[go: up one dir, main page]

JPS624402A - High vacuum evaporator and absorber used therefor - Google Patents

High vacuum evaporator and absorber used therefor

Info

Publication number
JPS624402A
JPS624402A JP60140580A JP14058085A JPS624402A JP S624402 A JPS624402 A JP S624402A JP 60140580 A JP60140580 A JP 60140580A JP 14058085 A JP14058085 A JP 14058085A JP S624402 A JPS624402 A JP S624402A
Authority
JP
Japan
Prior art keywords
absorber
evaporator
absorbent
heat
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60140580A
Other languages
Japanese (ja)
Inventor
Tadaaki Tajiri
忠昭 田尻
Takashi Yoshikawa
吉川 俊
Takahito Hanabusa
花房 高人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIMURA KAKOKI KK
Kimura Chemical Plants Co Ltd
Original Assignee
KIMURA KAKOKI KK
Kimura Chemical Plants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIMURA KAKOKI KK, Kimura Chemical Plants Co Ltd filed Critical KIMURA KAKOKI KK
Priority to JP60140580A priority Critical patent/JPS624402A/en
Publication of JPS624402A publication Critical patent/JPS624402A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PURPOSE:To improve heat recovering efficiency of a high vacuum evaporator by providing an absorber comprising an evaporator, vacuum generating device and a heat exchanger comprising a shell and many tubes and, gy connecting the shell to the evaporating kettle and the tube side to a heating kettle. CONSTITUTION:Liquid A to be treated and fed to an evaporator 10 is heat- exchanged in a heating kettle 12, and generated steam V1 is sucked by an absorber 20 and absorbed by a liquid absorbent. Thus, the liquid absorbent flowing down through the tubes 22 is diluted and the tubes 22 are heated. On one hand, water C1 circulated through the absorber 20 is heated in the tubes 22, and steam V2 is transported from an exhausting port 26 to the heating kettle 12 of the evaporator 10, serving as heat source for evaporation of the liquid A to be treated. Noncondensible gas evaporated from the absorbent is sucked by the vacuum generating device 40 and discharged.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高真空下で水蒸気を発生させる濃縮、晶析、な
どのための蒸発装置に関し、とくに自己蒸気の持つ熱量
を当該装置の熱源として利用する蒸発装置と、その蒸発
装置に使用される吸収器に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to an evaporation device for concentration, crystallization, etc. that generates water vapor under high vacuum, and in particular uses the calorific value of self-steam as a heat source for the device. The present invention relates to an evaporator and an absorber used in the evaporator.

従来の技術 真空下で水蒸気を発生させ、濃縮、晶析などを行う蒸発
装置では、真空発生装置の機能上、発生する水蒸気を排
出除去しなければならない。
BACKGROUND ART In an evaporation device that generates water vapor under vacuum and performs concentration, crystallization, etc., the generated water vapor must be discharged and removed in order to function as a vacuum generator.

従来この水蒸気の排気に関しては、 (1)蒸発装置と真空発生装置との接続管に冷凍機を有
する凝縮器を設け、冷媒を使用して水蒸気を間接的に露
点以下に冷却し、凝縮させて水として除去する方法、 媒の蒸気に置換し、圧縮機によって昇圧、昇温し、当該
蒸発器の熱源として利用し、水蒸気はドレンとして排出
する方法。
Conventionally, this method of exhausting water vapor involves: (1) A condenser with a refrigerator is installed in the connecting pipe between the evaporator and the vacuum generator, and a refrigerant is used to indirectly cool the water vapor below the dew point and condense it. A method in which water is removed as water, and a method in which it is replaced with vapor as a medium, the pressure and temperature are raised by a compressor, and the water vapor is used as a heat source for the evaporator, and the water vapor is discharged as a drain.

などがとられていた。etc. were taken.

また、吸収器に関しては、 (1)吸収器の内部に伝熱管を設け、その伝熱管に温水
を供給することにより、吸収器内の吸収剤の希釈熱によ
って、昇温された温水として取出す方法、 (2)吸収器の内部に伝熱管を設け、その伝熱管に温水
を供給することにより、吸収器内の吸収剤の希釈熱によ
って昇温された温水をフラッシュ缶に導入し、フラッシ
ュ蒸発させて蒸気として取出す方法、 などkよって熱回収を行うことが知られていた。
Regarding the absorber, (1) A method in which a heat transfer tube is provided inside the absorber and hot water is supplied to the heat transfer tube, and the heated water is extracted by the dilution heat of the absorbent in the absorber. (2) By providing a heat transfer tube inside the absorber and supplying hot water to the heat transfer tube, the hot water whose temperature has been raised by the heat of dilution of the absorbent in the absorber is introduced into the flash can and flash evaporated. It was known that heat could be recovered by methods such as extracting heat as steam.

