JPS6242123B2 - - Google Patents
Info
- Publication number
- JPS6242123B2 JPS6242123B2 JP57082425A JP8242582A JPS6242123B2 JP S6242123 B2 JPS6242123 B2 JP S6242123B2 JP 57082425 A JP57082425 A JP 57082425A JP 8242582 A JP8242582 A JP 8242582A JP S6242123 B2 JPS6242123 B2 JP S6242123B2
- Authority
- JP
- Japan
- Prior art keywords
- steam
- main
- valve
- reheat
- steam temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K7/00—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
- F01K7/16—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
- F01K7/22—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
- F01K7/24—Control or safety means specially adapted therefor
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Turbines (AREA)
Description
本発明は、発電プラントの起動時の蒸気温度制
御装置に係り、特に高圧(主)タービンバイパス
弁、再熱器入口蒸気温度調整用スプレー弁、及び
中・低圧タービンバイパス弁を付設して、起動時
のタービン通汽蒸気条件を好適に制御できるよう
にした発電プラントの起動時の蒸気温度制御装置
に関する。
まず、第1図を参照して、火力発電プラントに
おける従来のボイラ(貫流ボイラ)の概略構成に
ついて説明する。
図において、1はボイラ本体、1Aは火炉水冷
壁、2はバーナ、3はガス再循環フアン、4は節
炭器、5は1次再熱器、7は2次再熱器、8は2
次過熱器、9は主蒸気管16に設けられた主さい
止弁、10は再熱蒸気管17に設けられたインタ
ーセプト弁、11は高圧(主)タービン、12は
中・低圧タービンである。
また、13は復水器、14は前記タービン1
1,12によつて駆動される発電機、15は主蒸
気管16内の蒸気を復水器13に逃がすための高
圧(主)タービンバイパス弁、18は減温器、1
9はスプレー弁、20は主蒸気温度検出器、20
Aは減温器出口蒸気温度検出器、21は再熱温度
検出器である。
バーナ2に供給された燃料は、ボイラ本体1内
で空気と混合されて燃焼され、燃焼ガスとなる。
燃焼ガスは、火炉水冷壁1A、2次過熱器8、2
次再熱器7などで、順次に熱交換をしながら煙道
内を進み、煙突から排出される。
その際、燃焼ガスの一部は、ガス再循環フアン
3によつて、ボイラ本体1内へ戻され、再熱蒸気
温度の制御に使用される。
一方、給水ポンプ(図示せず)から節炭器4に
送り込まれた水は、ここで熱回収した後、火炉水
冷壁1Aに至り、水冷壁を上昇する途中で蒸発
し、1次過熱器6に入つて過熱される。この蒸気
は、更に過熱器スプレー(図示せず)に達する。
前記蒸気は、過熱器スプレーによつて、主蒸気
温度が規定値になるよう減温された後、さらに2
次過熱器8に入つて過熱され、主蒸気管16およ
び主さい止弁9を経由して高圧(主)タービン1
1に至り、そこで発電機を駆動する仕事をする。
高圧(主)タービン11で仕事をした蒸気は、
1次再熱器5に入つて再熱される。この蒸気は2
次再熱器7で更に再熱され、再熱蒸気管17およ
びインターセプト弁10を経由して中・低圧ター
ビン12へと送られ、そこでさらに仕事をする。
しかし、発電プラントの起動時には、主蒸気温
度が規定値まで上昇しておらず、またタービンお
よび発電機14は回転していない。
一方、このとき、2次過熱器8から主蒸気管1
6に送られた主蒸気は、高圧(主)タービンバイ
パス弁15を経て減温器18へバイパスされ、そ
こでスプレー弁19によつて規定値まで冷却され
た後に、復水器13および給水ポンプを介して節
炭器4に戻される。
第3図は、第1図の火力発電プラントの起動時
における従来の主蒸気温度制御装置のブロツク図
である。なお、このような従来技術は、例えば、
社団法人火力発電技術協会から昭和49年2月25日
に発行された「火力発電必携」第202〜203頁など
に開示されている。
図において、27は主蒸気温度と高圧(主)タ
ービンバイパス弁15の開度との関係を決定する
関数発生器、28は高信号選択器、29は比例積
分器、30は変化率制限器、31は加算器、32
は切替器、33は主蒸気温度目標値を決定する信
号発生器である。
また、33Aは減温器18の出口における蒸気
温度目標値を決定する信号発生器、34は比例演
算器、35は、主蒸気温度がある予定値以下では
主蒸気温度検出器の信号が選択され、また前記予
定値以上では信号発生器33の信号が選択される
ように切替器32を制御するモニタリレーであ
る。
プラントの起動当初−すなわち、第2図に示す
点火時点t0においては、主蒸気温度は前記予定値
以下であるので、第3図の切替器32は、モニタ
リレー35の制御の下に、主蒸気温度(主蒸気温
度検出器20の出力)それ自体を選択し、変化率
制限器30を経て加算器31に供給する。
したがつて、加算器31および比例積分器29
の出力はいずれも0となる。その結果、高信号選
択器28は、関数発生器27の出力を選択し、こ
れにしたがつて、高圧(主)タービンバイパス弁
15の開度が制御される。
すなわち、第2図の曲線DおよびFに示すよう
に、主蒸気温度および高圧タービンバイパス流量
は、ボイラの点火時点t0から、時間の経過と共に
徐々に上昇する。
一方、スプレー弁19の開度は、減温器18の
出口における蒸気温度(減温器出口蒸気温度検出
器20Aの出力値)が、信号発生器33Aで設定
された目標温度に保持されるように、比例演算器
34によつて制御される。
時刻t1において、主蒸気温度が前記予定値T0に
達すると、モニタリレー35が切替器32を作動
させ、信号発生器33の信号を選択させる。信号
発生器33の信号を、第2図に、曲線D0で示
す。前記信号は、変化率制限器30でその変化率
を制限され、例えば、第2図の直線D1のような
主蒸気温度目標値に変換される。
