[go: up one dir, main page]

JPS6242566A - thin film transistor - Google Patents

thin film transistor

Info

Publication number
JPS6242566A
JPS6242566A JP60182229A JP18222985A JPS6242566A JP S6242566 A JPS6242566 A JP S6242566A JP 60182229 A JP60182229 A JP 60182229A JP 18222985 A JP18222985 A JP 18222985A JP S6242566 A JPS6242566 A JP S6242566A
Authority
JP
Japan
Prior art keywords
amorphous silicon
hydrogenated amorphous
thin film
film transistor
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60182229A
Other languages
Japanese (ja)
Inventor
Tetsuzo Yoshimura
徹三 吉村
Koichi Hiranaka
弘一 平中
Shintaro Yanagisawa
柳沢 真太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60182229A priority Critical patent/JPS6242566A/en
Publication of JPS6242566A publication Critical patent/JPS6242566A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/81Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation
    • H10D62/815Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation of structures having periodic or quasi-periodic potential variation, e.g. superlattices or multiple quantum wells [MQW]
    • H10D62/8161Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation of structures having periodic or quasi-periodic potential variation, e.g. superlattices or multiple quantum wells [MQW] potential variation due to variations in composition or crystallinity, e.g. heterojunction superlattices
    • H10D62/8162Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation of structures having periodic or quasi-periodic potential variation, e.g. superlattices or multiple quantum wells [MQW] potential variation due to variations in composition or crystallinity, e.g. heterojunction superlattices having quantum effects only in the vertical direction, i.e. layered structures having quantum effects solely resulting from vertical potential variation
    • H10D62/8163Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation of structures having periodic or quasi-periodic potential variation, e.g. superlattices or multiple quantum wells [MQW] potential variation due to variations in composition or crystallinity, e.g. heterojunction superlattices having quantum effects only in the vertical direction, i.e. layered structures having quantum effects solely resulting from vertical potential variation comprising long-range structurally-disordered materials, e.g. one-dimensional vertical amorphous superlattices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/674Thin-film transistors [TFT] characterised by the active materials
    • H10D30/6741Group IV materials, e.g. germanium or silicon carbide
    • H10D30/6748Group IV materials, e.g. germanium or silicon carbide having a multilayer structure or superlattice structure

Landscapes

  • Formation Of Insulating Films (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔概要〕 薄膜トランジスタの改良である。[Detailed description of the invention] 〔overview〕 This is an improvement on thin film transistors.

活性層を、水素化アモルファス炭化シリコン、水素化ア
モルファス窒化シリコン、水素化アモルファスゲルマニ
ウム化シリコン、水素化アモルファス酸化シリコン等の
薄膜42と水素化アモルファスシリコンの薄膜41とを
交互に積層してなる非晶質半導体薄膜積層体4とするこ
とにより。
The active layer is an amorphous layer formed by alternately laminating thin films 42 of hydrogenated amorphous silicon carbide, hydrogenated amorphous silicon nitride, hydrogenated amorphous silicon germanide, hydrogenated amorphous silicon oxide, etc. and thin films 41 of hydrogenated amorphous silicon. By forming a semiconductor thin film laminate 4 of high quality.

これを可視光に対して透明とし、遮光板等を必要とする
ことなく、暗電流を減少し誤動作等の発生を防止しうる
ようにした薄膜トランジスタである。
This is a thin film transistor that is transparent to visible light and can reduce dark current and prevent malfunctions without requiring a light shielding plate or the like.

〔産業上の利用分野〕[Industrial application field]

本発明は、薄膜トランジスタに関する。特に、可視光に
対して透明の活性層を使用して、暗電流を誠少し誤動作
等の発生を防止する改良に関する。
The present invention relates to thin film transistors. In particular, the present invention relates to an improvement that uses an active layer that is transparent to visible light to minimize dark current and prevent malfunctions.