上述したような従来技術にあっては、まず高真空蒸発装
置にあっては、 (1)  凝縮器型の蒸発装置では、冷凍機が必要で所
要動力が大きく、また多量の冷却水を必要とする。
Regarding the conventional technology mentioned above, first of all, regarding high vacuum evaporation equipment, (1) Condenser type evaporation equipment requires a refrigerator, requires a large amount of power, and requires a large amount of cooling water. do.

(2)圧縮ヒートポンプ式の低温蒸発装置では、所要動
力の大きい圧縮機が必要で騒音が大きく、運転にも管理
の専任者が必要であり、余剰熱の除去を行なわなければ
ならない。また高圧ガス取扱いについて法の規制をうけ
る。
(2) A compression heat pump-type low-temperature evaporator requires a compressor with a large power requirement, is noisy, requires a dedicated person to operate it, and must remove excess heat. In addition, the handling of high pressure gas is subject to legal regulations.

また、吸収器によって熱回収するには、(1)温水とし
ての取出しKは、熱交換器の総括伝熱係数U値が小さい
ため、加熱缶及び吸収器内熱交換器の伝熱面積が大きく
なり、一方、熱交換の温度差を大きくとる必要があり、
熱回収温度が低くなる。
In addition, in order to recover heat by an absorber, (1) To extract K as hot water, the overall heat transfer coefficient U value of the heat exchanger is small, so the heat transfer area of the heating can and the heat exchanger in the absorber is large. On the other hand, it is necessary to have a large temperature difference in heat exchange.
Heat recovery temperature becomes lower.

(2)温水で取出したのちにフラッシュ缶で蒸気に置換
するものでは、別個のフラッシュ缶の設置が必要であり
、循環量を多くしなければならない。
(2) If hot water is extracted and then replaced with steam using a flash can, a separate flash can must be installed and the amount of circulation must be increased.

等の問題があり、一長一短であって、総括的な解決が望
まれていた。
There were various problems, both advantages and disadvantages, and a comprehensive solution was desired.

問題点を解決するための手段 本発明では吸収器に用いる吸収剤を沸点上昇の高い硫酸
、苛性ソーダとすることによって蒸発装置からの水蒸気
を高温で吸収する。そのために、(1)低温の蒸気の熱
から高温の熱を回収できて、圧縮機の設置を不要とする
。また、(2)吸収器内での吸収剤はワンス・スルーで
供給し、希釈液として取出しそのまま他の用途に供する
こととしているから、吸収ヒートポンプサイクルの形成
にあたって、第2種吸収ヒートポンプのよ5に、希釈液
の濃縮、循環を必要とせず、濃縮のためのエネルギーを
不要としている。さらに、(3)吸収器の構成を、水の
循環によってシェルとチューブ内との熱交換器を形成し
、直接水蒸気を発生させて熱回収し、一方、除去水蒸気
の吸収による吸収液の凝縮熱、希釈熱は、チューブ管壁
の内外両面において熱交換させるようにし、従来形式の
吸収器における熱回収の上記諸問題を回避できるように
した。
Means for Solving the Problems In the present invention, water vapor from the evaporator is absorbed at high temperatures by using sulfuric acid or caustic soda, which have a high boiling point, as the absorbent used in the absorber. Therefore, (1) high-temperature heat can be recovered from the heat of low-temperature steam, making it unnecessary to install a compressor. In addition, (2) the absorbent in the absorber is supplied once-through, and is taken out as a diluted liquid and used for other purposes, so when forming an absorption heat pump cycle, it is possible to In addition, it does not require concentration or circulation of the diluted solution, and does not require energy for concentration. Furthermore, (3) the structure of the absorber is such that water circulation forms a heat exchanger between the shell and the inside of the tube to directly generate steam and recover heat, while the condensation heat of the absorption liquid is absorbed by the absorption of the removed steam. The heat of dilution is exchanged between the inner and outer surfaces of the tube wall, thereby avoiding the above-mentioned problems of heat recovery in conventional absorbers.