これにより、加算器31および比例積分器29
が出力を生じ、その出力が高信号選択器28によ
つて選択されるようになり、直線D1を目標値と
した高圧(主)タービンバイパス弁15の開度制
御が実行される。
主蒸気温度(曲線D)が規定値以上になると、
時刻t2において、主さい止弁9が開かれ、高圧
(主)タービン11への通汽が開始される。これ
により、第2図の曲線Aで示すように、タービン
および発電機14の回転数が上昇し始める。
高圧(主)タービン11で仕事をした蒸気は、
前述のように、1次再熱器5および2次再熱器7
で再熱され、再熱蒸気管17およびインターセプ
ト弁10を介して中・低圧タービン12に供給さ
れる。前記再熱蒸気の流量も、第2図の曲線Gで
示すように、徐々に増加する。
以上の説明から明らかなように、第1図の貫流
ボイラやドラムボイラでは、タービンバイパスシ
ステムがないため、プラント起動時−すなわち、
(タービン通汽前)には、1次および2次再熱器
5,7に蒸気が流れない。このため、再熱器過熱
保護の観点から、ボイラに供給される燃料量が制
約され、ユニツト起動時間の短縮が困難であると
いう欠点があつた。
また、再熱器5,7の管寄せ部は炉外に取付け
られているため、タービン通汽前には、冷却して
いる場合が多く、タービン通汽時に、再熱蒸気温
度が、第2図の曲線Eに示す如く、一時的に低下
し、中・低圧タービン12のメタル温度より大幅
に低くなる。
このために、タービンの熱応力が拡大され、こ
の面からもユニツト起動時間が短縮できないとい
う欠点があつた。
なお、第2図において、曲線Bはボイラに供給
される燃料流量をあらわし、曲線Cは発電機14
の負荷の変化をあらわしている。またt3は負荷併
入のタイミングである。
本発明の目的は、発電プラントの起動時におけ
る従来の欠点を改善し、再熱蒸気温度の一時的降
下を防止し、これによつてタービンに加わる熱応
力を最小限に抑え、起動時間を短縮できる発電プ
ラント起動時の蒸気温度制御装置を提供すること
にある。
前記の目的を達成するために、本発明において
は、中・低圧タービンバイパス弁、中・低圧ター
ビン排汽蒸気止め弁、再熱蒸気ウオーミング弁な
どを、従来装置に追加装備し、プラント起動時に
は、過熱器および主蒸気管のみならず、再熱器お
よび再熱蒸気管にも蒸気を通し、主蒸気および再
熱蒸気の温度を、それぞれ設定値に保持するよう
に構成している。
以下に、図面を参照して本発明の一実施例を詳
細に説明する。
第4図は、本発明を適用した火力発電プラント
の貫流ボイラ装置の概略図、第5図は第4図のプ
ラントの起動特性を示す第2図と同様の図、第6
図は本発明の一実施例の制御ブロツク図である。
第4図において、第1図と同一の符号は同一ま
たは同等部分をあらわしている。
また、同図において、22は中・低圧タービン
バイパス弁、18Aは前記バイパス弁22を通過
した中・低圧タービンバイパス蒸気の温度を下げ
るための減温器、21Aは減温器18Aの出口蒸
気温度検出器、23は中・低圧タービンバイパス
蒸気スプレー弁、24Aは高圧タービン排汽蒸気
止め弁、25は再熱器フオーミング弁、26は高
圧タービンバイパス復水器通汽弁である。
プラントの起動時−タービンへの通汽開始前に
は、主さい止弁9、インターセプト弁10、高圧
タービン排汽蒸気止め弁24A、および高圧ター
ビンバイパス復水器通汽弁26は全閉され、一
方、再熱器ウオーミング弁25および中・低圧タ
ービンバイパス弁22は全開される。
また、高圧(主)タービンバイパス弁15スプ
レー弁19および中・低圧タービンバイパス蒸気
スプレー弁23は、後述するようにして、その開
度が制御される。
時刻t0において、第5図の曲線Bのように燃料
供給が開始され、バーナ2が点火されると、2次
過熱器8で発生した蒸気は、つぎのような経路で
過熱器、再熱器、主蒸気管および再熱蒸気管を復
環する。
2次過熱器8→主蒸気管16→高圧(主)ター
ビンバイパス弁15→減温器18→再熱器ウオー
ミング弁25→1次再熱器5→2次再熱器7→再
熱蒸気管17→中・低圧タービンバイパス弁22
→減温器18A→復水器13→節炭器→火炉水冷
壁1A→1次過熱器6→2次過熱器8
その際、第6図に関して後述するように、主蒸
気温度は、高圧(主)タービンバイパス弁15の
開度により調整され、この弁15が開かれるほど
主蒸気温度は低下する。また、再熱蒸気温度は、
スプレー弁19の開度調整によつて制御され、ス
プレー弁19が開かれるほど再熱蒸気温度は低下
する。
さらに、復水器13に入る蒸気の温度は、中・
低圧タービンバイパス蒸気スプレー弁23の開度
を調整することによつて制御され、スプレー弁2
3の開度が大きいほど、復水器13に戻される蒸
気温度は低下する。
つぎに、第6図を参照して、起動時における主
蒸気温度および再熱蒸気温度の制御について説明
する。同図において、第3図と同一の符号および
添字Bを付加した符号は、それぞれ同一または同
等部分をあらわしている。
高圧(主)タービンバイパス弁15の開度調整
による主蒸気温度の制御は、第3図の場合とほぼ
同様である。
第3図の場合と異なる点は、その目標温度設定
が、信号発生器33によつてではなくて、制御計
算機(図示せず)において、タービンの内・外壁
温度差の許容値に基づいて、タービン熱応力が最
適になるように決定された設定値を記憶するアナ
ログメモリ36Aによつて与えられる点だけであ
る。
なお、図示しない制御計算機は、タービンの
内・外壁温度差に基づいて、主蒸気温度および再
熱蒸気温度の設定値を演算し、アナログメモリ3
6A,36Bにセツトする働きをする。
この結果、従来例と同様に、主蒸気温度検出器
20の検出出力−すなわち、主蒸気温度が設定値
に合致するように、高圧(主)タービンバイパス
弁15の開度が制御される。そして、主蒸気温度
は、第5図の曲線Dで示すように徐々に上昇す
る。
一方、スプレー弁19の開度調整による再熱蒸
気温度の制御は、つぎのようにして行なわれる。
プラントの起動当初には、再熱蒸気温度は予定
値以下であるので、切替器32Bは、モニタリレ
ー35Bの制御の下に、再熱蒸気温度(再熱蒸気
温度検出器21の出力)それ自体を選択し、変化
率制限器30Bを経て加算器31Bに供給する。
それ故に、加算器31Bおよび比例積分器29
Bの出力はいずれも0になる。なお、このとき、
切替器37Bは接地側へ切替えられている。した
がつて、スプレー弁19の開度は、主蒸気温度検
出器20の出力を入力とする関数発生器27Bの
先行制御信号のみによつて制御される。
このようにして、再熱蒸気温度は、第5図の曲
線Eで示したように、時間の経過と共に徐々に上
