JPS6244503Y2 - - Google Patents
Info
- Publication number
- JPS6244503Y2 JPS6244503Y2 JP3366283U JP3366283U JPS6244503Y2 JP S6244503 Y2 JPS6244503 Y2 JP S6244503Y2 JP 3366283 U JP3366283 U JP 3366283U JP 3366283 U JP3366283 U JP 3366283U JP S6244503 Y2 JPS6244503 Y2 JP S6244503Y2
- Authority
- JP
- Japan
- Prior art keywords
- excitation coil
- resin
- yoke
- sealing material
- resin sealing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Braking Arrangements (AREA)
- Electromagnets (AREA)
Description
本考案は、電磁クラツチ・ブレーキの励磁コイ
ル樹脂封止材料のクラツク防止を目的とした封止
構造に関するものである。
従来の電磁クラツチ・ブレーキの励磁コイルの
封止方法を図面について説明すれば次のとおりで
ある。
第1図において、1はヨーク、2は励磁コイ
ル、3は樹脂封止材料で、ヨーク1に巻回された
励磁コイル2を設置したのち、ヨーク1と励磁コ
イル2とのすき間に樹脂封止材料3を封入し、励
磁コイル2とヨーク1とを加熱硬化して一体に固
着していた。このような封止構造は、励磁コイル
2の熱放散を図り、また、絶縁性を保つために吸
湿防止を目的とするものである。
しかし、上記のような従来の封止構造では、多
量の樹脂封止材料を要する大形の励磁コイルや急
激な温度変化を伴う用途の励磁コイルにおいて
は、樹脂封止材料と金属材料との熱膨脹係数の差
により、樹脂封止材料にクラツチが発生し、破片
が飛散したり、また、吸湿しやすくなり絶縁性が
損われるという問題があつた。この問題を解決す
るためには、樹脂封止材料と金属材料との熱膨脹
係数の差を無くしなければならないが、最近の樹
脂配合技術をもつてしても、両者の差は歴然とし
ており、良好な封入作業性を保持する限りでは、
樹脂封止材料の熱膨脹係数を金属材料のものに、
ある範囲まで近付けることはできるが、両者の熱
膨脹係数を同程度にすることは不可能である。
本考案は、上記の基本的な欠点を解消し、大形
の励磁コイルや急激な温度変化を伴う用途の励磁
コイルの封止に適合する優れた耐クラツク性を有
する封止構造を提供することを目的とするもので
ある。
以下、本考案を第2図に示す実施例について説
明する。
まず、従来の方法と同様に、ヨーク1に巻回さ
れた励磁コイル2を設置したのち、ヨーク1と励
磁コイル2とのすき間に樹脂封止材料3を封入す
る。
次に、浸透性の良好なポリエステル繊維等の合
成繊維、又はガラス繊維等無機質の不織布、マツ
ト、及びクロスなどの繊維材料4を樹脂封止材料
3の表面に付設し、繊維材料中に樹脂を浸透さ
せ、樹脂封止材料の表面部に樹脂と繊維の複合層
を形成させたのち、励磁コイル2とヨーク1とを
加熱硬化により一体に固着するものである。
上記のような本考案による封止構造を採用した
電磁クラツチ(定格電圧:DC36V、定格容量:
56W、ヨーク外径:300mmφ)と同一仕様の従来
の封止構造による電磁クラツチとを製作して次の
ような実験を実施した。
供試クラツチを−30℃の大形低温槽内に設置し
たのち、外部より励磁コイルを過励磁した。すな
わち、第3図にAで示すように、定格の約5倍の
電圧を2時間ごとに通電した。その結果、励磁コ
イルの温度は第3図にBで示すように、−30℃か
ら+80℃までの温度変化を繰り返した。このよう
なヒートサークルを500回繰り返して樹脂封止材
料を調査したところ、クラツクの発生状況は下記
第1表に示すように、従来の封止構造のものに
は、5か所にクラツクの発生が認められたが、本
考案による封止構造のものは、クラツクの発生は
皆無であつた。
The present invention relates to a sealing structure for preventing cracks in the excitation coil resin sealing material of an electromagnetic clutch/brake. A conventional method of sealing an excitation coil of an electromagnetic clutch/brake will be described with reference to the drawings. In Figure 1, 1 is a yoke, 2 is an excitation coil, and 3 is a resin sealing material. After installing the excitation coil 2 wound around the yoke 1, the gap between the yoke 1 and the excitation coil 2 is sealed with resin. A material 3 was sealed, and the excitation coil 2 and yoke 1 were heat-cured and fixed together. Such a sealing structure is intended to dissipate heat from the excitation coil 2 and to prevent moisture absorption in order to maintain insulation. However, in the conventional sealing structure as described above, in large excitation coils that require a large amount of resin sealing material, or in excitation coils for applications that involve rapid temperature changes, thermal expansion between the resin sealing material and the metal material Due to the difference in coefficients, there were problems in that the resin sealing material would clutch, scattering fragments, and easily absorb moisture, impairing its insulation properties. In order to solve this problem, it is necessary to eliminate the difference in the coefficient of thermal expansion between the resin sealing material and the metal material, but even with the latest resin compounding technology, the difference between the two is obvious and it is not possible to solve the problem. As long as it maintains good encapsulation workability,
The coefficient of thermal expansion of the resin sealing material is changed to that of the metal material.