上記した3点の改善により、全体として効率の高い高真
空蒸発装置を完成させている。゛実施例 以下本発明を図面に示す実施例のフロー図にもとづいて
詳細に説明する。
By improving the above three points, we have completed a high vacuum evaporator with high overall efficiency. Embodiments The present invention will be described in detail below with reference to flowcharts of embodiments shown in the drawings.

図において10は蒸発装置であって、蒸発缶11と加熱
缶12を有し、蒸発缶11と加熱缶12の間に循環ポン
プ13を有する循環管路を形成し、対象とする被処理浪
人を蒸発させ水蒸気を発生している。加熱缶12は熱交
換器として形成され、上部人口14に加熱蒸気を導き、
下部出口15からドレンな取り出し、蒸発で得られた処
理液は下部液室16から濃縮液Pなどとして回収される
。17はセパレータであってその頂部18から水蒸気V
、が取出され、吸収器20に送られる。Sはスタート用
蒸気である。
In the figure, reference numeral 10 denotes an evaporator, which has an evaporator 11 and a heating can 12. A circulation pipe having a circulation pump 13 is formed between the evaporator 11 and the heating can 12, and the target ronin is It evaporates and produces water vapor. The heating can 12 is formed as a heat exchanger and leads heating steam to the upper part 14,
The processing liquid obtained by draining and evaporating from the lower outlet 15 is recovered as a concentrated liquid P etc. from the lower liquid chamber 16. 17 is a separator, from the top 18 of which water vapor V
, is taken out and sent to the absorber 20. S is starting steam.

吸収器20は本発明の主部であって、吸収器と蒸発器の
2重の機能をもつように構成されている。まず蒸発器と
してはシェル21と多数のチューブ22、・22とから
なる管内液膜流下式の熱交換器を形成している。即ち、
下部の液室23と上部240間には水循環ポンプ25を
有する循環管路C□が形成され、液室23上部の排気口
26はセパレータ27を介して前記加熱缶12の上部人
口14に管V、によって接続され、セパレータ1Tの頂
部18からの水蒸気管路V□がシェル21下部の給気口
2Bに接続されて、蒸発蒸気V、を熱源とする循環水の
蒸発器として機能する。なお、上記液室23には加熱缶
12からのドレン15とセパレータ27のドレンの接続
管19が接続されて水の閉サイクルを形成している。
The absorber 20 is the main part of the present invention, and is configured to have dual functions as an absorber and an evaporator. First, the evaporator is an in-tube liquid film falling type heat exchanger consisting of a shell 21 and a large number of tubes 22, 22. That is,
A circulation pipe C□ having a water circulation pump 25 is formed between the lower liquid chamber 23 and the upper part 240, and the exhaust port 26 at the upper part of the liquid chamber 23 is connected to the upper part 14 of the heating can 12 through a pipe V. , and the steam pipe line V□ from the top 18 of the separator 1T is connected to the air supply port 2B at the bottom of the shell 21, functioning as an evaporator for circulating water using the evaporated steam V as a heat source. The liquid chamber 23 is connected to a connecting pipe 19 for the drain 15 from the heating can 12 and the drain from the separator 27 to form a closed water cycle.

次に吸収器としての構成についてのべる。吸収室30は
前記チューブ22の上下の管板29.29の中間部に形
成され、下部排液口31と上部給液口32との間に管路
C3を接続し、循環ポンプ33を有して吸収剤Sの原液
槽からポンプを経て注入される吸収液を循環させ、希釈
液りを逐次取り出す。34は液溜めのタンクである。3
5は吸収室30の上部に設けた仕切板であって、給液口
32の高さとの間に吸収液の液層36を形成し、仕切板
37を貫通するチューブ22.22の周囲の小間隙37
.3Tから吸収剤を滴下させるようにして管外液膜流下
式熱交換器を形成すると同時に濡れ壁式吸収器を形成し
ている。
Next, we will discuss the structure of the absorber. The absorption chamber 30 is formed in the middle part of the upper and lower tube plates 29.29 of the tube 22, has a pipe C3 connected between the lower liquid drain port 31 and the upper liquid supply port 32, and has a circulation pump 33. The absorbent solution injected from the stock solution tank of the absorbent S through the pump is circulated, and the diluted solution is taken out one after another. 34 is a tank for storing liquid. 3
Reference numeral 5 denotes a partition plate provided at the upper part of the absorption chamber 30, which forms a liquid layer 36 of absorption liquid between the height of the liquid supply port 32 and a small area around the tubes 22 and 22 passing through the partition plate 37. Gap 37
.. By dripping the absorbent from 3T, an extratubular liquid film falling type heat exchanger is formed, and at the same time, a wet wall type absorber is formed.