昇する。
やがて、再熱蒸気温度が予定値に達すると、モ
ニタリレー35Bが切替器32Bおよび37Bを
作動させ、アナログメモリ36Bの信号を選択さ
せる。36Bは、制御計算機よりの設定値(第5
図の曲線E0)を記憶するアナログメモリであ
り、前記設定値は、変化率制限器30Bでその変
化率を制限され、例えば第5図の曲線E1で示す
ような再熱蒸気温度目標値に変換される。
前述のように再熱蒸気温度が予定値に達したと
き、切替器37Bも比例積分器29B側へ切替え
られる。したがつて、スプレー弁19は、再熱蒸
気温度検出器21の出力と再熱蒸気温度設定値と
の偏差を比例積分して得られる信号、および主蒸
気温度検出器20の出力に基づく先行制御信号に
よつて制御されるようになる。
このときの高圧タービンバイパス流量、高圧タ
ービンバイパススプレー流量、および中・低圧タ
ービンバイパス流量は、第5図に、それぞれ曲線
F,I,Hで示したように増大する。また、この
ような制御を行なつた場合の、再熱蒸気温度の上
昇状態の1例を、第5図に曲線Eで示す。
一方、中・低圧タービンバイパス蒸気スプレー
弁23の開度は、減温器18Aの出口における蒸
気温度(減温器出口蒸気温度検出器21Aの出力
値)が、信号発生器33Aで設定された目標温度
に保持されるように、比例演算器34によつて制
御される。
主蒸気温度が、時刻t2において、規定値まで上
昇すると、主さい止弁9、インターセプト弁1
0、および高圧タービン排汽蒸気止め弁24Aが
開かれ、一方、中・低圧タービンバイパス弁2
2、中・低圧タービンバイパス蒸気スプレー弁2
3、高圧(主)タービンバイパス弁15、スプレ
ー弁19および高圧(主)タービンバイパス復水
器通汽弁26が閉じられる。
これにより、主蒸気は高圧(主)タービン11
に通汽され、これを駆動して発電機14を回転さ
せる。
高圧(主)タービン11を出た蒸気は、高圧タ
ービン排汽蒸気止め弁24Aおよび再熱器ウオー
ミング弁25を経て1次再熱器5、2次再熱器7
に戻され、再熱される。2次再熱器7を出た再熱
蒸気は、再熱蒸気管17およびインターセプト弁
10を介して中・低圧タービン12に供給され
る。再熱蒸気流量の増加状態の一例を、第5図に
曲線Gで示す。
その後、タービン11,12および発電機14
の回転数は、第5図の曲線Aのように上昇する。
前記回転数が規定値に達すると、時刻t3において
負荷併入が行なわれる。これにより、発電機14
の負荷は曲線Cのように増加し、これに伴なつ
て、供給燃料量も曲線Bのように増加する。
なお、第6図の再熱蒸気制御系において、関数
発生器27Bは省略し、先行制御なしとすること
もできる。
また、前述の説明から明らかなように、第4図
中の高圧(主)タービンバイパス弁15、スプレ
ー弁(再熱器入口蒸気温度調節用)19および
中・低圧タービンバイパス弁22は、プラント起
動時の蒸気のウオーミングを目的とするものであ
る。したがつて、これらの容量は、プラント定格
出力の1/10程度の小期模とすることができる。
さらに、中・低圧タービン排汽蒸気止め弁2
4、再熱器ウオーミング弁25および高圧タービ
ンバイパス復水器通汽弁26などは、プラントの
安全性確保のために設けられたものである。
以上の説明から分るように、本発明によれば、
タービン通汽前から再熱器および再熱蒸気管に蒸
気を流すので、従来のようにタービン通汽時に再
熱蒸気温度が低下するという不都合がなくなる。
しかも、主蒸気温度および再熱蒸気温度の起動
時における設定(目標)値が、タービンの内、外
壁温度差の許容値に基づいて、その関数として決
定されると共に、主蒸気温度が規定値まで上昇す
るのと同じ時期に、再熱蒸気温度も所定値まで上
げることができるので、タービンの熱応力が許容
値以内に抑えられた状態で、しかも起動時間を最
短にまで短縮できるようになる。
さらに、本発明の制御装置は、ユニツト起動に
適合したシステムであるため、プラントシステム
規模も最小にでき、制御性はもち論、建設コスト
も大幅に低減できる。
The present invention relates to a steam temperature control device at the time of startup of a power plant, and in particular, a high pressure (main) turbine bypass valve, a spray valve for regulating the steam temperature at the inlet of a reheater, and a medium/low pressure turbine bypass valve are attached. The present invention relates to a steam temperature control device at the time of startup of a power generation plant that can suitably control steam conditions passing through a turbine at the time of startup. First, with reference to FIG. 1, a schematic configuration of a conventional boiler (once-through boiler) in a thermal power plant will be described. In the figure, 1 is the boiler body, 1A is the furnace water wall, 2 is the burner, 3 is the gas recirculation fan, 4 is the economizer, 5 is the primary reheater, 7 is the secondary reheater, 8 is the 2
A secondary superheater, 9 a main stop valve provided in the main steam pipe 16, 10 an intercept valve provided in the reheat steam pipe 17, 11 a high pressure (main) turbine, and 12 a medium/low pressure turbine. Further, 13 is a condenser, and 14 is the turbine 1.
