JPS6242046B2 - - Google Patents
Info
- Publication number
- JPS6242046B2 JPS6242046B2 JP61029995A JP2999586A JPS6242046B2 JP S6242046 B2 JPS6242046 B2 JP S6242046B2 JP 61029995 A JP61029995 A JP 61029995A JP 2999586 A JP2999586 A JP 2999586A JP S6242046 B2 JPS6242046 B2 JP S6242046B2
- Authority
- JP
- Japan
- Prior art keywords
- stretching
- temperature
- hollow fibers
- hollow fiber
- ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/66—Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
- B01D71/68—Polysulfones; Polyethersulfones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0023—Organic membrane manufacture by inducing porosity into non porous precursor membranes
- B01D67/0025—Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
- B01D67/0027—Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/12—Specific ratios of components used
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Artificial Filaments (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Description
本発明は、ポリ(p―フエニレンスルフイド)
を主成分とする微多孔中空繊維の製造法に関する
ものであり、その目的は、耐熱性と耐薬品性にす
ぐれた微多孔中空繊維を、溶融紡糸、熱処理延伸
等の組合せで能率よく生産する方法を提供するこ
とにある。
従来から、高分子素材の使用形態として微多孔
中空繊維があり、高分子材製微多孔中空繊維は多
くの分野で使用されてきた。例えば水、廃液・溶
液の分離・精製・回収に限外過膜として、ま
た、人工腎臓等の医療器具等である。
これらはいづれも上記微多孔中空繊維を隔膜分
離膜として機能させることであるが、従来から実
際に市販されている膜の素材は、セルロース、セ
ルロースアセテート、芳香族ポリアミド、ポリア
クリロニトリル、ポリサルホン等であつた。しか
し、これらの素材はいづれも耐熱性と耐薬品性に
関して、いづれかの特性に欠点があり、ユーザー
から耐熱性、及び耐薬品性のすぐれた膜素材はな
いかとの要望が強かつた。即ち、耐熱性に関して
は、常用で80℃、短時間では98〜100℃以上の耐
熱性が欲しいが、実際にこれまでの市販の膜素材
は常用で80℃は無理である。
他方、耐薬品性に関しては、耐強酸性、耐強ア
ルカリ性、耐塩素性(300ppm以上の濃度に耐え
ること)、耐酸化剤性(有機物除去洗浄剤に耐え
ること)、耐有機溶剤性に対して、従来の市販膜
素材はいづれかの特性に弱いことが欠点であつ
た。
他方、従来の微多孔中空繊維の製造方法は、い
づれも素材とその良溶媒との溶液を、中空繊維紡
糸口金から湿式紡糸し、然る後、貧溶媒の凝固浴
中で凝固させ、洗浄脱溶媒して中空繊維にする、
いわゆる半乾式湿式、又は湿式紡糸による成形方
法であつた。この方法は、溶媒を扱うために製造
が複雑になること、また、生産速度も50m/分以
下であり、生産性が極めて低いことなどが欠点で
あつた。
本発明者らは、膜の素材として、特に耐熱性、
耐薬品性及び力学的強度のすぐれた素材の探索
と、その素材から微多孔中空繊維を製造する方法
について検討した結果、ポリ(p―フエニレンス
ルフイド)(以下PPSと略称する)を主成分とす
る原料樹脂が素材として適していることを見い出
した。PPSは結晶性高分子であり、熱可塑性を有
するので、溶融紡糸ができる。この特徴を効果的
に利用して、溶融紡糸して得た中空繊維を熱処理
して結晶を発生させ、次いで結晶延伸を円滑に行
なつて微多孔を生成させ、最後に微多孔構造を熱
固定するという方法である。この方法は、従来の
半乾式又は湿式法とは微多孔を形成させる機構が
全く別のものであり、ユニークであるといえる。
かくして、本発明者らの提案は、65重量%以上
がポリ(p―フエニレンスルフイド)からなる原
料樹脂を、ドラフト率25以上で中空繊維紡糸口金
を通して溶融紡糸して中空繊維を形成し、該中空
繊維を延伸倍率DR1=1.0〜3.3、温度T1=20〜
(Tg+30)℃(Tgはポリマーのガラス転移温度
℃)にて延伸し、次いで、緊張度DR2=0.5〜
1.5、温度T2=(Tg+20)〜(Tg+180)℃にて
熱処理した後、該中空繊維を延伸倍率DR3=1.05
〜2.8、温度T3=10〜(Tg+10)℃にて延伸し、
引続いて延伸倍率DR4=1.0〜2.5、温度T4=(Tg
+10)〜(Tg+180)℃にて延伸し、最後に、緊
張度DR5=0.7〜1.3、温度T5=(Tg+110)〜
(Tg+180)℃にて熱固定すると共に、その全工
程を通じての総延伸倍率(熱固定後の中空繊維
長/紡糸後の中空繊維長)をDRt、紡糸時のドラ
フト率をDf、断糸ドラフト率をDfnaxとして、25
Df<0.4Dfnaxの場合に0.8DRt7.0、および
0.4DfnaxDf0.97Dfnaxの場合に0.7DRt4.0
とすることにより、中空繊維に微多孔を形成させ
ることを特徴とする、微多孔中空繊維の製造法を
提供するものであり、またその一面において本発
明はその様にして製造された微多孔中空繊維、即
ち65重量%以上がポリ(p―フエニレンスルフイ
ド)からなる結晶性高分子物質が溶融押出延伸成
形された微多孔中空繊維であつて、繊維横断面積
比による中空率が8〜85%であり、その中空繊維
はその外表面から内表面へ通じる連通孔の微多孔
を多数有し、微多孔の平均孔径が0.003μm〜3
μmであり、該微多孔中空構造が熱固定されたこ
とを特徴とする微多孔中空繊維を提供するもので
もある。
ここにおいて、微多孔の平均孔径が0.003μm
より小さいかまたは3μmより大きい中空繊維も
製造可能であるが、孔径0.003μm未満の中空繊
維は、気体や液体の透過速度が著しく小さいため
実用的でなく、また3μmを超えるものは、孔の
分布密度が小さいため性能的に劣る膜となり、不
織布その他に比べて有利とは言えない。
本発明のポリ(p―フエニレンスルフイド)と
は、ポリマーの主構成単位としてp―フエニレン
スルフイドを90モル%以上に含有したポリマーを
いう。他に10モル%未満で含有できる構成単位と
しては、例えば、メタフエニレンスルフイド、3
官能フエニルスルフイド
The present invention relates to poly(p-phenylene sulfide)