上記構成によって、吸収器20はシェル21内において
チューブ22の内壁面と外壁面の両管壁面における熱交
換器を形成したことを特徴としている。
With the above structure, the absorber 20 is characterized in that a heat exchanger is formed within the shell 21 on both the inner wall surface and the outer wall surface of the tube 22.

次に40は真空発生装置であって、41はブースター、
42は凝縮器、43は冷却水、44は復水であり、vp
は真空ポンプである。真空発生装置40は前記吸収蒸発
器20の上部排気口45と管路v8によって接続されて
おり、吸収器20.管路v1を通じて蒸発缶11Vcも
連通していて蒸発装置10の真空系を構成し高真空を達
成している。
Next, 40 is a vacuum generator, 41 is a booster,
42 is a condenser, 43 is cooling water, 44 is condensate, vp
is a vacuum pump. The vacuum generator 40 is connected to the upper exhaust port 45 of the absorber evaporator 20 by a pipe v8, and the absorber 20. The evaporator 11Vc is also communicated through the pipe v1, forming a vacuum system of the evaporator 10 and achieving high vacuum.

作用 本発明の作用を好適な実施例の運転の説明によって述べ
る。
Operation The operation of the present invention will be described by describing the operation of a preferred embodiment.

蒸発装置10に導かれる被処理液Aは加熱缶12におい
て熱交換によって加熱され、循環ポンプ13によって蒸
発缶11との間に循環される間に真空下で蒸発させられ
水蒸気V□は吸収器20に吸引され、蒸発装置が濃縮装
置である場合には処理液は濃縮され回収液Pとして取出
される。
The liquid A to be treated that is led to the evaporator 10 is heated by heat exchange in the heating can 12, and is evaporated under vacuum while being circulated between the evaporator 11 and the evaporator 11 by the circulation pump 13. If the evaporator is a concentrator, the treated liquid is concentrated and taken out as a recovered liquid P.

以下において装置の構成に示された管路の符号はそのま
まそこを通過する流体をも示すこととする。
In the following, the symbols of the conduits shown in the structure of the apparatus also refer to the fluids passing through them.

水蒸気Tutは吸収器20のシェル内に給気口2Bから
吸引され、吸収室30部分において循環する吸収剤に吸
収される。この吸収はチューブ22の外面を流下する吸
収液を希釈させ、凝縮熱、希釈熱を発生させてチューブ
22を外面から加熱するとともに、吸収剤は希釈液とな
って下部の液溜めのタンク34に溜り、管路C。
Water vapor Tut is drawn into the shell of the absorber 20 from the air supply port 2B and absorbed by the absorbent circulating in the absorption chamber 30 portion. This absorption dilutes the absorbent liquid flowing down the outer surface of the tube 22, generates condensation heat and dilution heat, and heats the tube 22 from the outer surface, and the absorbent becomes a diluted liquid and flows into the tank 34 of the lower liquid reservoir. Reservoir, conduit C.

を循環し、適宜に希釈液りとして抜出され、ワンス・ス
ルーの使い方をして他工程に送られる。
The liquid is circulated, extracted as a diluted liquid, and sent to other processes in a once-through manner.

吸収剤Sとしては沸点上昇の高い硫酸、苛性ソーダが選
ばれ、その循環系は蒸発器としての水の循環系とはチュ
ーブ22の内外において全く独立している。
As the absorbent S, sulfuric acid or caustic soda, which has a high boiling point rise, is selected, and its circulation system inside and outside the tube 22 is completely independent from the circulation system of water as an evaporator.

