアンモニア水を加
えてPHを8.2に調整し、不揮発分49.0%、粘度
528cpsの水性樹脂組成物(6)を得た。この組成物
(6)をバインダー組成物として行つた性能試験結果
は第2表に示した通りであつた。 比較例 1 単量体混合物の組成をアクリル酸2部、2・
4・6−トリブロモフエニルメタクリレート15部
およびアクリル酸ブチル83部とする他は、実施例
1と同じ操作をくり返してPH8.0、不揮発分50.0
%、粘度1850cpsの比較用の水性樹脂組成物(7)を
得た。この組成物(7)の性能は第2表に示した通
り、本発明の組成物に比べ著しく劣つていた。 比較例 2 水性酸化アンチモンゾル「A−2550」を添加し
ない他は、実施例1と同じ操作をくり返してPH
8.0、不揮発分50.2%、粘度5960cpsの比較用の水
性樹脂組成物(8)を得た。この組成物(8)の性能は第
2表に示した通り、本発明の組成物に比べ著しく
劣つていた。 比較例 3 水性酸化アンチモンゾル「A−2550」20部のか
わりに水性コロイダルシリカ「スノーテツクス
C」(日産化学社製、粒子径10〜20mμ、SiO2
有量20%)48部とする他は、実施例1と同様の操
作をくり返して、PH8.0、不揮発分44.2%、粘度
155cpsの比較用の水性樹脂組成物(9)を得た。こ
の組成物(9)の性能は第2表に示した通り、本発明
の組成物に比べ著しく劣つていた。
[Table] Example 5 Instead of 20 parts of aqueous antimony oxide sol "A-2550", 15 parts of aqueous antimony oxide sol "A-2550" and aqueous colloidal silica "Snowtex C" (manufactured by Nissan Chemical Co., Ltd., particle size 10 to 20 mμ) were used. The same operation as in Example 1 was repeated except that the SiO 2 content was 20 parts (20%), and the pH was 8.0, the nonvolatile content was 47.0%, and the viscosity was 20 parts.
An aqueous resin composition (5) of 520 cps was obtained. This composition
The performance test results of (5) as a binder composition were as shown in Table 2. Example 6 In a flask equipped with two dropping funnels, a stirrer, an inert gas inlet tube, a thermometer and a reflux condenser, 190 parts of water and aqueous antimony oxide sol "A-2550" were added.
(Manufactured by Nissan Chemical Co., Ltd., particle size 20-50 mμ, Sb 2 O 5 concentration
48%) 30 parts, aqueous colloidal silica “Cataloid
SN” (manufactured by Catalysts Kasei Kogyo Co., Ltd., particle size 10 to 20 mμ,
SiO 2 content 20%) 10 parts, 4.0 parts of sodium dodecylbenzenesulfonate as an emulsifier, and 1.0 part of ammonium persulfate as a polymerization catalyst were heated to 65°C while gently blowing nitrogen gas, and stirred to obtain a uniform water-solubility. Then, from one dropping funnel, 6 parts of vinyltriacetoxysilane, 3 parts of acrylic acid, 30 parts of 4-tribromophenoxybutyl methacrylate, 141 parts of ethyl acrylate, and 20 parts of methyl methacrylate were added. An aqueous solution prepared by dissolving 0.2 parts of sodium bisulfite in 10 parts of water was added dropwise from the other dropping funnel over a period of 2 hours. After that, the temperature was maintained at 65℃, and after further stirring for 2 hours, it was cooled to 30℃, and 28% ammonia water was added to adjust the pH to 8.2, and the non-volatile content was 49.0%.
An aqueous resin composition (6) of 528 cps was obtained. This composition
The performance test results of (6) as a binder composition are shown in Table 2. Comparative Example 1 The composition of the monomer mixture was changed to 2 parts of acrylic acid, 2 parts of acrylic acid, and 2 parts of acrylic acid.
The same operation as in Example 1 was repeated except that 15 parts of 4,6-tribromophenyl methacrylate and 83 parts of butyl acrylate were used to obtain a pH of 8.0 and a non-volatile content of 50.0.
% and a viscosity of 1850 cps, a comparative aqueous resin composition (7) was obtained. As shown in Table 2, the performance of this composition (7) was significantly inferior to that of the composition of the present invention. Comparative Example 2 The same operation as in Example 1 was repeated except that the aqueous antimony oxide sol "A-2550" was not added.
8.0, a non-volatile content of 50.2%, and a viscosity of 5960 cps, a comparative aqueous resin composition (8) was obtained. As shown in Table 2, the performance of this composition (8) was significantly inferior to that of the composition of the present invention. Comparative Example 3 48 parts of water-based colloidal silica "Snowtex C" (manufactured by Nissan Chemical Co., Ltd., particle size 10-20 mμ, SiO 2 content 20%) was used instead of 20 parts of water-based antimony oxide sol "A-2550". Repeating the same operation as in Example 1, pH 8.0, non-volatile content 44.2%, viscosity
A comparative aqueous resin composition (9) of 155 cps was obtained. As shown in Table 2, the performance of this composition (9) was significantly inferior to that of the composition of the present invention.