〔従来の技術〕[Conventional technology]

薄膜トランジスタは、ガラス基板等非晶質基板の上に形
成されることが一般であるから、非晶質半導体である水
素化アモルファスシリコン膜を活性層とする場合が一般
である。
Since thin film transistors are generally formed on an amorphous substrate such as a glass substrate, a hydrogenated amorphous silicon film, which is an amorphous semiconductor, is generally used as an active layer.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、水素化アモルファスシリコンはバンドギャッ
プが約1.8eVであり、可視光を吸収するから、信号
光としては赤外光より長波長の光を使用しても、不所望
の可視光を吸収して暗電流を生じ、さらには誤動作のお
それがある。
However, hydrogenated amorphous silicon has a band gap of approximately 1.8 eV and absorbs visible light, so even if light with a wavelength longer than infrared light is used as a signal light, it will absorb undesired visible light. This may cause dark current and even malfunction.

この欠点を解消するには、バンドギャップが大きな非晶
質半導体を活性層とすればよい、この要請に応える非晶
質半導体としては、水素化アモルファス炭化シリコン、
水素化アモルファス窒化シリコン等があるが、これらに
あっては、キャリヤのモビリティ−が低く、抵抗率が大
きいから、抵抗率を低下するために不純物を導入するこ
とが望ましいが、このために不純物を導入すると。
To overcome this drawback, an amorphous semiconductor with a large bandgap can be used as the active layer.Amorphous semiconductors that meet this requirement include hydrogenated amorphous silicon carbide,
Hydrogenated amorphous silicon nitride, etc., have low carrier mobility and high resistivity, so it is desirable to introduce impurities to lower the resistivity. When introduced.

トラップが増加する等して電気特性が損なわれる。水素
化アモルファス炭化シリコン、水素化アモルファス窒化
シリコン等のドーピング特性が悪いからである。そこで
、従来技術においては、活性層としては水素化アモルフ
ァスシリコンを使用し、これに遮光板を併用することが
一般であり。
Electrical characteristics are impaired due to an increase in traps, etc. This is because hydrogenated amorphous silicon carbide, hydrogenated amorphous silicon nitride, and the like have poor doping characteristics. Therefore, in the prior art, hydrogenated amorphous silicon is generally used as the active layer, and a light shielding plate is used in conjunction with this.

可視光に対して透明な活性層よりなるfa11トランジ
スタの開発が望まれていた。
It has been desired to develop an fa11 transistor having an active layer transparent to visible light.

本発明の目的はこの要請に応えることにあり、可視光に
対して透明な活性層を有し、暗電流が少なく不所望の可
視光吸収にもとづき誤動作等をすることのないtaJ膜
トランジスタを提供することにある。
The purpose of the present invention is to meet this demand, and to provide a taJ film transistor that has an active layer that is transparent to visible light, has low dark current, and does not malfunction due to undesired absorption of visible light. It's about doing.

〔問題点を解決するための手段〕[Means for solving problems]

L記の目的を達成するために本発明が採った手段は、水
素化アモルファス炭化シリコン、水素化アモルファス窒
化シリコン、水素化アモルファスゲルマニウム化シリコ
ン、水素化アモルファス酸化シリコン等の薄膜42と水
素化アモルファスシリコンの薄膜41とを交互に積層し
てなる非晶質半導体薄膜積層体4をもって活性層を形成
することにある。
The means taken by the present invention in order to achieve the object described in item L include a thin film 42 of hydrogenated amorphous silicon carbide, hydrogenated amorphous silicon nitride, hydrogenated amorphous silicon germanide, hydrogenated amorphous silicon oxide, etc. and hydrogenated amorphous silicon. The purpose is to form an active layer using an amorphous semiconductor thin film laminate 4 formed by alternately laminating thin films 41 of .

〔作用〕[Effect]