The purpose is to efficiently produce microporous hollow fibers with excellent heat resistance and chemical resistance by a combination of melt spinning, heat treatment stretching, etc. Our goal is to provide the following. BACKGROUND ART Microporous hollow fibers have traditionally been used as polymeric materials, and microporous hollow fibers made from polymeric materials have been used in many fields. For example, it is used as an ultrafiltration membrane for separation, purification, and recovery of water, waste fluids, and solutions, and for medical devices such as artificial kidneys. All of these methods use the microporous hollow fibers mentioned above to function as a diaphragm separation membrane, but the membrane materials that have been actually commercially available include cellulose, cellulose acetate, aromatic polyamide, polyacrylonitrile, and polysulfone. Ta. However, all of these materials have shortcomings in one of their properties regarding heat resistance and chemical resistance, and there has been a strong demand from users for membrane materials with excellent heat resistance and chemical resistance. That is, in terms of heat resistance, it is desirable to have heat resistance of 80°C for regular use and 98 to 100°C for short periods of time, but in reality, it is impossible for conventional membrane materials on the market to resist 80°C for regular use. On the other hand, regarding chemical resistance, we have strong acid resistance, strong alkali resistance, chlorine resistance (withstands concentrations of 300 ppm or more), oxidant resistance (withstands organic substance removal cleaning agents), and organic solvent resistance. The disadvantage of conventional commercially available membrane materials is that they are weak in some characteristics. On the other hand, conventional methods for producing microporous hollow fibers involve wet spinning a solution of a material and its good solvent from a hollow fiber spinneret, then coagulating it in a coagulation bath containing a poor solvent, and washing and desorbing it. Solvent and make hollow fibers
The molding method was a so-called semi-dry wet method or wet spinning. The disadvantages of this method include that the production is complicated due to the use of solvents, and that the production speed is less than 50 m/min, resulting in extremely low productivity. The present inventors have particularly focused on heat resistance,
As a result of searching for materials with excellent chemical resistance and mechanical strength, and investigating methods for manufacturing microporous hollow fibers from these materials, we found that poly(p-phenylene sulfide) (hereinafter abbreviated as PPS) was the main material. It was discovered that the raw resin used as a component is suitable as a material. PPS is a crystalline polymer and has thermoplasticity, so it can be melt-spun. By effectively utilizing this feature, the hollow fiber obtained by melt spinning is heat-treated to generate crystals, then the crystals are smoothly stretched to generate microporous, and finally the microporous structure is heat-set. The method is to do so. This method can be said to be unique because the mechanism for forming micropores is completely different from conventional semi-dry or wet methods. Thus, the present inventors' proposal is to form hollow fibers by melt-spinning a raw material resin containing 65% by weight or more of poly(p-phenylene sulfide) through a hollow fiber spinneret at a draft rate of 25 or more. , the hollow fiber is stretched at a stretching ratio DR 1 =1.0 to 3.3 and a temperature T 1 =20 to
Stretch at (Tg+30)℃ (Tg is the glass transition temperature of the polymer in degrees Celsius), and then the tension is DR 2 = 0.5~
1.5, after heat treatment at temperature T 2 = (Tg + 20) to (Tg + 180) °C, the hollow fiber was stretched at a stretching ratio DR 3 = 1.05.
~2.8, stretched at temperature T 3 = 10 ~ (Tg + 10) °C,
Subsequently, the stretching ratio DR 4 = 1.0 to 2.5, the temperature T 4 = (Tg
+10) ~ (Tg + 180) °C, and finally, tension degree DR 5 = 0.7 ~ 1.3, temperature T 5 = (Tg + 110) ~
In addition to heat setting at (Tg + 180) °C, the total draw ratio (hollow fiber length after heat setting/hollow fiber length after spinning) during the entire process is DR t , the draft rate during spinning is Df , and the yarn breakage draft Taking the rate as Df nax , 25