【表】 実施例 7 実施例1で得た水性樹脂組成物(1)を用い、製造
直後、室温12ケ月保存後の各時点で性能試験を行
つた。また、製造直後の水性樹脂組成物(1)100部
にγ−グリシドキシプロピルトリメトキシシラン
3部を加え、よく混合して得られた水性樹脂組成
物(1−a)および室温12ケ月保存後の水性樹脂
組成物(1−1)100部にγ−グリシドキシプロ
ピルトリメトキシシラン3部を加え、よく混合し
て得られた水性樹脂組成物(1−1a)についても
同様の試験を行つた。これらの性能試験の結果は
第3表に示した通りであつた。
[Table] Example 7 Using the aqueous resin composition (1) obtained in Example 1, performance tests were conducted immediately after production and at various times after storage at room temperature for 12 months. In addition, 3 parts of γ-glycidoxypropyltrimethoxysilane was added to 100 parts of the aqueous resin composition (1) immediately after production, and the resulting aqueous resin composition (1-a) was stored at room temperature for 12 months. A similar test was conducted on the aqueous resin composition (1-1a) obtained by adding 3 parts of γ-glycidoxypropyltrimethoxysilane to 100 parts of the subsequent aqueous resin composition (1-1) and mixing well. I went. The results of these performance tests were as shown in Table 3.

【表】 比較例 4〜5 実施例7において用いた水性樹脂組成物(1)を第
4表に示す比較用水性樹脂組成物とする以外は、
実施例7と同様の操作をくり返して性能試験を行
つた。結果は第4表に示した通りであつた。
[Table] Comparative Examples 4 to 5 Except for changing the aqueous resin composition (1) used in Example 7 to the comparative aqueous resin composition shown in Table 4,
A performance test was conducted by repeating the same operations as in Example 7. The results were as shown in Table 4.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 分子中に重合性不飽和基と珪素原子に直結す
る加水分解性基とを有する有機珪素単量体(A)0.1
〜40重量%、重合性不飽和カルボン酸(B)0〜20重
量%、分子中に重合性不飽和基と少なくとも1つ
の水素原子がハロゲン原子で置換された炭化水素
基とを有する有機ハロゲン単量体(C)0〜80重量%
およびその他の重合性単量体(D)0〜90重量%(但
し、(A)、(B)、(C)および(D)成分の合計は100重量%
である)からなる単量体成分を水性媒体中で乳化
重合して得られる水性共重合体分散液()100
重量部(不揮発分換算)、水性酸化アンチモンゾ
ル()0.1〜100重量部(Sb2O5含有分換算)、水
性コロイダルシリカ()0〜40重量部(SiO2
含有分換算)並びに珪素原子に直結する加水分解
性基を有するシラン化合物()0〜20重量部か
らなる水性樹脂組成物。
1 Organosilicon monomer (A) having a polymerizable unsaturated group and a hydrolyzable group directly bonded to a silicon atom in the molecule 0.1
~40% by weight, 0 to 20% by weight of polymerizable unsaturated carboxylic acid (B), organic halogen monomer having a polymerizable unsaturated group and a hydrocarbon group in which at least one hydrogen atom has been replaced with a halogen atom in the molecule. Mass (C) 0-80% by weight
and other polymerizable monomers (D) 0 to 90% by weight (however, the total of components (A), (B), (C) and (D) is 100% by weight)
Aqueous copolymer dispersion ( ) 100 obtained by emulsion polymerization of a monomer component consisting of ) in an aqueous medium
parts by weight (in terms of nonvolatile content), aqueous antimony oxide sol () 0.1 to 100 parts by weight (in terms of Sb 2 O 5 content), aqueous colloidal silica () 0 to 40 parts by weight (SiO 2
An aqueous resin composition comprising 0 to 20 parts by weight of a silane compound (in terms of content) and a silane compound having a hydrolyzable group directly bonded to a silicon atom.
JP59273282A 1984-12-26 1984-12-26 Aqueous resin composition Granted JPS61151259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59273282A JPS61151259A (en) 1984-12-26 1984-12-26 Aqueous resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59273282A JPS61151259A (en) 1984-12-26 1984-12-26 Aqueous resin composition