本発明は、アモルファススーパーラティスの/くンドギ
ャップが、量子井戸の深さと幅とキャリヤである電子ま
たは空孔の有効質敬との関数として決定されるという性
質を利用し、バンドギャップの小さい水素化アモルファ
スシリコンの薄膜とバンドギャップの大きい水素化アモ
ルファス炭化シリコン、水素化アモルファス窒化シリコ
ン、水llアモルファスゲルマニウム化シリコン、水素
化アモルファス酸化シリコン等の薄膜との積層体を活性
層としたものである。換言すれば、上記の量子効果を利
用してバンドギャップが水素化アモルファスシリコンよ
り大きな非晶質半導体を実現し、これを活性層として可
視光吸収性を排除し、一方、アモルファススーパーラテ
ィスにおいて生じるキャリヤの閉じ込め効果を利用して
、電流は水素化アモルファスシリコン中を流れるように
したものである。
The present invention utilizes the property that the band gap of an amorphous superlattice is determined as a function of the depth and width of the quantum well and the effective quality of carrier electrons or holes. The active layer is a laminate of a thin film of hydrogenated amorphous silicon and a thin film of hydrogenated amorphous silicon carbide, hydrogenated amorphous silicon nitride, hydrogenated amorphous silicon germanide, hydrogenated amorphous silicon oxide, etc. having a large band gap. In other words, by utilizing the quantum effect described above, we can realize an amorphous semiconductor with a band gap larger than that of hydrogenated amorphous silicon, use this as an active layer to eliminate visible light absorption, and on the other hand, absorb carriers generated in the amorphous super lattice. The current is made to flow through hydrogenated amorphous silicon by utilizing the confinement effect of .

この非晶質半導体はバンドギャップの制御が容易である
ことに加えて、ドーピング特性のすぐれている利点も有
するから、薄膜トランジスタの活性層として利用すると
き、不純物を導入して低抵抗とすることができる。水素
化アモルファス炭化シリコン、水素化アモルファス窒化
シリコン、水素化アモルファスゲルマニウム化シリコン
、水素化アモルファス酸化シリコン等はドーピング特性
が悪いためドープできないが、水素化アモルファスシリ
コンはドーピング特性がすぐれているので、水素化アモ
ルファスシリコンのみに不純物を導入して積層体の不純
物濃度を制御しうるからである。
In addition to being easy to control the band gap, this amorphous semiconductor also has the advantage of excellent doping characteristics, so when used as the active layer of a thin film transistor, it is possible to introduce impurities to make it low resistance. can. Hydrogenated amorphous silicon carbide, hydrogenated amorphous silicon nitride, hydrogenated amorphous silicon germanide, hydrogenated amorphous silicon oxide, etc. cannot be doped because of their poor doping properties, but hydrogenated amorphous silicon has excellent doping properties and cannot be doped. This is because the impurity concentration of the stacked body can be controlled by introducing impurities only into amorphous silicon.

〔実施例〕〔Example〕

以下1図面を参照しつ一1本発明の一実施例に係る薄膜
トランジスタについてさらに説明する。
A thin film transistor according to an embodiment of the present invention will be further described below with reference to the drawings.

第2図参照 ガラス基板等l上にニッケルクローム等の導電体膜を厚
さ約1,000人に形成した後、これを輻約20%脂に
バターニングしてゲート電極2を形成する。
Referring to FIG. 2, a conductive film of nickel chrome or the like is formed on a glass substrate or the like to a thickness of about 1,000 mm, and then buttered to a thickness of about 20% to form a gate electrode 2.

第3図参照 高周波グロー放電分解法を使用して、厚さ約3.000
人の窒化シリコンの膜(ゲート絶縁膜)3と、」−記せ
る水素化アモルファスシリコンの薄膜41と水素化アモ
ルファス炭化シリコン、水素化アモルファス窒化シリコ
ン、水素化アモルファスゲルマニウム化シリコン、水素
化アモルファス酸化シリコン等の薄W142との積層体
4と、リンがドープされた水素化アモルファスシリコン
の薄膜5とをつづけて形成する。積層体4を構成する各
薄膜の厚さは5〜50^であるが、積層体4全体の厚さ
は約1,000人とする。積層体4は少なくとも10組
形成されることになる。リンがドープされた水素化アモ
ルファスシリコンの薄!15の厚さは約 100人であ
る。
Using the high-frequency glow discharge decomposition method, see Figure 3, the thickness is approximately 3.000 mm.
Human silicon nitride film (gate insulating film) 3, hydrogenated amorphous silicon thin film 41, hydrogenated amorphous silicon carbide, hydrogenated amorphous silicon nitride, hydrogenated amorphous silicon germanide, hydrogenated amorphous silicon oxide A laminate 4 of a thin W 142 such as the above and a thin film 5 of hydrogenated amorphous silicon doped with phosphorus are successively formed. Although the thickness of each thin film constituting the laminate 4 is 5 to 50^, the thickness of the entire laminate 4 is approximately 1,000. At least ten sets of laminates 4 are formed. Thin hydrogenated amorphous silicon doped with phosphorus! The thickness of 15 is about 100 people.