0.8DR t 7.0 if Df<0.4Df nax , and
0.4Df nax Df0.97Df nax 0.7DR t 4.0
By doing so, the present invention provides a method for producing microporous hollow fibers, which is characterized by forming micropores in the hollow fibers. The fiber is a microporous hollow fiber obtained by melt-extruding and stretch-molding a crystalline polymer material of which 65% by weight or more is poly(p-phenylene sulfide), and the hollowness ratio according to the fiber cross-sectional area ratio is 8 to 8. 85%, and the hollow fiber has many micropores that communicate from the outer surface to the inner surface, and the average pore diameter of the micropores is 0.003 μm to 3.
.mu.m, and the microporous hollow fiber is characterized in that the microporous hollow structure is heat-set. Here, the average pore diameter of the micropores is 0.003 μm.
Hollow fibers smaller or larger than 3 μm can also be produced, but hollow fibers with pore diameters less than 0.003 μm are impractical due to extremely low gas and liquid permeation rates, and those with pore diameters larger than 3 μm have poor pore distribution. Due to its low density, it becomes a membrane with poor performance, and cannot be said to be advantageous compared to non-woven fabrics and others. The poly(p-phenylene sulfide) of the present invention refers to a polymer containing 90 mol% or more of p-phenylene sulfide as the main structural unit of the polymer. Other structural units that can be contained in less than 10 mol% include metaphenylene sulfide, 3
Functional phenyl sulfide
【式】、ジフエ
ニルエーテルスルフイド、ジフエニルケトンスル
フイド、ジフエニルスルホンスルフイド、ジフエ
ニルスルフイド、置換フエニルスルフイド
[Formula], diphenyl ether sulfide, diphenyl ketone sulfide, diphenyl sulfone sulfide, diphenyl sulfide, substituted phenyl sulfide
【式】(R:アルキル、フエニル、アルコ
キシ、ニトロ、ハロゲン基のいづれか)等を例示
できる。
また、本発明の微多孔形成の原理は、溶融紡出
中空繊維を結晶化させ、その結晶化物を強制的に
延伸して微多孔を形成するものであるから、意図
的にPPSに他のポリマーをブレンドした原料から
なる中空繊維を結晶化させて、微細構造的にPPS
の微結晶領域と、他のポリマーの領域から成る複
相構造を形成させ、この構造物を延伸すると、目
的とする微多孔が形成される場合がある。
PPSにブレンドできる他のポリマーの量は35%
未満である。他のポリマーが35%以上を占める
と、微多孔の形成、耐熱性、耐薬品性、力学的特
性等のいづれかに欠点が生じてPPSの特質が消え
てくる。ブレンドできる他のポリマーとしては、
ポリエチレンテレフタレート、ポリブチレンテレ
フタレート、ナイロン―6、ナイロン―66、ポリ
カーボネート、ポリオキシメチレン、ポリフエニ
レンオキシド、ポリ―4―メチルペンテン―1、
ポリプロピレン、ポリテトラフロロエチレン、ポ
リエーテルエーテルケトン等の結晶性ポリマー
や、ポリサルホン、ポリエーテルサルホン等の非
晶性ポリマーを例示できる。また、この様な原料
樹脂は、酸化防止剤、帯電防止剤、抗菌剤、滑
剤、表面活性剤等の添加剤を必要に応じて適量含
有することができる。
上記の通り規定されたPPSを主成分とするポリ
マーを中空繊維に溶融紡糸する際の紡糸口金は、
従来から知られている環状ノズル又はスリツト状
ノズルのいづれでもよいが、多数孔のノズルから
多数本の中空繊維を紡糸するにはスリツト状ノズ
ルの方が好適である。溶融紡糸する際のドラフト
率Dfは25以上でなければならない。ここでドラ
フト率とは、口金におけるポリマーの吐出速度
V0と、中空繊維の引取速度V1の関係式Df=V1/
V0である。Df<25では、後工程での微多孔構造
の発現が困難である。即ち、結晶化のための熱処
理を経た中空繊維は脆く伸度がないので、結晶延
伸が困難になる。Dfは25以上、好ましくは50以
上である。
紡糸温度(ノズル部のポリマー温度)は、可紡
性の範囲内で可及的に低温であることが望まし
く、300℃近傍が適当である。PPS100%の原料の
場合は285〜310℃の範囲が好適である。
その理由は、後述の通り、後工程でラメラを発
達させるための熱処理を行う必要があることから
も分る如く、本発明ではより高い分子配向状態に
あることが望ましいため、溶融紡糸で成形する未
延伸中空繊維の非晶配向もより高いことが望まし
いからである。
上記の如く、本発明の製造法は低温紡糸気味に
紡糸するのであるが、口金からの吐出時のポリマ
ーの溶融粘度は500〜10000ポイズ、好ましくは
3000〜5000ポイズである。かかる溶融粘度と曵糸
性を与えるために、ポリマーは一定以上の分子量
を有しなければならない。PPS100%の原料の場
合の分子量はα―クロロナフタレン溶液中、205
℃で測定した固有粘度が0.25〜0.80、好ましくは
0.30〜0.50を有する程度の高分子量である。PPS
にブレンドする他のポリマーの固有粘度は、0.30
以上であることが望ましい。
紡出した中空繊維の外径は30μm〜5mmが望ま
しい。外径や中空率は、用途目的によつて設定で
きる。但し、外径が30μm未満の中空繊維や、5
mmを越える中空繊維の成形は、中空繊維口金、紡
糸温度等を調節しても、実際上むづかしい。
上述の如く成形した未延伸中空繊維は、次に、
延伸倍率DR1=1.0〜3.3、温度T1=20〜(Tg+
30)℃にて延伸する。この工程は、次工程の熱処
理により、ラメラを十分に発達させる配向結晶化
に必要な、未延伸繊維の分子鎖の配向を向上する
ことにある。先の溶融紡糸において、ドラフト率
を次第に上昇していくと、あるドラフト率Dfnax
(たとえば後述の比較例2における450倍)で断糸
が生ずる。高ドラフト紡糸、即ち0.4DfnaxDf
0.97Dfnaxの場合には、この段階での延伸工程
(非晶延伸)を省略してもよい(DR1=1.0はこの
省略を意味する)。しかし、25Df<0.4Dfnaxの
場合には、延伸倍率1.0<DR13.3、温度T1=20
〜(Tg+30)℃にて延伸することが必要であ
る。ここで、延伸倍率とは、延伸前の原長に対す
る延伸後の長さの倍率をいう。DR1>3.3の場合
には、非晶延伸による分子鎖の配向度が上昇し過
ぎてしまい、微多孔の生成は困難になる。延伸温