一方、吸収器20は循環する沸点温度の水C1を蒸発さ
せる。即ち、シェル21内の吸収液C!は水蒸気v1を
吸収し、凝縮熱、希釈熱によってチューブ22を外面か
ら加熱してその管壁内面において流下する循環水C1を
加熱し、水を蒸発させ、排気口26から水蒸気V、が取
出されて蒸発装置10へ送られる。
On the other hand, the absorber 20 evaporates the circulating water C1 at the boiling point temperature. That is, the absorption liquid C! in the shell 21! absorbs the water vapor v1, heats the tube 22 from the outside with condensation heat and dilution heat, heats the circulating water C1 flowing down on the inner surface of the tube wall, evaporates the water, and takes out the water vapor V from the exhaust port 26. and sent to the evaporator 10.

この水蒸気V、は蒸発装置10の加熱缶12の加熱側に
送られて、蒸発器!1Gの被処理浪人の蒸発用熱源とな
る。即ち、蒸発装置10はその加熱缶12に自己庫気の
熱を熱源として供給するように゛なっている。
This water vapor V is sent to the heating side of the heating can 12 of the evaporator 10, and is sent to the evaporator! Serves as a heat source for evaporation of 1G ronin. That is, the evaporator 10 is configured to supply the heating can 12 with heat from its own storage air as a heat source.

なお、被処理液入の蒸発蒸気中および、吸収剤から蒸発
する不凝縮性のガスは真空発生装置40に管路v1で引
かれて排出される〇ここで前述の蒸発装置10において
、被処理液入の温度を15℃、蒸発装置の内圧を10T
orrとして100 Kg/hrの蒸発が行われるとき
、吸収室30の内圧を9.8 Torr  とし、ワン
ス・スルーで供給される吸収液に吸収される。すなわち
、吸収剤は98 wt%の濃硫酸であって原液槽+4か
ら184 Ky/hrで供給され、38℃で20)ン/
hr の循環流量の吸収液によって63、8 wt%に
希釈される。この吸収液は逐時蒸気v1を吸収し、下方
では63.5wt1ljlC希釈されるとともに凝縮熱
、希釈熱で管内の水を加熱蒸発させ、同時に吸収液自体
は管内の水の蒸発により冷却されて、37℃となって合
計284に4/h rの系外から入ってきた全量が希釈
された硫酸として取り出され、残りは循環使用される。
Incidentally, the evaporated vapor contained in the liquid to be treated and the non-condensable gas evaporated from the absorbent are drawn to the vacuum generator 40 through the pipe v1 and discharged. The temperature of the liquid inlet was 15℃, and the internal pressure of the evaporator was 10T.
When evaporation is performed at a rate of 100 Kg/hr, the internal pressure of the absorption chamber 30 is 9.8 Torr, and the absorption liquid is absorbed by the once-through supplied absorption liquid. That is, the absorbent was 98 wt% concentrated sulfuric acid, supplied at 184 Ky/hr from stock solution tank +4, and at 20) Ky/hr at 38°C.
It is diluted to 63.8 wt% by absorbent with a circulating flow rate of hr. This absorption liquid gradually absorbs steam v1, is diluted by 63.5wt1ljlC in the lower part, and heats and evaporates the water in the tube with the heat of condensation and dilution, and at the same time, the absorption liquid itself is cooled by the evaporation of the water in the tube. When the temperature reached 37°C, the total amount of 284/hr that entered the system from outside was taken out as diluted sulfuric acid, and the remainder was recycled.

一方、この間に吸収器20のチューブ22内の循環水は
40 Torr  の低真空において沸点温度34℃か
ら蒸発させられて蒸気V、として加熱缶12に送られる
Meanwhile, during this period, the circulating water in the tube 22 of the absorber 20 is evaporated from a boiling point temperature of 34° C. in a low vacuum of 40 Torr, and is sent to the heating can 12 as steam V.

発明の効果 本発明は上述のように構成されているから、高真空での
蒸発装置から発生する水蒸気を排出除去する第1の目的
を達成し、併せて水蒸気の持つ熱エネルギーを蒸発装置
の加熱源として自己蒸気による吸収式ヒートポンプとす
る第2の目的をも達成した。本発明によれば、装置の全
体は圧縮機、フラッシュ缶などの付属機器を必要とせず
、それらの運転動力を要することがなく、熱エネルギー
面では低温の熱から高温の熱が回収でき、吸収器で直接
水蒸気を発生させることによって、U値が高くなり、吸
収器内の温度差が小さくとれ、高温の熱を回収できる。
Effects of the Invention Since the present invention is constructed as described above, it achieves the first purpose of discharging and removing water vapor generated from an evaporator in a high vacuum, and also uses the thermal energy of the water vapor to heat the evaporator. The second objective of using an absorption heat pump with self-steam as the source was also achieved. According to the present invention, the entire device does not require accessory equipment such as a compressor or flash can, and does not require the power to operate them.In terms of thermal energy, high-temperature heat can be recovered from low-temperature heat and absorbed. By directly generating steam in the absorber, the U value becomes high, the temperature difference within the absorber can be kept small, and high-temperature heat can be recovered.