この工程は、水素をもって希釈されたモノシランと、メ
タンとモノシランとの混合ガスとを、順次切り換えてな
す高周波グロー放電分解法を使用すれば可能である。
This step can be carried out by using a high frequency glow discharge decomposition method in which monosilane diluted with hydrogen and a mixed gas of methane and monosilane are sequentially switched.

第4図参照 厚さ約 1 、000へのチタンs6と厚さ約2,00
0人のアルミニウム膜7とを形成する。この工程は通常
の真空蒸・着法、スパッタ法等を使用して可能である。
See Figure 4 Titanium S6 to thickness approx. 1,000 and thickness approx. 2,000
0 aluminum film 7 is formed. This step can be carried out using a conventional vacuum evaporation/deposition method, sputtering method, or the like.

ゲート電極2と対向する領域から膜5.6.7を、幅約
15〜20μmに除去してソース電極8・ドレイン電極
9を形成する。
The film 5.6.7 is removed from the region facing the gate electrode 2 to a width of about 15 to 20 μm to form a source electrode 8 and a drain electrode 9.

以りの工程をもって製造された薄膜トランジスタの活性
層のバンドギャップは水素化アモルファスシリコンのバ
ンドギャップより大きいので、可視光を吸収することは
なく、暗電流が流れたり、不所望の可視光を吸収して誤
動作することはない。
The band gap of the active layer of the thin film transistor manufactured using the above process is larger than that of hydrogenated amorphous silicon, so it does not absorb visible light, causing dark current to flow or absorbing unwanted visible light. It will not malfunction.

〔発明の効果〕〔Effect of the invention〕

以上説明せるとおり、本発明に係る薄膜トランジスタの
活性層は水素化アモルファス炭化シリコン、水素化アモ
ルファス窒化シリコン、水素化アモルファスゲルマニウ
ム化シリコン、水素化アモルファス酸化シリコン等の薄
膜と水素化アモルファスシリコンの薄膜とを交りに81
層してなる弊品質半導体、薄膜積層体をもって構成され
ており、量子効果によってそのバンドギャップは自由に
制御されて水素化アモルファスシリコンのバンドギャッ
プより大きくされており、しかも、水素化アモルファス
シリコン中にはドープが可能である力)らトラップ等の
おそれなくドーピングが自由にできる。そのため、予期
せざる可視光を吸収して暗電流を発生したり、不所望の
可視光を吸収して誤動作することもない、また、アモル
ファススーパーラティスのキャリヤ閉じ込め効果により
電流は水素化アモルファスシリコン中を流れるので。
As explained above, the active layer of the thin film transistor according to the present invention includes a thin film of hydrogenated amorphous silicon carbide, hydrogenated amorphous silicon nitride, hydrogenated amorphous silicon germanide, hydrogenated amorphous silicon oxide, etc., and a thin film of hydrogenated amorphous silicon. 81 at the same time
Our quality semiconductor is composed of a thin film stack, and its bandgap is freely controlled by quantum effects to be larger than the bandgap of hydrogenated amorphous silicon. Doping can be done freely without fear of traps, etc. Therefore, there is no possibility of absorbing unexpected visible light and generating dark current, or absorbing unwanted visible light and causing malfunctions.In addition, due to the carrier confinement effect of the amorphous super lattice, the current is not generated in hydrogenated amorphous silicon. Because it flows.