Publications (2)

Publication Number Publication Date
JPS61151259A JPS61151259A (en) 1986-07-09
JPS6244783B2 true JPS6244783B2 (en) 1987-09-22

Family

ID=17525672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59273282A Granted JPS61151259A (en) 1984-12-26 1984-12-26 Aqueous resin composition

Country Status (1)

Country Link
JP (1) JPS61151259A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241725A (en) * 2001-02-15 2002-08-28 Nitto Denko Corp Water dispersion type adhesive composition and adhesive sheets

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200184A (en) * 1985-03-01 1986-09-04 Toyo Linoleum Mfg Co Ltd:The Adhesive
JP2509088B2 (en) * 1985-03-25 1996-06-19 三洋化成工業 株式会社 Coating composition
JPS6431871A (en) * 1987-07-27 1989-02-02 Asahi Malleable Iron Co Ltd Coating for metal component
JPH03124865A (en) * 1989-10-07 1991-05-28 Honshu Paper Co Ltd Binder for heat-resistant fibrous non-woven fabric, heat-resistant fibrous non-woven fabric and manufacturing method thereof
JP3927009B2 (en) * 2001-10-16 2007-06-06 小林防火服株式会社 Fire clothes fabric
JP4799937B2 (en) * 2005-07-11 2011-10-26 日東電工株式会社 Water-dispersed pressure-sensitive adhesive composition and pressure-sensitive adhesive sheet
JP6222404B2 (en) * 2015-05-28 2017-11-01 Dic株式会社 Pigment printing agent and fabric using the same
CN109056341B (en) * 2018-08-03 2021-07-23 安徽农业大学 A kind of preparation method of flame retardant and breathable automobile interior decoration material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241725A (en) * 2001-02-15 2002-08-28 Nitto Denko Corp Water dispersion type adhesive composition and adhesive sheets

Also Published As

Publication number Publication date
JPS61151259A (en) 1986-07-09

Similar Documents

Publication Publication Date Title
US7850877B2 (en) Vehicle interior material coating composition and vehicle interior material
JP4578803B2 (en) Flame retardant aqueous resin composition
JPS6244783B2 (en)
JP2006028488A (en) Coating composition for vehicle interior material and vehicle interior material
JP3513985B2 (en) Method for producing curable polymer aqueous dispersion and aqueous curable polymer dispersion
JPS619463A (en) Coating agent for inorganic building material
AU651134B2 (en) Flame retardant brominated styrene-based coatings
JPS636680B2 (en)
JPS61264042A (en) Aqueous resin composition
JPS60226433A (en) Water-based binder for glass fiber
AU671514B2 (en) Flame retardant brominated styrene graft latex compositions
JPH0123579B2 (en)
JP2854380B2 (en) Flame-retardant resin aqueous emulsion and method for producing the same
JPH02265973A (en) Water base emulsion of flame-retardancy-providing resin
JPS6261707B2 (en)
JPH08503251A (en) Flame-retardant brominated styrene graft latex coating
JPH0123580B2 (en)
JPS62158767A (en) Water-based coating agent
JP2900068B2 (en) Flame-retardant resin aqueous emulsion composition
JPS649341B2 (en)
JPH0144210B2 (en)
JPS63150344A (en) Aqueous composition
JPH08506839A (en) Flame-retardant brominated styrene graft latex composition