また、冷却水が不要なばかりでなく、吸収剤を再生濃縮
することなく、ワンス・スルーで利用しているため、従
来の第2種ヒートポンプに比較して熱回収率(成績係数
)が2倍となっている。
In addition, not only does it not require cooling water, but the absorbent is used once-through without regenerating and concentrating, so the heat recovery rate (coefficient of performance) is twice that of conventional Type 2 heat pumps. It becomes.

さらに、希釈昇温された吸収液の熱を水蒸気に置換して
いるため、安全性が高く、食品、医薬品等の蒸発装置に
適用ができ、一方、加熱缶における熱交換の効率がよく
伝熱面積が小さくてよい副次効果も得られている。
Furthermore, since the heat of the diluted and heated absorption liquid is replaced with water vapor, it is highly safe and can be applied to evaporation equipment for foods, pharmaceuticals, etc., and on the other hand, the heat exchange efficiency in the heating can is high, allowing heat transfer. Good secondary effects have been obtained even though the area is small.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の蒸発装置の実施例をフロー図で示すもの
である。 10・・・・・・蒸発装置    11・・・・・・蒸
発缶12・・・・・・加熱缶     13・・・・・
・循環ポンプ1T・・・・・・セパレータ   19・
・・・・・水の管路A・・・・・・被処理液     
P・・・・・・回収液20・・・・・・吸収器21・・
・・・・シェル22・・・・・・チューブ    25
・・・・・・循環ポンプ26・・・・・・排気口   
  2B・・・・・・給気口2T・・・・・・セパレー
タ   C1・・・・・・循環管路C2・・・・・・循
環管路     S・・・・・・原液D・・・・・・希
釈液
The drawing shows an embodiment of the evaporator according to the invention in a flow diagram. 10...Evaporator 11...Evaporator 12...Heating can 13...
・Circulation pump 1T・・・Separator 19・
...Water pipe A...Liquid to be treated
P...Recovered liquid 20...Absorber 21...
...Shell 22 ...Tube 25
...Circulation pump 26...Exhaust port
2B... Air supply port 2T... Separator C1... Circulation pipe C2... Circulation pipe S... Stock solution D... ···Diluted solution

Claims (3)