モビリティ−も高く、動作速度も速く、この薄膜トラン
ジスタの特性はすぐれている。特に平面ディスプレイの
駆動用薄膜トランジスタとして使用すると、有効画素面
積が増加して明るい平面ディスプレイが得られる等の効
果もある。
This thin film transistor has excellent characteristics such as high mobility and fast operation speed. In particular, when used as a thin film transistor for driving a flat display, the effective pixel area increases and a bright flat display can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例に係る薄膜トランジスタの
断面図である。 第2〜4図は1本発明の一実施例に係る薄膜トランジス
タの製造工程図である。 l・・・ガラスル撥、  2・ ・ ・ゲート電極。 3・φ−M化シリコンの膜(ゲート絶arga>、4・
拳・、tf体、 41・番・水素化アモルファスシリコ
ンの薄膜、 420参・水素化アモルファス炭化シリコ
ン1.水素化アモルファス窒化シリコン、水素化アモル
ファスゲルマニウム化シリコン、水素化アモルファス酸
化シリコン等のpJS。 5争・・リンがドープされた水素化アモルファスシリコ
ンの薄膜、6− ・・チタン膜、7 e e eアルミ
ニウム膜、 8・φ・ソース電極、9拳拳会ドレイン電
極。 代理人 弁理士 井桁貞−+、、、、 、 、、’)・
\1.−ユ  ・ノ ・ご、)・ 工yrt日 第4囚 不沼明 ′:LAt圀 第2図 工屁記 第3図
FIG. 1 is a sectional view of a thin film transistor according to an embodiment of the present invention. 2 to 4 are process diagrams for manufacturing a thin film transistor according to an embodiment of the present invention. l... glass repellent, 2... gate electrode. 3. φ-M silicon film (gate isolation arga>, 4.
Fist・, TF body, No. 41・Thin film of hydrogenated amorphous silicon, No. 420・Hydrogenated amorphous silicon carbide 1. pJS such as hydrogenated amorphous silicon nitride, hydrogenated amorphous silicon germanide, and hydrogenated amorphous silicon oxide. 5. Thin film of hydrogenated amorphous silicon doped with phosphorus, 6.. Titanium film, 7. e ee aluminum film, 8. φ source electrode, 9. fist drain electrode. Agent Patent Attorney Sada Igeta-+,,,, ,,,')・
\1. - Yu・no・go・)・Work day 4th prisoner Akira Funuma': LAt country 2nd map 3rd page

Claims (1)

【特許請求の範囲】[Claims] 水素化アモルファス炭化シリコンと水素化アモルファス
窒化シリコンと水素化アモルファスゲルマニウム化シリ
コンと水素化アモルファス酸化シリコンとよりなるグル
ープから選らばれた一つの物質の薄膜(42)と水素化
アモルファスシリコンの薄膜(41)とを交互に積層し
てなる非晶質半導体薄膜積層体(4)を活性層とする薄
膜トランジスタ。
A thin film of one substance selected from the group consisting of hydrogenated amorphous silicon carbide, hydrogenated amorphous silicon nitride, hydrogenated amorphous silicon germanide, and hydrogenated amorphous silicon oxide (42) and a thin film of hydrogenated amorphous silicon (41) A thin film transistor whose active layer is an amorphous semiconductor thin film laminate (4) formed by alternately laminating .
JP60182229A 1985-08-20 1985-08-20 thin film transistor Pending JPS6242566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60182229A JPS6242566A (en) 1985-08-20 1985-08-20 thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60182229A JPS6242566A (en) 1985-08-20 1985-08-20 thin film transistor

Publications (1)

Publication Number Publication Date
JPS6242566A true JPS6242566A (en) 1987-02-24

Family

ID=16114600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60182229A Pending JPS6242566A (en) 1985-08-20 1985-08-20 thin film transistor

Country Status (1)