Although it is possible to approximate them within a certain range, it is impossible to make the coefficients of thermal expansion of both the same. The present invention eliminates the above-mentioned basic drawbacks and provides a sealing structure with excellent crack resistance that is suitable for sealing large-sized excitation coils and excitation coils for applications involving rapid temperature changes. The purpose is to The present invention will be described below with reference to an embodiment shown in FIG. First, as in the conventional method, the excitation coil 2 wound around the yoke 1 is installed, and then the resin sealing material 3 is sealed in the gap between the yoke 1 and the excitation coil 2. Next, a fiber material 4 such as synthetic fibers with good permeability such as polyester fiber, inorganic nonwoven fabric such as glass fiber, mat, or cloth is attached to the surface of the resin sealing material 3, and the resin is contained in the fiber material. After infiltration and forming a composite layer of resin and fibers on the surface of the resin sealing material, the excitation coil 2 and yoke 1 are fixed together by heat curing. An electromagnetic clutch (rated voltage: DC36V, rated capacity:
56W, yoke outer diameter: 300mmφ) and an electromagnetic clutch with the same specifications as the conventional sealed structure, and conducted the following experiments. After the test clutch was placed in a large cryogenic chamber at -30°C, the excitation coil was overexcited from the outside. That is, as shown by A in FIG. 3, a voltage approximately five times the rated voltage was applied every two hours. As a result, the temperature of the excitation coil repeatedly changed from -30°C to +80°C, as shown by B in Figure 3. When we investigated the resin sealing material by repeating such a heat circle 500 times, we found that cracks occurred in five places in the conventional sealing structure, as shown in Table 1 below. However, the sealing structure according to the present invention did not cause any cracks.
【表】
上記第1表に見るように、本考案によるクラツ
チは、従来の構造によるクラツチに比べ、その耐
クラツク性は格段に向上し、厳しい試験条件にも
かかわらず、樹脂封止材料のクラツクの発生は皆
無であり、品質が安定することが確認された。
以上述べたように、本考案に係る電磁クラツ
チ・ブレーキの励磁コイル封止構造は、大形の励
磁コイルや急激な温度変化を伴う用途の励磁コイ
ルに対して、従来の封止構造ではなし得なかつた
樹脂封止材料のクラツク発生の防止を完全に実施
できるので、品質の非常に安定した電磁クラツ
チ・ブレーキの励磁コイルを製造することができ
るという極めて優れた効果がある。[Table] As shown in Table 1 above, the clutch according to the present invention has significantly improved crack resistance compared to clutches with conventional structures, and despite the severe test conditions, the clutch of the present invention has significantly improved crack resistance. There was no occurrence of this, and it was confirmed that the quality was stable. As mentioned above, the excitation coil sealing structure of the electromagnetic clutch/brake according to the present invention can be used for large excitation coils or excitation coils for applications involving rapid temperature changes, which cannot be achieved with conventional sealing structures. Since it is possible to completely prevent the occurrence of cracks in the unused resin sealing material, there is an extremely excellent effect in that it is possible to manufacture excitation coils for electromagnetic clutches and brakes of extremely stable quality.