1, a generator driven by 1 and 12; 15, a high-pressure (main) turbine bypass valve for releasing steam in the main steam pipe 16 to the condenser 13; 18, a desuperheater;
9 is a spray valve, 20 is a main steam temperature detector, 20
A is a desuperheater outlet steam temperature detector, and 21 is a reheat temperature detector. The fuel supplied to the burner 2 is mixed with air and combusted within the boiler main body 1 to become combustion gas.
Combustion gas flows through the furnace water cooling wall 1A, secondary superheater 8, 2
The gas passes through the flue while sequentially exchanging heat in the reheater 7, etc., and is discharged from the chimney. At this time, a part of the combustion gas is returned into the boiler main body 1 by the gas recirculation fan 3 and used to control the reheat steam temperature. On the other hand, the water sent from the water supply pump (not shown) to the energy saver 4 recovers its heat there, then reaches the water cooling wall 1A of the furnace, evaporates on the way up the water cooling wall, and evaporates in the primary superheater 6. enters and becomes overheated. This steam further reaches a superheater spray (not shown). After the temperature of the steam is reduced by the superheater spray so that the main steam temperature reaches a specified value, the steam is further heated for 2 seconds.
Next, it enters the superheater 8, is superheated, and passes through the main steam pipe 16 and main stop valve 9 to the high pressure (main) turbine 1.
1, where it does the job of driving a generator. The steam that has done work in the high pressure (main) turbine 11 is
It enters the primary reheater 5 and is reheated. This steam is 2
It is further reheated in the next reheater 7 and sent to the medium/low pressure turbine 12 via the reheat steam pipe 17 and the intercept valve 10, where it performs further work. However, when the power plant is started up, the main steam temperature has not risen to the specified value, and the turbine and generator 14 are not rotating. On the other hand, at this time, from the secondary superheater 8 to the main steam pipe 1
6 is bypassed to the attemperator 18 via the high-pressure (main) turbine bypass valve 15, where it is cooled to a specified value by the spray valve 19, and then the condenser 13 and feed water pump are The energy is returned to the economizer 4 via the energy saving device 4. FIG. 3 is a block diagram of a conventional main steam temperature control device during startup of the thermal power plant of FIG. 1. Note that such conventional technology includes, for example,
It is disclosed in pages 202-203 of ``Thermal Power Generation Essentials'' published by Thermal Power Generation Technology Association on February 25, 1971. In the figure, 27 is a function generator that determines the relationship between the main steam temperature and the opening degree of the high pressure (main) turbine bypass valve 15, 28 is a high signal selector, 29 is a proportional integrator, 30 is a rate of change limiter, 31 is an adder, 32
33 is a signal generator that determines the main steam temperature target value. Further, 33A is a signal generator that determines the steam temperature target value at the outlet of the desuperheater 18, 34 is a proportional calculator, and 35 is a signal generator that selects a main steam temperature detector signal when the main steam temperature is below a certain predetermined value. , and is a monitor relay that controls the switch 32 so that the signal from the signal generator 33 is selected when the value exceeds the predetermined value. At the beginning of the start-up of the plant, that is, at the ignition time t 0 shown in FIG. The steam temperature (output of the main steam temperature detector 20) itself is selected and fed to an adder 31 via a rate of change limiter 30. Therefore, adder 31 and proportional integrator 29
The outputs of both will be 0. As a result, the high signal selector 28 selects the output of the function generator 27, and the opening degree of the high pressure (main) turbine bypass valve 15 is controlled accordingly. That is, as shown by curves D and F in FIG. 2, the main steam temperature and the high pressure turbine bypass flow rate gradually increase over time from the boiler ignition time t0 . On the other hand, the opening degree of the spray valve 19 is set such that the steam temperature at the outlet of the attemperator 18 (the output value of the attemperator outlet steam temperature detector 20A) is maintained at the target temperature set by the signal generator 33A. This is controlled by a proportional calculator 34. At time t 1 , when the main steam temperature reaches the predetermined value T 0 , the monitor relay 35 activates the switch 32 to select the signal from the signal generator 33 . The signal of the signal generator 33 is shown in FIG. 2 by a curve D0. The rate of change of the signal is limited by a rate of change limiter 30, and converted into a main steam temperature target value, for example, as indicated by the straight line D1 in FIG. As a result, the adder 31 and the proportional integrator 29
produces an output, the output is selected by the high signal selector 28, and the opening control of the high pressure (main) turbine bypass valve 15 is executed with the straight line D1 as the target value. When the main steam temperature (curve D) exceeds the specified value,
At time t 2 , the main stop valve 9 is opened and the flow of steam to the high pressure (main) turbine 11 is started. As a result, the rotation speeds of the turbine and generator 14 begin to increase, as shown by curve A in FIG. The steam that has done work in the high pressure (main) turbine 11 is
As mentioned above, the primary reheater 5 and the secondary reheater 7
The steam is reheated and supplied to the medium/low pressure turbine 12 via the reheat steam pipe 17 and the intercept valve 10. The flow rate of the reheated steam also gradually increases, as shown by curve G in FIG. As is clear from the above explanation, the once-through boiler and drum boiler shown in Fig. 1 do not have a turbine bypass system, so at the time of plant startup - that is,
(Before passing through the turbine), steam does not flow to the primary and secondary reheaters 5 and 7. Therefore, from the viewpoint of protecting the reheater from overheating, the amount of fuel supplied to the boiler is restricted, making it difficult to shorten the unit start-up time. In addition, since the headers of the reheaters 5 and 7 are installed outside the furnace, they are often cooled before steaming through the turbine, and when steaming through the turbine, the reheated steam temperature is As shown by curve E in the figure, the temperature decreases temporarily and becomes much lower than the metal temperature of the medium/low pressure turbine 12. This increases the thermal stress of the turbine, and from this point of view as well, there is a drawback that the unit start-up time cannot be shortened. In addition, in FIG. 2, curve B represents the fuel flow rate supplied to the boiler, and curve C represents the fuel flow rate supplied to the generator 14.