度T1は20T1(Tg+30)℃、好ましくは(Tg
−20)T1(Tg+10)℃である。T1<20℃の
場合は、未延伸中空繊維が白化してボイドが激し
く発生し、次工程での熱処理によるラメラの発達
が阻害される。他方、T1>(Tg+30)℃の場合
は、流動延伸気味になり、目的とする非晶分子鎖
の配向度が上昇しない。延伸の実施態様は、一対
の回転ロール間で、供給ロールを熱ロールにし
て、ドライブロールの周速を供給ロールの周速よ
りも速くすることにより行ないうる。供給ロール
の周速は50m/分以上、通常は150m/分前後の
高速にできるので、本発明の微多孔中空繊維の生
産性は極めて高い。この点は本発明の特長の1つ
である。
次に、配向下結晶化により、ラメラを発達させ
るために、緊張度DR2=0.5〜1.5、温度T2=(Tg
+20)〜(Tg+180)℃にて熱処理する。ここで
緊張度とは、熱処理前の原長に対する、熱処理中
の熱処理装置に把持されている間の長さの倍率で
ある。従つて、DR2=0.9とは10%の収縮を施す
ことであり、DR2=1.1とは10%の伸長を施すこ
とである。緊張度は、好ましくは0.9DR21.1
である。DR2<0.5の場合は、発達したラメラの
配向がランダムになつたり、球晶が発生するの
で、次工程での結晶延伸で微多孔の形成が不可能
になる。また、DR2>1.5の場合は、ラメラが発
達しにくくなる。
熱処理温度T2は、最終的には、(Tg+110)
T2(Tg+160)℃にすることが好ましい。熱処
理の方法としては、初めに(Tg+20)℃近傍の
温度に導入して、次第に温度を上昇させて、最終
的に(Tg+110)〜(Tg+160)℃にて処理して
も、あるいは(Tg+20)〜(Tg+180)℃の範
囲内で一定温度で処理しても、又は(Tg+20)
〜(Tg+180)℃の範囲内で、数段階に分けて、
次第に昇温してもよい。T2<(Tg+20)℃の場合
は、実質的にラメラの発達はない。他方、T2>
(Tg+180)℃の場合は、ラメラがランダムにな
ることと、結晶化速度が遅くなるという欠点が生
ずる。
熱処理時間は2〜60分、好ましくは5〜30分で
ある。熱処理の実施態様としては、一対のロール
間で、供給ロールと引取ロールの周速を調整する
ことにより、緊張度を設定し、一対のロール間に
熱風、遠赤外線等の熱浴の中に挿入して処理
することが好ましい。
上記熱処理により比較的配向したラメラを発達
させた中空繊維は、次に、延伸倍率DR3=1.05〜
2.8、温度T3=10(Tg+10)℃にて、冷延伸気味
に延伸する。この延伸は結晶延伸であり、この工
程により微多孔が生成を始める。先の熱処理条件
と、本工程の延伸条件の組み合わせにより、微多
孔の孔サイズはほぼ決定される。延伸倍率とは延
伸前の原長に対する、延伸後の長さの倍率をい
う。ラメラを変形させる結晶延伸が本発明の基本
思想であるので、冷延伸気味の延伸のために、延
伸温度は、15T3(Tg−30)℃が好ましい。
これは、通常の繊維やフイルムの延伸とは異なつ
た特徴的なことである。DR3=1.05〜1.5の場合
は、生成する微多孔の平均孔径が0.003〜0.06μ
mになり、DR3=1.5〜2.0では0.06〜0.6μmにな
り、DR3=2.0〜2.8では0.6〜3μmの平均孔径に
なる。勿論、微妙な孔径の設計と調整には、全工
程の条件の微妙な調整が必要であることは当然で
ある。DR3<1.05の場合は、実質的に微多孔を形
成することはできない。DR3>2.8の場合は、中
空繊維のマクロなボイドによる構造の破壊が生じ
て微多孔の形成ができない。T3<10℃の場合
は、結晶延伸が困難になり、他方T3>(Tg+10)
℃の場合は微多孔の形成がむづかしい。
続いて、上記の延伸により微多孔の形成された
中空繊維を延伸倍率DR4=1.0〜2.5、温度T4=
(Tg+10)〜(Tg+180)℃にて熱延伸気味に延
伸する。前記の延伸倍率DR3で延伸形成された微
多孔の平均孔径が小さい場合、即ち、0.003〜
0.06μmのときは、続く本工程での延伸を省略
(即ちDR4=1.0)しても、微多孔の形成にほとん
ど支障はないが、孔径が0.06μmを越えると、本
工程の熱延伸を施すことにより、微多孔の形成
を、より円滑に行なうことができる。但し、本工
程の延伸は、余り大きな倍率ではなく、DR4=
1.0〜2.5、好ましくは1.1DR41.5である。DR4
>2.5になると、延伸率DR3による先の延伸でせ
つかく形成した微多孔が変形して消失してしま
う。好ましい延伸温度は(Tg+20)T4(Tg
+80)℃である。T4<(Tg+10)℃の場合は、微
多孔の円滑な形成に効果がほとんどなく、他方、
T4>(Tg+180)℃の場合は、微多孔が変形して
消失する。
かくして、形成した微多孔を、最後に、緊張度
DR5=0.7〜1.3、温度T5=(Tg+110)〜(Tg+
180)℃にて熱固定のための熱処理を施す。緊張
度とは、先の工程での熱処理と同様に、熱処理前
の原長に対する、熱処理中の熱処理装置の把持の
長さの倍率である。好ましくは、緊張度DR5が
0.9DR51.1、処理温度T5が(Tg+130)T5
(Tg+170)℃、時間は5秒〜5分である。本
工程の熱固定処理を施さないと、形成された微多
孔構造が経時的に変化して、孔径が次第に小さく
なり、孔形状が変化することと、耐熱寸法安定性
が悪いという問題が生ずる。熱固定を施さない場
合、例えば、150℃の空気浴に30分間放置したと
きの熱収縮率が25〜35%であるのに対し、熱固定
処理後の熱収縮率は2〜4%に大巾に低下し、且
つ孔形状及び孔径は、ほとんどもとの状態を保持
する。これ故従来の膜素材による半乾式又は湿式
紡糸による微多孔中空繊維と比較すると抜群の耐
熱性、耐熱寸法安定性を有することは明らかであ
る。
また、本発明の製造法においては、上記の延伸
および熱処理等の全工程を通じての総延伸倍率
(熱固定後の中空繊維長/紡糸後の中空繊維長)
をDRtとして、比較的低ドラフト紡糸に当る25
Df<0.4Dfnaxの場合にDRtが0.8DRt7.0、好ま
しくは1.2DRt3.5を満足するか、または比較
的高ドラフト紡糸に当る0.4DfnaxDf0.97Dfnax
の場合にDRtが0.7DRt4.0、好ましくは0.9
DRt2.0を満足しなければならない。
以上の方法により製造した微多孔中空繊維は、
その外表面から内表面に至る膜層内で、周囲から
独立の微孔はほとんどなく、大部分が外表面から
内表面へ通じている連通孔になつていることが、
繊維の断面の電子顕微鏡写真の観察から確認され
る。
本発明の微多孔中空繊維の断面を観察すると、
微多孔の孔径と微多孔の分布密度は、外表面から
内表面にかけて、ほとんど粗密がなくほぼ均質で
ある。それ故従来の半乾式ないし湿式紡糸による
中空繊維がいわゆるスキン層とコア層からなる。
粗密を有する不均質構造であるのとは対照的であ
る。本発明の中空繊維の微多孔の数は、孔径と空
孔率にもよるが繊維外表面において107〜1011/
cm程度であることが、電顕写真の統計的観察によ
り数えられる。また、本発明の製造条件の組み合
わせと選定により、得られる中空糸の平均孔径は
0.003〜3μmの範囲をとりうる。平均孔径は、
用途、目的に応じて適宜、設計できる。平均孔径
は中空繊維の外表面の走査型電子顕微鏡写真又
は、透過型電子顕微鏡によるレプリカ写真から、
100個の孔を測定して平均した。
中空繊維の微多孔が外表面から内表面に連通し
ているために、非多孔のPPS中空繊維の密度がほ
ぼ1.335〜1.360g/cm3(20℃)であるのに対し、
本発明中空繊維の見掛密度は0.13〜1.22g/cm3と
かなり低い。この場合の見掛密度は、微多孔中空
繊維の一定量を採取して重量を秤量し、20℃の大
気圧下で試料を水銀に浸漬して試料の体積を測定
し、中空率を測定して、微多孔を含めた膜の体積
を求めれば得られる。見掛密度と真密度から求め
られる空孔率(=100×見掛密度/真密度)は15
〜85%である。
本発明の中空繊維の外径は35μm〜3mmの範囲
をとりうる。外径及び内径は、光学顕微鏡又は走
査型電顕の断面写真から、20個の中空繊維の外径
及び内径を測定して平均した。中空繊維用口金と
してスリツト型ノズルを使用した場合、得られる
中空繊維の断面は完全な真円ではないが、ほぼ円
型であり、外径、内径の測定は容易である。本発
明の中空繊維は、製造条件の組合わせと選定によ
り、中空率を8〜85%の範囲にとることができ
る。中空率は、顕微鏡により統計的に測定した平
均外形pと平均内径iから、中空率=(i/
p)2×100(%)として計算した。隔膜分離に使
用して、圧力を50〜100Kg/cm2程度印加する場合