Country Link
JP (1) JPS6242566A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288367A (en) * 1985-10-11 1987-04-22 ゼネラル エレクトリツク カンパニー transistor
JPS63181473A (en) * 1987-01-23 1988-07-26 Hosiden Electronics Co Ltd Thin-film transistor
EP0276002A2 (en) * 1987-01-23 1988-07-27 Hosiden Corporation Thin film transistor
JPS63224259A (en) * 1987-03-12 1988-09-19 Toshiba Corp Method for manufacturing thin film elements
JPH0521801A (en) * 1990-12-25 1993-01-29 Semiconductor Energy Lab Co Ltd Semiconductor device
JPH0521794A (en) * 1991-02-04 1993-01-29 Semiconductor Energy Lab Co Ltd Dieleciric gate type field effect semiconductor device and fabrication thereof
EP0587520A1 (en) * 1992-08-10 1994-03-16 International Business Machines Corporation A SiGe thin film or SOI MOSFET and method for making the same
WO2002001641A1 (en) * 2000-06-27 2002-01-03 Matsushita Electric Industrial Co., Ltd. Semiconductor device
US6838698B1 (en) 1990-12-25 2005-01-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having source/channel or drain/channel boundary regions
US7253437B2 (en) 1990-12-25 2007-08-07 Semiconductor Energy Laboratory Co., Ltd. Display device having a thin film transistor
JP2009170905A (en) * 2008-01-15 2009-07-30 Samsung Electronics Co Ltd Display substrate and display device including the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288367A (en) * 1985-10-11 1987-04-22 ゼネラル エレクトリツク カンパニー transistor
EP0484987A2 (en) * 1987-01-23 1992-05-13 Hosiden Corporation Thin film transistor
JPS63181473A (en) * 1987-01-23 1988-07-26 Hosiden Electronics Co Ltd Thin-film transistor
EP0276002A2 (en) * 1987-01-23 1988-07-27 Hosiden Corporation Thin film transistor
JPH0620135B2 (en) * 1987-03-12 1994-03-16 株式会社東芝 Method of manufacturing thin film element
JPS63224259A (en) * 1987-03-12 1988-09-19 Toshiba Corp Method for manufacturing thin film elements
JPH0521801A (en) * 1990-12-25 1993-01-29 Semiconductor Energy Lab Co Ltd Semiconductor device
US6838698B1 (en) 1990-12-25 2005-01-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having source/channel or drain/channel boundary regions
US7253437B2 (en) 1990-12-25 2007-08-07 Semiconductor Energy Laboratory Co., Ltd. Display device having a thin film transistor
US7375375B2 (en) 1990-12-25 2008-05-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
JPH0521794A (en) * 1991-02-04 1993-01-29 Semiconductor Energy Lab Co Ltd Dieleciric gate type field effect semiconductor device and fabrication thereof
EP0587520A1 (en) * 1992-08-10 1994-03-16 International Business Machines Corporation A SiGe thin film or SOI MOSFET and method for making the same
JPH06112491A (en) * 1992-08-10 1994-04-22 Internatl Business Mach Corp <Ibm> Field effect transistor
US5461250A (en) * 1992-08-10 1995-10-24 International Business Machines Corporation SiGe thin film or SOI MOSFET and method for making the same
WO2002001641A1 (en) * 2000-06-27 2002-01-03 Matsushita Electric Industrial Co., Ltd. Semiconductor device
US6674131B2 (en) 2000-06-27 2004-01-06 Matsushita Electric Industrial Co., Ltd. Semiconductor power device for high-temperature applications
JP2009170905A (en) * 2008-01-15 2009-07-30 Samsung Electronics Co Ltd Display substrate and display device including the same

Similar Documents

Publication Publication Date Title
JPS6242566A (en) thin film transistor
JPS62219665A (en) Superlattice thin-film transistor
JP2023057104A (en) Transistor and display device
WO2017000503A1 (en) Metal oxide semiconductor thin film, thin-film-transistor, and their fabricating methods, and display apparatus
TW200826293A (en) Read-only memory and method for manufacturing the same
TW201220504A (en) Metal oxide thin film transistor and manufacturing method thereof
TW463378B (en) Method of manufacturing semiconductor device
CA2158182A1 (en) Field effect transistor using diamond
JPS62271475A (en) Semiconductor device
JP2650946B2 (en) Thin film field effect element
CN109148477B (en) TFT array substrate and display panel
JP5577384B2 (en) Method for manufacturing semiconductor device
JPH01218070A (en) Mos transistor
JPS6030181A (en) Amorphous thin film photovoltaic element
Wu et al. Effects of channel width and NH3 plasma passivation on electrical characteristics of polysilicon thin-film transistors by pattern-dependent metal-induced lateral crystallization
JPS62268161A (en) Thin-film transistor element
JPS60251666A (en) Thin-film transistor
JPS58196057A (en) semiconductor equipment
Nguyen et al. Nanowire single-crystal grain and single grain boundary silicon field effect transistors for direct electrical characterization of grain boundaries
TWI302032B (en) Thin film transistor and method of fabricating thereof
JPH01309379A (en) Thin-film semiconductor element
JPS63181473A (en) Thin-film transistor
JPS5835979A (en) Semiconductor device
JP3407264B2 (en) Single electron transistor
JPS55148457A (en) Semiconductor device with electrode