represents the change in load. Further, t 3 is the timing of load addition. The purpose of the present invention is to improve the conventional drawbacks during power plant start-up, to prevent a temporary drop in reheat steam temperature, thereby minimizing the thermal stress on the turbine and shortening the start-up time. An object of the present invention is to provide a steam temperature control device that can control the temperature of steam at the time of startup of a power generation plant. In order to achieve the above object, in the present invention, a medium/low pressure turbine bypass valve, a medium/low pressure turbine exhaust steam stop valve, a reheat steam warming valve, etc. are additionally equipped to the conventional equipment, and when the plant is started up, Steam is passed not only through the superheater and the main steam pipe, but also through the reheater and the reheat steam pipe, so that the temperatures of the main steam and the reheat steam are maintained at set values, respectively. An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 4 is a schematic diagram of a once-through boiler device for a thermal power plant to which the present invention is applied, FIG. 5 is a diagram similar to FIG. 2 showing the startup characteristics of the plant in FIG. 4, and FIG.
The figure is a control block diagram of one embodiment of the present invention. In FIG. 4, the same reference numerals as in FIG. 1 represent the same or equivalent parts. Further, in the same figure, 22 is a medium/low pressure turbine bypass valve, 18A is a desuperheater for lowering the temperature of the medium/low pressure turbine bypass steam that has passed through the bypass valve 22, and 21A is the outlet steam temperature of the desuperheater 18A. Detector 23 is a medium/low pressure turbine bypass steam spray valve, 24A is a high pressure turbine exhaust steam stop valve, 25 is a reheater forming valve, and 26 is a high pressure turbine bypass condenser steam valve. At the time of plant startup - before the start of steam flow to the turbine, the main stop valve 9, intercept valve 10, high pressure turbine exhaust steam stop valve 24A, and high pressure turbine bypass condenser steam flow valve 26 are fully closed. On the other hand, the reheater warming valve 25 and the medium/low pressure turbine bypass valve 22 are fully opened. Further, the opening degrees of the high pressure (main) turbine bypass valve 15 spray valve 19 and the medium/low pressure turbine bypass steam spray valve 23 are controlled as described later. At time t 0 , when fuel supply is started and burner 2 is ignited as shown by curve B in FIG. The main steam pipe and reheat steam pipe will be reinstated. Secondary superheater 8 → main steam pipe 16 → high pressure (main) turbine bypass valve 15 → desuperheater 18 → reheater warming valve 25 → primary reheater 5 → secondary reheater 7 → reheat steam pipe 17 → Medium/low pressure turbine bypass valve 22
→ Desuperheater 18A → Condenser 13 → Economizer → Furnace water wall 1A → Primary superheater 6 → Secondary superheater 8 At that time, as will be described later with reference to FIG. The main steam temperature is adjusted by the opening degree of the main turbine bypass valve 15, and the more this valve 15 is opened, the lower the main steam temperature is. In addition, the reheat steam temperature is
It is controlled by adjusting the opening degree of the spray valve 19, and the more the spray valve 19 is opened, the lower the reheat steam temperature becomes. Furthermore, the temperature of the steam entering the condenser 13 is
Controlled by adjusting the opening degree of the low pressure turbine bypass steam spray valve 23, the spray valve 2
3 is larger, the temperature of the steam returned to the condenser 13 decreases. Next, control of the main steam temperature and reheat steam temperature at the time of startup will be explained with reference to FIG. 6. In this figure, the same reference numerals as in FIG. 3 and the reference numerals with the suffix B added represent the same or equivalent parts, respectively. Control of the main steam temperature by adjusting the opening degree of the high pressure (main) turbine bypass valve 15 is almost the same as in the case of FIG. 3. The difference from the case in FIG. 3 is that the target temperature is set not by the signal generator 33 but by a control computer (not shown) based on the allowable value of the temperature difference between the inner and outer walls of the turbine. The only point is provided by an analog memory 36A that stores the settings determined to optimize the turbine thermal stress. Note that a control computer (not shown) calculates set values for the main steam temperature and reheat steam temperature based on the temperature difference between the inner and outer walls of the turbine, and stores the values in the analog memory 3.