は、中空率を8〜40%、1〜5Kg/cm2程度のよう
に、低圧力の印加の場合は、中空率を70〜85%に
することができる。
中空繊維の外径と内径の間の膜厚は、用途に応
じて決定される外径及び中空率の設定から決まる
値である。中空繊維を隔膜分離に使用して、圧力
を印加する場合、中空繊維が変形破壊する圧力P
は、中空繊維の外径p、ヤング率E、膜厚t、
ポアソン比vとの間に次の関係が成立すると一般
に考えられている。
P=2Et 3/(1−v2)Dp 3
PPSの場合、v≒0.3、E≒300Kg/mm2として、
上式を用途設計に用いている。中空繊維の外径が
細い35μmの場合の膜厚は印加圧力の如何を問わ
ず実用上、最低5μm(中空率50%)が必要であ
る。他方、外径の太い3mmの場合の膜厚は150μ
m(中空率80%)が実用上必要である。
本発明の微多孔中空繊維は、特に耐熱性、耐薬
品性にすぐれている。空気中、例えば200℃に6
ケ月放置した後の引張強度保持率は50%以上であ
り、抜群の耐熱性を示す。従来の市販素材の半乾
式又は湿式紡糸による中空繊維は常用で80℃以上
は無理であつたが、本発明によりそれが可能にな
つた。また、ほとんど全ての有機薬品、アンモニ
ア水、苛性ソーダ水溶液等のアルカリ水溶液、塩
酸、50%濃度以下の硫酸、30%濃度以下の硝酸、
フツ酸等の無機薬品には、室温では全く侵されな
い。
本発明の微多孔中空繊維は、それをモジユール
に多数本組み込んで、限外過、精密過の隔膜
分離に使用できる。特に、耐熱性、耐薬品性にす
ぐれているので、自動車・家電などの電着塗装、
化成品、パルプ、染料排水からの有価物の回収と
水の再利用、メツキ、酸洗、表面処理排水からの
金属、無機塩の回収と水の再利用等の工場排水処
理、また医薬・発酵工業における蛋白質・酵素・
糖分などの分離・精製、電子工業における超純水
の製造、食品工業における濃縮・塩水除去・清澄
過等の製造プロセスの合理化、また、塗料・塗
装・染料工場での溶剤回収や、食品・石油化学・
化成品工業での有機溶剤処理等に特性を発揮でき
る。
更に、本発明の微多孔中空繊維を分離膜の支持
体として使い、ポリサルホン、芳香族ポリアミド
等の比較的耐熱性のよいポリマーの溶液中に、本
発明の中空繊維を浸漬し、取出して乾燥・溶媒除
去して、これらポリマーの0.1〜1.5μmの膜厚の
緻密なスキン層を、本発明の中空繊維の表面に形
成させた複合膜を作成すれば、逆浸透分離にも使
用できる。今後は、この様な複合膜により透過量
と排除率の向上が業界の課題になつているが、耐
熱・耐薬品性にすぐれ、高生産性からくる価格の
安価な支持膜が要望されており、本発明の微多孔
中空繊維は、かかる要望に応えられるものであ
る。
また、本発明で使用するポリマーは、PPSを主
成分とするものであるが、PPSは主鎖中の硫黄に
不対電子をもつている。これを利用して化学的に
修飾したり、錯体的に利用することができる。例
えば、酵素を微多孔中空繊維に固定化して酵素固
定膜としてバイオリアクターに使用するような、
高機能化隔膜にすることができる。また、
AsF5,SbF5,I2,H2SO4,SO3等の電子受容体
や、Li,K、ナトリウムナフタレン、N
(C4H9)・ClO4等の電子供与体を、本発明の微多
孔中空繊維にドープすると、微多孔構造による膜
面積の飛躍的向上による効果と、ベンゼン環と硫
黄が主鎖に存在することから、電気伝導度が
10-8mho/cm(25℃)以上にも向上することを利
用して、貴金属・重金属の回収、電気透析膜、電
解質水溶液、あるいは電解質と非電解質から成る
溶液から特定物質を分離する選択透過膜、極性、
非極性の混合ガス系からの特定ガスの分離、ま
た、電気抵抗や起電力の変化を利用する用途;例
えば、湿度センサー、ガスセンサー等に利用でき
る。
また、連通した微多孔の中空繊維であることか
ら、衣類として、汗を繊維外表面から吸着して中
空糸内部に移送し、中空糸内部から汗を蒸発させ
るので、短繊維に切断して編織した編地や織地は
吸汗衣料や医療用の包帯としても利用できる。特
に、耐熱性がすぐれているので、消防服や、熱作
業現場での作業服に適する。また、中空繊維であ
るので断熱性があり、且つ耐熱性がよいので、断
熱材として利用できる。更に、微多孔中空繊維で
あるのでオイルの吸着保持力が大きく、海上、水
上でのオイル流出事故の際のオイルフエンスとし
て利用できる。
以上に詳述した如く、本発明の微多孔中空繊維
は特に、耐熱性と耐薬品性がすぐれ、且つ、硫黄
原子に不対電子を有する、という特長に加え、溶
融紡糸・熱処理・延伸という生産性の高い製造法
によるので価格も安価になるので、従来の用途分
野に加え、更にこれまでになかつた新規な用途分
野を拓くものである。勿論、本発明の微多孔中空
繊維の用途は、上記の例示に制約されるものでは
ない。
以下に本発明について実施例を示すが、本発明
はこれによつて制約されるものではない。
実施例1〜16及び比較例1〜16
高化式フローテスターを使用し、口金1mmφ×
10mmL、温度305℃、せん断速度200sec-1にて測定
した溶融粘度が7500ポイズ、差動熱量計
(DSC)で測定(試料量15mg、昇温速度10℃/
分)したガラス転移温度Tgが90.7のポリ(p―
フエニレンスルフイド)(PPS)の粉末を原料と
した。このPPSを60℃、1hr、続いて150℃、3hrs
で熱風乾燥後、スクリユー直径30mmφの溶融押出
紡糸機を用いて、中空繊維用口金(4片スリツト
型口金、口金外径5mmφ、フイラメント数12)を
通し、吐出量70g/分口金温度310℃に固定して
引取速度を変えることによりドラフト率Dfを
種々変えて中空繊維を紡出した。ここで、ドラフ
ト率Dfは中空繊維の紡糸引取速度Vm(cm/分)
とポリマーの吐出線速度Vo(cm/分)との比Df
=Vm/Voである。吐出線速度Voは次の量を測定
して求めた。
Vo=Q/Sfρ、ここで
Q:ポリマー吐出量(g/分)
S:スリツト型口金の断面積(cm2)
f:フイラメント数
ρ:溶融ポリマー密度(g/cm3)
得られた中空繊維を一組のロール間で延伸倍率
DR1と供給ロール温度(T1℃)を種々変えて延伸
した。DR1は延伸前の原長に対する延伸後の長さ
の倍率をいう(延伸)。次に一組のロール間に
電熱ヒーター浴(温度T2℃)を置き、ロール間
で緊張度DR2を、ヒーター浴で温度T2を種々変え
て熱処理した。緊張度DR2は熱処理前の原長に対
する、ロールによる熱処理操作後の長さの倍率を
いう。次に、一組のロール間で延伸倍率DR3と、
供給ロール(温度T3℃)を種々変えて延伸した
(延伸)。引続いて一組のロール間で延伸倍率
DR4と、供給ロール温度(T4℃)を種々変えて延
伸した(延伸)。但し、200℃を越える温度で加
熱したいときは一組のロール間に電熱ヒーター浴
を置いてヒーター浴の温度をT4℃に設定して延
伸した。引続き最後に、一組のロール間に電熱ヒ
ーター浴(温度T5℃)を置き、ロール間で緊張
度DR5を、ヒーター浴で温度T5を種々変えて熱固
定した。
得られた中空繊維は、先に詳述した中空繊維の
断面の光学顕微鏡写真から統計的に繊維外径
(ODμm)と内径(IDμm)を求め、中空率は
(ID/OD)2×100(%)として求めた。微多孔の
平均孔径は先に詳述したように、走査型電子顕微
鏡写真から統計的に求めた。但し、平均孔径が
0.01μm以下の場合は、透過型電子顕微鏡写真
(カーボンレプリカ法)から統計的に求めた。
成形条件と、微多孔中空繊維の外径、中空率、
平均孔径を表―1に示す。比較例1はドラフト率
が低すぎて引取不能であつた。実施例1,2の如
く、比較的ドラフト率が低い場合は、非晶配向を
させるために延伸()が必要であるが、実施例
3〜16、比較例3〜16のようにドラフト率が比較
的高い場合は、延伸()を省略(DR1=1.0)
できる。比較例2はドラフト率が高く断糸が生じ
た場合である。比較例3の如く、熱処理時の弛緩
が大き過ぎると、熱処理中に球晶が発生し、次の
延伸()が不可能になる。熱処理時の温度が余
りに低い場合は、後の条件を如何に操作しても微
多孔が生成されないが(比較例4)、T2温度は微
多孔径を大きく変える(実施例6〜8)。余り熱
処理温度T2が高いと、次の延伸()が不可能
になる(比較例5)。熱処理時の緊張度が大き過
ぎると微多孔が生成しない(比較例6)。低温延
伸()を省略して、高温延伸()のみ行なつ
ても微多孔は生成しない(比較例7)。延伸
()の延伸倍率DR3は微多孔の孔径に大きく影
響する(実施例9〜12)。しかしDR3が余りに大
きいと断糸が生じて延伸不可能となる(比較例
8)。延伸()の温度T3が余りに低いか、高い