【特許請求の範囲】[Claims] (1)蒸発装置と、その蒸発缶に接続される真空発生装
置と、これらを接続する真空系に設けられる吸収器とか
らなり、該吸収器はシェルと多数のチューブを有して熱
交換器を形成するとともに吸収剤の注入口と希釈液の取
出口を有する吸収液の循環管路および閉サイクルの水の
循環管路を有しており、シェル内は蒸発装置の蒸発缶に
接続され、チューブ側は加熱缶に接続されて吸収器で発
生する水蒸気を自己熱源として使用することを特徴とす
る高真空蒸発装置。
(1) Consisting of an evaporator, a vacuum generator connected to the evaporator, and an absorber installed in the vacuum system connecting these, the absorber has a shell and a number of tubes, and is a heat exchanger. It has an absorbent circulation line with an absorbent inlet and a diluted liquid outlet, and a closed cycle water circulation line, and the inside of the shell is connected to the evaporator of the evaporator. A high vacuum evaporation device characterized in that the tube side is connected to a heating can and uses the steam generated in the absorber as a self-heat source.
(2)吸収剤は高濃度の硫酸または苛性ソーダである特
許請求の範囲第1項に記載の蒸発装置。
(2) The evaporator according to claim 1, wherein the absorbent is highly concentrated sulfuric acid or caustic soda.
(3)シェルと多数のチューブを有して熱交換器を形成
した吸収器であつて、該吸収器はその下部と上部の間に
水の循環管路を有して管内液膜流下量の熱交換器を形成
するとともにチューブ上部と下部の間のシェル内に吸収
室を形成してその下部と上部の間に吸収剤の注入口と希
釈液の取出口とを有する吸収液の循環管路を有し、吸収
剤は吸収器内においてチューブ外面を流下させられ、シ
ェルには水蒸気の給排口が設けられて供給蒸気の吸収に
より吸収剤が発生する凝縮熱希釈熱により、チューブ内
の循環水に対して管外液膜流下型の熱交換器を形成して
いることを特徴とする吸収器。
(3) An absorber that has a shell and a number of tubes to form a heat exchanger, and the absorber has a water circulation pipe between the lower part and the upper part to reduce the amount of liquid film flowing through the pipe. An absorbent circulation pipe that forms a heat exchanger and forms an absorption chamber in the shell between the upper and lower parts of the tube, and has an absorbent inlet and a diluent outlet between the lower and upper parts. The absorbent is made to flow down the outer surface of the tube inside the absorber, and the shell is provided with a steam supply/exhaust port, and the absorption of the supplied steam causes the absorbent to generate condensation heat and dilution heat to circulate the inside of the tube. An absorber characterized by forming an extratubular liquid film falling type heat exchanger for water.
JP60140580A 1985-06-28 1985-06-28 High vacuum evaporator and absorber used therefor Pending JPS624402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60140580A JPS624402A (en) 1985-06-28 1985-06-28 High vacuum evaporator and absorber used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60140580A JPS624402A (en) 1985-06-28 1985-06-28 High vacuum evaporator and absorber used therefor

Publications (1)

Publication Number Publication Date
JPS624402A true JPS624402A (en) 1987-01-10

Family

ID=15271996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60140580A Pending JPS624402A (en) 1985-06-28 1985-06-28 High vacuum evaporator and absorber used therefor

Country Status (1)

Country Link
JP (1) JPS624402A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5697501A (en) * 1979-12-21 1981-08-06 Butsukau Eeru Uorufuku Ag Masc Multistage evaporator with collected heat recovery system
JPS59225270A (en) * 1983-06-03 1984-12-18 三菱電機株式会社 Material movement heat exchanging device
JPS626674B2 (en) * 1980-07-31 1987-02-12 Sharp Kk

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5697501A (en) * 1979-12-21 1981-08-06 Butsukau Eeru Uorufuku Ag Masc Multistage evaporator with collected heat recovery system
JPS626674B2 (en) * 1980-07-31 1987-02-12 Sharp Kk
JPS59225270A (en) * 1983-06-03 1984-12-18 三菱電機株式会社 Material movement heat exchanging device

Similar Documents

Publication Publication Date Title
JP6441511B2 (en) Multistage plate-type evaporative absorption refrigeration apparatus and method
WO2017185930A1 (en) Combined solar-powered seawater desalination and air-conditioned cooling method and system having high efficiency
KR860001490B1 (en) A system and method for distilling brine to obtain fresh water
WO1991000759A1 (en) Method and apparatus for evaporation of liquids
CN105819531B (en) A kind of energy saving heat pump medium temperature spray evaporation system
CA1279482C (en) Air conditioning process and apparatus therefor
CN106196718B (en) Absorption type heat pump system and its round-robin method
CN113526600B (en) Desalting and deoxidizing equipment and method
US4617800A (en) Apparatus for producing power using concentrated brine
SE460869B (en) ABSORPTION TYPE HEAT PUMP
CN107098419A (en) A kind of solar airconditioning seawater desalination system
US4662191A (en) Absorption - type refrigeration system
JP2000024403A (en) Evaporation type thickener for aqueous solution
JPS624402A (en) High vacuum evaporator and absorber used therefor
CN111721029B (en) Direct-heating type second-class heat pump
JPH0545019A (en) Absorption freezer
CN215909023U (en) Desalting and deoxidizing equipment
CN214791007U (en) Semi-closed screw type water source steam heat pump system
JPH05263610A (en) Power generation equipment
JPS6122225B2 (en)
SU1254179A1 (en) Power plant
SU879202A1 (en) Bromium-litium absorption unit for producing heat and refrigeration
JPS61287402A (en) High vacuum evaporator
CN106766429B (en) Heat pump frosting prevention solution regenerating device
RU1782303C (en) Combined heater for utilization of secondary low potential heat in carbamide production