It functions to set 6A and 36B. As a result, as in the conventional example, the opening degree of the high-pressure (main) turbine bypass valve 15 is controlled so that the detected output of the main steam temperature detector 20 - that is, the main steam temperature - matches the set value. Then, the main steam temperature gradually increases as shown by curve D in FIG. On the other hand, the reheated steam temperature is controlled by adjusting the opening degree of the spray valve 19 as follows. At the beginning of the plant startup, the reheat steam temperature is below the scheduled value, so the switch 32B switches the reheat steam temperature (output of the reheat steam temperature detector 21) itself under the control of the monitor relay 35B. is selected and supplied to the adder 31B via the rate of change limiter 30B. Therefore, adder 31B and proportional integrator 29
Both outputs of B become 0. Furthermore, at this time,
The switch 37B is switched to the ground side. Therefore, the opening degree of the spray valve 19 is controlled only by the advance control signal of the function generator 27B which receives the output of the main steam temperature detector 20 as input. In this way, the reheat steam temperature gradually increases over time, as shown by curve E in FIG. Eventually, when the reheat steam temperature reaches a predetermined value, monitor relay 35B operates switchers 32B and 37B to select the signal in analog memory 36B. 36B is the setting value from the control computer (fifth
The set value is converted into a reheat steam temperature target value as shown by the curve E1 in FIG. be done. As described above, when the reheat steam temperature reaches the predetermined value, the switch 37B is also switched to the proportional integrator 29B side. Therefore, the spray valve 19 performs advance control based on a signal obtained by proportional integration of the deviation between the output of the reheat steam temperature detector 21 and the reheat steam temperature set value, and the output of the main steam temperature detector 20. Becomes controlled by a signal. At this time, the high pressure turbine bypass flow rate, the high pressure turbine bypass spray flow rate, and the intermediate and low pressure turbine bypass flow rates increase as shown by curves F, I, and H, respectively, in FIG. 5. Further, an example of the state in which the temperature of reheated steam increases when such control is performed is shown by curve E in FIG. 5. On the other hand, the opening degree of the medium/low pressure turbine bypass steam spray valve 23 is determined so that the steam temperature at the outlet of the attemperator 18A (the output value of the attemperator outlet steam temperature detector 21A) is the target set by the signal generator 33A. It is controlled by a proportional calculator 34 so that the temperature is maintained. When the main steam temperature rises to the specified value at time t2 , the main stop valve 9 and the intercept valve 1 are activated.
0, and the high pressure turbine exhaust steam stop valve 24A are opened, while the medium/low pressure turbine bypass valve 2
2. Medium/low pressure turbine bypass steam spray valve 2
3. The high pressure (main) turbine bypass valve 15, the spray valve 19 and the high pressure (main) turbine bypass condenser flow valve 26 are closed. As a result, the main steam is transferred to the high pressure (main) turbine 11
The steam is then driven to rotate the generator 14. Steam exiting the high-pressure (main) turbine 11 passes through the high-pressure turbine exhaust steam stop valve 24A and the reheater warming valve 25, and then passes through the primary reheater 5 and the secondary reheater 7.
and reheated. The reheated steam leaving the secondary reheater 7 is supplied to the medium/low pressure turbine 12 via the reheat steam pipe 17 and the intercept valve 10 . An example of an increasing state of the reheat steam flow rate is shown by curve G in FIG. After that, the turbines 11, 12 and the generator 14
The rotational speed increases as shown by curve A in FIG.
When the rotational speed reaches the specified value, load addition is performed at time t3 . As a result, the generator 14
The load increases as shown by curve C, and the amount of fuel supplied also increases as shown by curve B. In addition, in the reheat steam control system shown in FIG. 6, the function generator 27B may be omitted and no advance control may be performed. Furthermore, as is clear from the above description, the high pressure (main) turbine bypass valve 15, spray valve (for controlling the steam temperature at the reheater inlet) 19, and medium/low pressure turbine bypass valve 22 in FIG. The purpose is to warm the steam of time. Therefore, these capacities can be set to a short-term model of about 1/10 of the rated output of the plant. In addition, medium/low pressure turbine exhaust steam stop valve 2
4. The reheater warming valve 25 and the high pressure turbine bypass condenser steam valve 26 are provided to ensure the safety of the plant. As can be seen from the above description, according to the present invention,
Since the steam is passed through the reheater and the reheat steam pipe before passing through the turbine, there is no problem that the temperature of the reheated steam decreases when the steam passes through the turbine, unlike the conventional method. Moreover, the set (target) values for the main steam temperature and reheat steam temperature at startup are determined as a function based on the allowable value of the temperature difference between the inner and outer walls of the turbine, and the main steam temperature is maintained at the specified value. At the same time as the temperature rises, the reheat steam temperature can also be raised to a predetermined value, making it possible to reduce the startup time to the shortest possible time while keeping the thermal stress in the turbine within tolerance. Furthermore, since the control device of the present invention is a system suitable for unit startup, the scale of the plant system can be minimized, and not only controllability is maintained, but construction costs can also be significantly reduced.
第1図は従来の火力発電プラントにおけるボイ
ラの概略構成図、第2図は第1図のプラントの起
動時における諸特性を示すタイムチヤート、第3
図は第1図のプラントにおける主蒸気温度制御ブ
ロツク図、第4図は本発明の一実施例を示す火力
発電プラントのボイラの概略構成図、第5図は本
発明を実施した火力発電プラントの起動時におけ
る諸特性を示すタイムチヤート、第6図は本発明
の一実施例の主蒸気温度および再熱蒸気温度制御
装置のブロツク図である。
1……ボイラ本体、1A……火炉水冷壁、3…
…ガス再循環フアン、4……節炭器、5……1次
再熱器、6……1次過熱器、7……2次再熱器、
8……2次過熱器、9……主さい止弁、10……
インターセプト弁、11……高圧(主)タービ
ン、12……中・低圧タービン、13……復水
器、14……発電機、15……高圧(主)タービ
ンバイパス弁、16……主蒸気管、17……再熱
蒸気管、18A……減温器、19……スプレー
弁、22……中・低圧タービンバイパス弁、23
……中・低圧タービンバイパス蒸気スプレー弁。
Figure 1 is a schematic configuration diagram of a boiler in a conventional thermal power plant, Figure 2 is a time chart showing various characteristics at startup of the plant in Figure 1, and Figure 3 is a time chart showing various characteristics at startup of the plant in Figure 1.