ときは延伸不可能になつたり、微多孔が生成しな
い(比較例9,10)。実施例14の如く、高温延伸
()を省略(DR4=1.0)しても微多孔中空繊維
が得られるが、延伸()を入れることは(DR4
>1.0)、大きな孔をあけるときは不可欠である。
しかし、延伸()の延伸倍率DR4を大きく入れ
ることはできない(比較例11)。延伸()の温
度T4を余り高くすると微多孔が生成しない(比
較例12)。熱固定の際、弛緩が大き過ぎたり(比
較例13)、逆に緊張が大き過ぎると(比較例14)、
微多孔が生成しない。熱固定温度T5が低く過ぎ
ると熱寸法安定性が悪い(比較例15)。逆にT5が
高過ぎると微多孔が生成しない。
実施例1〜16は、いづれも本発明の方法により
成形した微多孔中空繊維である。これらを100℃
の50%硫酸、50%苛性ソーダ水溶液、50℃のフエ
ノール、トルエン、酢酸、エチレングリコール等
の薬品に浸漬して封をし、6ケ月保存した後、取
出して水洗乾燥し、引張強力保持率(浸漬後の強
力/浸漬前の強力×100%)を測定した。いづれ
も保持率は50〜75%である。極めてすぐれた力学
的特性、耐熱性及び耐薬品性を有していた。Examples include [Formula] (R: any one of alkyl, phenyl, alkoxy, nitro, and halogen group). In addition, the principle of microporous formation in the present invention is to crystallize melt-spun hollow fibers and forcibly stretch the crystallized product to form micropores. By crystallizing hollow fibers made from a blend of raw materials, PPS has a fine structure.
When a multi-phase structure consisting of a microcrystalline region and another polymer region is formed and this structure is stretched, the desired microporous structure may be formed. The amount of other polymers that can be blended into PPS is 35%
less than If other polymers account for 35% or more, defects in microporous formation, heat resistance, chemical resistance, mechanical properties, etc. will occur, and the characteristics of PPS will disappear. Other polymers that can be blended include:
Polyethylene terephthalate, polybutylene terephthalate, nylon-6, nylon-66, polycarbonate, polyoxymethylene, polyphenylene oxide, poly-4-methylpentene-1,
Examples include crystalline polymers such as polypropylene, polytetrafluoroethylene, and polyetheretherketone, and amorphous polymers such as polysulfone and polyethersulfone. Further, such raw material resin may contain appropriate amounts of additives such as antioxidants, antistatic agents, antibacterial agents, lubricants, and surfactants, as required. The spinneret used when melt-spinning the PPS-based polymer specified above into hollow fibers is as follows:
Either a conventionally known annular nozzle or a slit-shaped nozzle may be used, but a slit-shaped nozzle is more suitable for spinning a large number of hollow fibers from a multi-hole nozzle. The draft rate Df during melt spinning must be 25 or more. Here, the draft rate is the polymer discharge speed at the nozzle.
The relational expression between V 0 and hollow fiber take-up speed V 1 is Df = V 1 /
V is 0 . When Df<25, it is difficult to develop a microporous structure in the subsequent process. That is, hollow fibers that have undergone heat treatment for crystallization are brittle and have no elongation, making crystal stretching difficult. Df is 25 or more, preferably 50 or more. The spinning temperature (polymer temperature at the nozzle part) is desirably as low as possible within the range of spinnability, and is suitably around 300°C. In the case of raw materials containing 100% PPS, a temperature range of 285 to 310°C is suitable. The reason for this is that, as will be explained later, it is necessary to perform heat treatment to develop lamellae in the post-process, and in the present invention, it is desirable to have a higher molecular orientation state. This is because it is desirable that the amorphous orientation of the undrawn hollow fibers is also higher. As mentioned above, the production method of the present invention involves spinning at a slightly low temperature, but the melt viscosity of the polymer at the time of discharge from the spinneret is 500 to 10,000 poise, preferably
It is 3000-5000 poise. In order to provide such melt viscosity and spinnability, the polymer must have a molecular weight above a certain level. In the case of PPS100% raw material, the molecular weight is 205 in α-chloronaphthalene solution.