第1図は従来の電磁クラツチ・ブレーキの励磁
コイル封止構造を示す左半部断面図、第2図は本
考案一実施例を示す左半部断面図、第3図は実験
の際の通電サイクルと励磁コイルの温度サイクル
とを示すグラフである。
1:ヨーク、2:励磁コイル、3:樹脂封止材
料、4:繊維材料。
Fig. 1 is a left half sectional view showing the excitation coil sealing structure of a conventional electromagnetic clutch/brake, Fig. 2 is a left half sectional view showing an embodiment of the present invention, and Fig. 3 is a sectional view of the left half showing the excitation coil sealing structure of a conventional electromagnetic clutch/brake. It is a graph which shows a cycle and a temperature cycle of an excitation coil. 1: Yoke, 2: Excitation coil, 3: Resin sealing material, 4: Fiber material.
Claims (1)
樹脂封止材料3の表面に浸透性の良好な合成又は
無機質の不織布、マツト、及びクロスなどの繊維
材料4を付設し、樹脂封止材料3の表面を樹脂と
繊維の複合層で被覆したことを特徴とする電磁ク
ラツチ・ブレーキの励磁コイル封止構造。 A fiber material 4 such as a synthetic or inorganic nonwoven fabric, mat, or cloth with good permeability is attached to the surface of the resin sealing material 3 sealed in the gap between the yoke 1 and the excitation coil 2. An excitation coil sealing structure for electromagnetic clutches and brakes whose surface is coated with a composite layer of resin and fiber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3366283U JPS59139630U (en) | 1983-03-09 | 1983-03-09 | Excitation coil sealing structure for electromagnetic clutches and brakes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3366283U JPS59139630U (en) | 1983-03-09 | 1983-03-09 | Excitation coil sealing structure for electromagnetic clutches and brakes |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59139630U JPS59139630U (en) | 1984-09-18 |
JPS6244503Y2 true JPS6244503Y2 (en) | 1987-11-25 |
Family
ID=30164437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3366283U Granted JPS59139630U (en) | 1983-03-09 | 1983-03-09 | Excitation coil sealing structure for electromagnetic clutches and brakes |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59139630U (en) |
-
1983
- 1983-03-09 JP JP3366283U patent/JPS59139630U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59139630U (en) | 1984-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04223305A (en) | Casting-coated device | |
KR860006810A (en) | Magnetic core and method of incorporation | |
JPS6244503Y2 (en) | ||
CN107270040A (en) | A kind of thermal insulation thermal insulation board | |
JPH1028345A (en) | High voltage rotating machine stator insulation coil | |
US3082133A (en) | High temperature electrical insulating tape | |
JPH0536139Y2 (en) | ||
KR20190083138A (en) | Vacumm Insulation Panel | |
JP2004347119A (en) | Heat insulating pipe cover | |
KR19980086983A (en) | Heat-resistant | |
RU2826950C1 (en) | Cable penetration with sleeve impregnated with fire-retardant coating with loose mineral wool filler and refractory fibre | |
RU2826953C1 (en) | Cable penetration with bonded refractory fibre for several cables in sleeves | |
RU2827144C1 (en) | Cable penetration with dense refractory fibre and sleeve | |
JP2000351677A (en) | Thermal insulation form and electric heating unit using the same and their production | |
RU2828084C1 (en) | Cable penetration with refractory fibre and several sleeves | |
RU2826949C1 (en) | Cable penetration with refractory fibre with binding and sleeve | |
RU2826954C1 (en) | Cable penetration with loose mineral wool filler impregnated with fire-retardant coating and refractory fibre for several cables in sleeves | |
RU2826907C1 (en) | Cable penetration with refractory fibre with fastening by binding for several cables | |
RU2828088C1 (en) | Cable penetration with bonded refractory fibre and several sleeves | |
RU2826952C1 (en) | Cable penetration with refractory fibre fixed by binding | |
RU2828090C1 (en) | Cable penetration with dense refractory fibre and several sleeves | |
RU2828065C1 (en) | Cable penetration with mineral wool filler impregnated with fire-retardant coating and fire-resistant fibre for several cables | |
RU2828086C1 (en) | Cable penetration with bonded refractory fibre and sleeve | |
RU2828078C1 (en) | Cable penetration with mineral wool filler impregnated with fire-retardant coating and fire-resistant fibre for several cables in sleeves | |
CN218648651U (en) | Composite high-temperature-resistant and vibration-resistant insulated winding structure |