Figure 1 is a main steam temperature control block diagram in the plant shown in Figure 1, Figure 4 is a schematic configuration diagram of a boiler in a thermal power plant showing an embodiment of the present invention, and Figure 5 is a diagram of a thermal power plant implementing the present invention. FIG. 6 is a time chart showing various characteristics at startup, and is a block diagram of a main steam temperature and reheat steam temperature control device according to an embodiment of the present invention. 1...boiler body, 1A...furnace water cooling wall, 3...
... Gas recirculation fan, 4 ... Energy saver, 5 ... Primary reheater, 6 ... Primary superheater, 7 ... Secondary reheater,
8... Secondary superheater, 9... Main stop valve, 10...
Intercept valve, 11... High pressure (main) turbine, 12... Medium/low pressure turbine, 13... Condenser, 14... Generator, 15... High pressure (main) turbine bypass valve, 16... Main steam pipe , 17... Reheat steam pipe, 18A... Attemperator, 19... Spray valve, 22... Medium/low pressure turbine bypass valve, 23
...Medium/low pressure turbine bypass steam spray valve.
Claims (1)
ンに導く主蒸気管と、高圧(主)タービンの前に
設けられた主さい止弁と、高圧(主)タービンの
排出蒸気を再熱管に戻す配管と、再熱器で発生し
た再熱蒸気を中・低圧タービンに導く再熱蒸気管
と、中・低圧タービンの前に設けられたインター
セプト弁と、中・低圧タービンの排出蒸気を復水
器に導く手段と、主さい止弁の前から、高圧
(主)タービンバイパス弁を介して、主蒸気を再
熱器へバイパスさせる手段と、再熱器へバイパス
される前記蒸気の温度を制御する減温器およびス
プレー弁手段と、インターセプト弁の前から中・
低圧タービンバイパス弁を介して再熱蒸気を復水
器へバイパスさせる手段とを具備した発電プラン
トの起動時の蒸気温度制御装置であつて、 過熱器出口から主さい止弁に至る主蒸気管内の
主蒸気温度を検出する主蒸気温度検出器と、再熱
器出口からインターセプト弁に至る再熱蒸気管内
の再熱蒸気温度を検出する再熱蒸気温度検出器
と、主蒸気温度および再熱蒸気温度の設定値をタ
ービンの内・外壁温度差の許容値に基づいて決定
する手段とを具備し、 発電プラントの起動時には、主さい止弁および
インターセプト弁を全閉する一方、高圧タービン
バイパス弁および中・低圧タービンバイパス弁を
開き、 前記高圧タービンバイパス弁の開度を、主蒸気
温度およびその設定値の偏差に基づいて制御する
ことによつて、主蒸気温度を前記設定値に保持
し、 また前記スプレー弁の開度を、再熱蒸気温度お
よびその設定値の偏差に基づいて制御することに
よつて、再熱蒸気温度を前記設定値に保持するこ
とを特徴とする発電プラントの起動時の蒸気温度
制御装置。 2 過熱器で発生した主蒸気を高圧(主)タービ
ンに導く主蒸気管と、高圧(主)タービンの前に
設けられた主さい止弁と、高圧(主)タービンの
排出蒸気を再熱管に戻す配管と、再熱管で発生し
た再熱蒸気を中・低圧タービンに導く再熱蒸気管
と、中・低圧タービンの前に設けられたインター
セプト弁と、中・低圧タービンの排出蒸気を復水
器に導く手段と、主さい止弁の前から高圧(主)
タービンバイパス弁を介して主蒸気を再熱器へバ
イパスさせる手段と、再熱器へバイパスされる前
記蒸気の温度を制御する減温器およびスプレー弁
手段と、インターセプト弁の前から中・低圧ター
ビンバイパス弁を介して再熱蒸気を復水器へバイ
パスさせる手段とを具備した発電プラントの起動
時の蒸気温度制御装置であつて、過熱器出口から
主さい止弁に至る主蒸気管内の主蒸気温度を検出
する主蒸気温度検出器と、再熱器出口からインタ
ーセプト弁に至る再熱蒸気管内の再熱蒸気温度を
検出する再熱蒸気温度検出器と、主蒸気温度およ
び再熱蒸気温度の設定値を与える手段とを具備
し、 発電プラントの起動時には、主さい止弁および
インターセプト弁を全閉する一方、高圧タービン
バイパス弁および中・低圧タービンバイパス弁を
開き、 前記高圧タービンバイパス弁の開度を、主蒸気
温度およびその設定値の偏差に基づいて制御する
ことによつて、主蒸気温度を前記設定値に保持
し、 また前記スプレー弁の開度を、再熱蒸気温度お
よびその設定値の偏差に基づいて制御すると共
に、主蒸気温度に基づいて先行制御することによ
つて、再熱蒸気温度を前記設定値に保持すること
を特徴とする発電プラントの起動時の蒸気温度制
御装置。[Claims] 1. A main steam pipe that guides main steam generated in a superheater to a high-pressure (main) turbine, a main stop valve provided in front of the high-pressure (main) turbine, and a main steam pipe that leads main steam generated in a superheater to a high-pressure (main) turbine. Piping that returns exhaust steam to the reheat pipe, reheat steam pipe that guides the reheat steam generated in the reheater to the medium and low pressure turbine, an intercept valve installed in front of the medium and low pressure turbine, and the medium and low pressure turbine. means for directing the exhaust steam of the steam to the condenser, and means for bypassing the main steam to the reheater from before the main stop valve through the high pressure (main) turbine bypass valve; and means for bypassing the main steam to the reheater from before the main stop valve. an attemperator and spray valve means for controlling the temperature of the steam;
A steam temperature control device at the time of startup of a power plant, which is equipped with a means for bypassing reheated steam to a condenser via a low-pressure turbine bypass valve, and is equipped with a means for bypassing reheated steam to a condenser through a low-pressure turbine bypass valve. A main steam temperature detector that detects the main steam temperature, a reheat steam temperature detector that detects the reheat steam temperature in the reheat steam pipe from the reheater outlet to the intercept valve, and the main steam temperature and reheat steam temperature. The system is equipped with means for determining the set value of・Maintain the main steam temperature at the set value by opening the low pressure turbine bypass valve and controlling the opening degree of the high pressure turbine bypass valve based on the main steam temperature and the deviation of the set value, and Steam at startup of a power generation plant, characterized in that the reheat steam temperature is maintained at the set value by controlling the opening degree of the spray valve based on the reheat steam temperature and the deviation of the set value. Temperature control device. 2. A main steam pipe that guides the main steam generated in the superheater to the high-pressure (main) turbine, a main stop valve installed in front of the high-pressure (main) turbine, and a main steam pipe that directs the exhaust steam from the high-pressure (main) turbine to the reheat pipe. A return piping, a reheat steam pipe that guides the reheat steam generated in the reheat pipe to the medium/low pressure turbine, an intercept valve installed in front of the medium/low pressure turbine, and a condenser for the exhaust steam of the medium/low pressure turbine. high pressure (main) from before the main stop valve.