Intrinsic viscosity measured at °C is 0.25-0.80, preferably
It has a high molecular weight of 0.30 to 0.50. PPS
The intrinsic viscosity of the other polymer blended with is 0.30
The above is desirable. The outer diameter of the spun hollow fibers is preferably 30 μm to 5 mm. The outer diameter and hollowness ratio can be set depending on the purpose of use. However, hollow fibers with an outer diameter of less than 30μm,
It is actually difficult to form hollow fibers with a diameter exceeding mm, even if the hollow fiber die, spinning temperature, etc. are adjusted. The undrawn hollow fibers formed as described above are then
Stretching ratio DR 1 = 1.0 to 3.3, temperature T 1 = 20 to (Tg+
Stretch at 30)°C. The purpose of this step is to improve the orientation of the molecular chains of the undrawn fibers, which is necessary for oriented crystallization to sufficiently develop lamellae, by the heat treatment in the next step. In the above melt spinning, when the draft rate is gradually increased, a certain draft rate Df nax
(For example, 450 times as much as in Comparative Example 2 described later), yarn breakage occurs. High draft spinning i.e. 0.4Df nax Df
In the case of 0.97Df nax , the stretching step (amorphous stretching) at this stage may be omitted (DR 1 =1.0 means this omission). However, in the case of 25Df<0.4Df nax , the stretching ratio is 1.0<DR 1 3.3, and the temperature T 1 = 20
It is necessary to stretch at ~(Tg+30)°C. Here, the stretching ratio refers to the ratio of the length after stretching to the original length before stretching. When DR 1 >3.3, the degree of orientation of molecular chains due to amorphous stretching increases too much, making it difficult to generate micropores. The stretching temperature T 1 is 20T 1 (Tg + 30) ℃, preferably (Tg
−20) T 1 (Tg+10)℃. When T 1 <20°C, the undrawn hollow fibers become white and voids are generated extensively, and the development of lamellae due to heat treatment in the next step is inhibited. On the other hand, when T 1 >(Tg+30)° C., fluid stretching tends to occur, and the desired degree of orientation of amorphous molecular chains does not increase. Stretching may be carried out between a pair of rotating rolls by using the supply roll as a hot roll and making the circumferential speed of the drive roll faster than the circumferential speed of the supply roll. The peripheral speed of the supply roll can be set to a high speed of 50 m/min or more, usually around 150 m/min, so the productivity of the microporous hollow fiber of the present invention is extremely high. This point is one of the features of the present invention. Next, in order to develop lamellae by oriented crystallization, the tension DR 2 = 0.5 to 1.5 and the temperature T 2 = (Tg
+20) to (Tg+180)°C. Here, the degree of tension is the magnification of the length while being held in the heat treatment apparatus during heat treatment with respect to the original length before heat treatment. Therefore, DR 2 =0.9 means applying a 10% contraction, and DR 2 =1.1 means applying a 10% elongation. Tension is preferably 0.9DR 2 1.1
It is. When DR 2 <0.5, the orientation of the developed lamellae becomes random and spherulites occur, making it impossible to form micropores in the crystal stretching in the next step. Furthermore, when DR 2 >1.5, lamellae are difficult to develop. The heat treatment temperature T 2 is finally (Tg + 110)
Preferably, the temperature is T 2 (Tg+160)°C. As a heat treatment method, the temperature is first introduced at a temperature around (Tg + 20) °C, the temperature is gradually raised, and the final treatment is carried out at (Tg + 110) ~ (Tg + 160) °C, or (Tg + 20) ~ Even if treated at a constant temperature within the range of (Tg + 180) °C, or (Tg + 20)
Within the range of ~(Tg+180)℃, divided into several stages,
The temperature may be gradually increased. When T 2 <(Tg+20)°C, there is virtually no lamella development. On the other hand, T 2 >
When the temperature is (Tg+180)°C, the drawbacks are that the lamellae become random and the crystallization rate becomes slow. The heat treatment time is 2 to 60 minutes, preferably 5 to 30 minutes. The heat treatment is carried out by setting the degree of tension between a pair of rolls by adjusting the circumferential speeds of the supply roll and take-up roll, and inserting the roll into a hot bath such as hot air or far infrared rays between the pair of rolls. It is preferable to treat it as follows. The hollow fibers that have developed relatively oriented lamellae through the above heat treatment are then drawn at a draw ratio of DR 3 = 1.05 ~
2.8. Stretch at a temperature T 3 = 10 (Tg + 10)°C with a slight cold stretching. This stretching is crystal stretching, and micropores begin to be generated by this process. The pore size of the micropores is approximately determined by the combination of the previous heat treatment conditions and the stretching conditions of this step. The stretching ratio refers to the ratio of the length after stretching to the original length before stretching. Since the basic idea of the present invention is crystal stretching that deforms the lamellae, the stretching temperature is preferably 15T 3 (Tg-30)° C. for stretching with a slight cold stretching effect.
This is a characteristic feature that is different from ordinary fiber or film stretching. When DR 3 = 1.05 to 1.5, the average pore diameter of the generated micropores is 0.003 to 0.06μ.
m, and when DR 3 =1.5 to 2.0, the average pore size is 0.06 to 0.6 μm, and when DR 3 =2.0 to 2.8, the average pore size is 0.6 to 3 μm. Of course, delicate design and adjustment of the pore diameter requires delicate adjustment of the conditions of the entire process. When DR 3 <1.05, it is virtually impossible to form micropores. When DR 3 >2.8, the structure is destroyed by macroscopic voids in the hollow fibers, making it impossible to form micropores. When T 3 <10°C, crystal stretching becomes difficult; on the other hand, when T 3 > (Tg + 10)
When the temperature is ℃, it is difficult to form micropores. Subsequently, the hollow fibers with microporous formed by the above stretching were stretched at a stretching ratio DR 4 =1.0 to 2.5 and a temperature T 4 =
Stretching is carried out at (Tg+10) to (Tg+180)°C with a slight hot stretching effect. When the average pore diameter of the micropores formed by stretching at the stretching ratio DR 3 is small, that is, from 0.003 to
When the pore diameter is 0.06 μm, there is almost no problem in forming micropores even if the stretching in the subsequent main step is omitted (that is, DR 4 = 1.0), but when the pore diameter exceeds 0.06 μm, the hot stretching in the main step is not necessary. By applying this, micropores can be formed more smoothly. However, the stretching ratio in this process is not too large, and DR 4 =
1.0 to 2.5, preferably 1.1DR 4 1.5. DR4
>2.5, the micropores that were painstakingly formed during the previous stretching at a stretching ratio of DR 3 are deformed and disappear. The preferred stretching temperature is (Tg+20)T 4 (Tg
+80)℃. When T 4 < (Tg + 10) °C, there is little effect on the smooth formation of micropores, and on the other hand,
When T 4 >(Tg+180)°C, the micropores deform and disappear. In this way, the formed micropores are finally
DR 5 = 0.7 ~ 1.3, temperature T 5 = (Tg + 110) ~ (Tg +
Heat treatment is performed at 180)℃ for heat fixation. Similar to the heat treatment in the previous step, the tension is the magnification of the grip length of the heat treatment device during heat treatment with respect to the original length before heat treatment. Preferably, the tension level is DR 5 .
0.9DR 5 1.1, processing temperature T 5 is (Tg + 130) T 5
(Tg+170)°C, time is 5 seconds to 5 minutes. If the heat setting treatment of this step is not performed, the formed microporous structure will change over time, resulting in problems such as the pore diameter gradually becoming smaller, the pore shape changing, and heat-resistant dimensional stability being poor. For example, when heat-setting is not performed, the heat shrinkage rate is 25-35% when left in an air bath at 150℃ for 30 minutes, but the heat-shrinkage rate after heat-setting treatment is as high as 2-4%. The width decreases, and the pore shape and diameter remain almost the same as before. Therefore, it is clear that it has excellent heat resistance and heat-resistant dimensional stability when compared with microporous hollow fibers produced by semi-dry or wet spinning using conventional membrane materials. In addition, in the production method of the present invention, the total stretching ratio (hollow fiber length after heat setting/hollow fiber length after spinning) through all the steps such as the above-mentioned stretching and heat treatment, etc.