means for bypassing main steam to a reheater via a turbine bypass valve; attemperator and spray valve means for controlling the temperature of said steam bypassed to the reheater; and a medium/low pressure turbine from before the intercept valve. A steam temperature control device at startup of a power generation plant, which is equipped with a means for bypassing reheated steam to a condenser via a bypass valve, and is equipped with a means for bypassing reheated steam to a condenser. A main steam temperature detector that detects the temperature, a reheat steam temperature detector that detects the reheat steam temperature in the reheat steam pipe from the reheater outlet to the intercept valve, and settings for the main steam temperature and reheat steam temperature. When starting up the power plant, the main stop valve and the intercept valve are fully closed, while the high pressure turbine bypass valve and the medium and low pressure turbine bypass valves are opened, and the opening degree of the high pressure turbine bypass valve is is controlled based on the main steam temperature and its set value to maintain the main steam temperature at the set value, and the opening degree of the spray valve is controlled based on the reheat steam temperature and its set value. A steam temperature control device at the time of startup of a power generation plant, characterized in that the reheat steam temperature is maintained at the set value by controlling based on the deviation and performing advance control based on the main steam temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8242582A JPS58200008A (en) | 1982-05-18 | 1982-05-18 | Steam temperature control device during power plant startup |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8242582A JPS58200008A (en) | 1982-05-18 | 1982-05-18 | Steam temperature control device during power plant startup |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58200008A JPS58200008A (en) | 1983-11-21 |
JPS6242123B2 true JPS6242123B2 (en) | 1987-09-07 |
Family
ID=13774227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8242582A Granted JPS58200008A (en) | 1982-05-18 | 1982-05-18 | Steam temperature control device during power plant startup |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58200008A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6193208A (en) * | 1984-10-15 | 1986-05-12 | Hitachi Ltd | Turbine bypass system |
JP5409674B2 (en) * | 2011-03-08 | 2014-02-05 | 中国電力株式会社 | Method for forming steam and drain discharge path during drying operation of reheater |
JP7225867B2 (en) * | 2019-02-06 | 2023-02-21 | 三浦工業株式会社 | steam system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS555435A (en) * | 1978-06-26 | 1980-01-16 | Hitachi Ltd | Turbine control method |
JPS56110502A (en) * | 1980-02-06 | 1981-09-01 | Hitachi Ltd | Thermoelectric power plant and controlling method therefor |
US4372125A (en) * | 1980-12-22 | 1983-02-08 | General Electric Company | Turbine bypass desuperheater control system |
-
1982
- 1982-05-18 JP JP8242582A patent/JPS58200008A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58200008A (en) | 1983-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5042246A (en) | Control system for single shaft combined cycle gas and steam turbine unit | |
US4578944A (en) | Heat recovery steam generator outlet temperature control system for a combined cycle power plant | |
JPS6242130B2 (en) | ||
JP2012508861A (en) | Operation method of exhaust heat recovery boiler | |
US3358450A (en) | Method and apparatus for steam turbine startup | |
JPS6218724B2 (en) | ||
JP2692973B2 (en) | Steam cycle startup method for combined cycle plant | |
JPS6242123B2 (en) | ||
JPH08312902A (en) | Starting method and device for steam prime plant having a plurality of boilers | |
JP2918743B2 (en) | Steam cycle controller | |
JP3559573B2 (en) | Startup method of single-shaft combined cycle power plant | |
JP3641518B2 (en) | Steam temperature control method and apparatus for combined cycle plant | |
JP2708406B2 (en) | Startup control method for thermal power plant | |
JP2657411B2 (en) | Combined cycle power plant and operating method thereof | |
JP2019173697A (en) | Combined cycle power generation plant and operation method of the same | |
US3361117A (en) | Start-up system for forced flow vapor generator and method of operating the vapor generator | |
JP2007285220A (en) | Combined cycle power generation facility | |
JP7150670B2 (en) | BOILER, POWER PLANT INCLUDING THE SAME, AND BOILER CONTROL METHOD | |
JP2511400B2 (en) | Steam temperature control method for once-through boiler | |
SU1451452A1 (en) | Method and apparatus for regulating steam reheat temperature | |
JPH01212802A (en) | Steam temperature control device for boiler | |
JPH02130202A (en) | Combined plant | |
JPS6235002B2 (en) | ||
JP2025010976A (en) | PLANT CONTROL DEVICE, PLANT CONTROL METHOD, AND POWER GENERATION PLANT | |
JPH0680361B2 (en) | Fuel flow control method for thermal power plant |