As DR t , 25 which corresponds to relatively low draft spinning
When Df<0.4Df nax , DR t satisfies 0.8DR t 7.0, preferably 1.2DR t 3.5, or 0.4Df nax Df0.97Df nax which corresponds to relatively high draft spinning
If DR t is 0.7DR t 4.0, preferably 0.9
Must satisfy DR t 2.0. The microporous hollow fiber produced by the above method is
Within the membrane layer from the outer surface to the inner surface, there are almost no micropores that are independent from the surroundings, and most of them are communicating pores that communicate from the outer surface to the inner surface.
This is confirmed by observing an electron micrograph of a cross section of the fiber. When observing the cross section of the microporous hollow fiber of the present invention,
The pore diameter of the micropores and the distribution density of the micropores are almost uniform from the outer surface to the inner surface with almost no density. Therefore, conventional semi-dry or wet-spun hollow fibers consist of a so-called skin layer and a core layer.
This is in contrast to the heterogeneous structure with density. The number of micropores in the hollow fiber of the present invention varies depending on the pore diameter and porosity, but the number of micropores on the outer surface of the fiber is 10 7 to 10 11 /
It can be determined that the size is on the order of cm by statistical observation of electron micrographs. Furthermore, by combining and selecting the manufacturing conditions of the present invention, the average pore diameter of the hollow fibers obtained can be
It can range from 0.003 to 3 μm. The average pore size is
It can be designed as appropriate depending on the use and purpose. The average pore diameter is determined from a scanning electron micrograph of the outer surface of the hollow fiber or a replica photograph taken using a transmission electron microscope.
100 holes were measured and averaged. Because the micropores of the hollow fibers are connected from the outer surface to the inner surface, the density of non-porous PPS hollow fibers is approximately 1.335 to 1.360 g/cm 3 (at 20°C).
The apparent density of the hollow fibers of the present invention is quite low at 0.13 to 1.22 g/cm 3 . The apparent density in this case is determined by sampling a certain amount of microporous hollow fibers, weighing them, immersing the sample in mercury at 20°C under atmospheric pressure, measuring the volume of the sample, and measuring the hollowness ratio. The volume of the membrane including the micropores can be obtained by The porosity calculated from the apparent density and true density (=100 x apparent density/true density) is 15
~85%. The outer diameter of the hollow fibers of the present invention can range from 35 μm to 3 mm. The outer diameter and inner diameter were averaged by measuring the outer diameter and inner diameter of 20 hollow fibers from cross-sectional photographs taken with an optical microscope or scanning electron microscope. When a slit-type nozzle is used as a nozzle for hollow fibers, the cross section of the obtained hollow fibers is not a perfect circle, but is almost circular, and the outer diameter and inner diameter can be easily measured. The hollow fiber of the present invention can have a hollow ratio in the range of 8 to 85% by selecting and combining manufacturing conditions. The hollowness ratio is determined from the average outer diameter p and the average inner diameter i statistically measured using a microscope, and the hollowness ratio = ( i /
p ) Calculated as 2 × 100 (%). When using diaphragm separation to apply a pressure of about 50 to 100 Kg/ cm2 , the hollow ratio should be 8 to 40%, and when applying a low pressure such as 1 to 5 Kg/ cm2 , the hollow ratio should be set to 8 to 40%. can be increased to 70-85%. The film thickness between the outer diameter and inner diameter of the hollow fiber is a value determined from the outer diameter and hollow ratio settings determined depending on the application. When using hollow fibers for diaphragm separation and applying pressure, the pressure P at which the hollow fibers deform and break
are the outer diameter p of the hollow fiber, the Young's modulus E, the film thickness t,
It is generally believed that the following relationship holds true with Poisson's ratio v. P=2E t 3 /(1-v 2 ) D p 3 In the case of PPS, v≒0.3, E≒300Kg/mm 2 ,
The above formula is used for application design. When the outer diameter of the hollow fiber is 35 μm, the film thickness must be at least 5 μm (50% hollow ratio) in practice, regardless of the applied pressure. On the other hand, in the case of a thicker outer diameter of 3mm, the film thickness is 150μ
m (hollowness ratio 80%) is practically necessary. The microporous hollow fiber of the present invention has particularly excellent heat resistance and chemical resistance. In air, e.g. at 200℃6
The tensile strength retention rate after being left for several months is over 50%, demonstrating outstanding heat resistance. Conventional hollow fibers produced by semi-dry or wet spinning of commercially available materials cannot be heated above 80°C in regular use, but this has become possible with the present invention. In addition, almost all organic chemicals, ammonia water, alkaline aqueous solutions such as caustic soda aqueous solution, hydrochloric acid, sulfuric acid with a concentration of 50% or less, nitric acid with a concentration of 30% or less,
It is completely unaffected by inorganic chemicals such as hydrofluoric acid at room temperature. The microporous hollow fibers of the present invention can be incorporated into a module in large numbers and used for ultrafiltration and precision diaphragm separation. In particular, it has excellent heat resistance and chemical resistance, so it can be used for electrodeposition coating of automobiles, home appliances, etc.
Industrial wastewater treatment, such as recovery of valuables and water reuse from chemical products, pulp, and dye wastewater, plating, pickling, and surface treatment, recovery of metals and inorganic salts from wastewater, and water reuse, as well as pharmaceutical and fermentation Proteins, enzymes, in industry
Rationalization of manufacturing processes such as separation and purification of sugars, production of ultrapure water in the electronics industry, concentration, brine removal, and clarification in the food industry, as well as solvent recovery in paint, painting, and dye factories, and production of ultrapure water in the electronics industry. Chemistry/
It can demonstrate its characteristics in organic solvent processing in the chemical industry. Furthermore, using the microporous hollow fibers of the present invention as a support for a separation membrane, the hollow fibers of the present invention are immersed in a solution of a relatively heat-resistant polymer such as polysulfone or aromatic polyamide, taken out, and dried. If a composite membrane is prepared in which a dense skin layer of these polymers with a thickness of 0.1 to 1.5 μm is formed on the surface of the hollow fiber of the present invention by removing the solvent, it can also be used for reverse osmosis separation. In the future, improving the permeation rate and rejection rate using such composite membranes will be a challenge for the industry, but there is a need for inexpensive support membranes that have excellent heat and chemical resistance and are highly productive. The microporous hollow fiber of the present invention can meet such demands. Furthermore, the polymer used in the present invention has PPS as its main component, and PPS has unpaired electrons in the sulfur in its main chain. Using this, it can be chemically modified or used as a complex. For example, enzymes are immobilized on microporous hollow fibers and used as enzyme-immobilized membranes in bioreactors.
It can be made into a highly functional diaphragm. Also,
Electron acceptors such as AsF 5 , SbF 5 , I 2 , H 2 SO 4 , SO 3 , Li, K, sodium naphthalene, N
When an electron donor such as (C 4 H 9 )・ClO 4 is doped into the microporous hollow fiber of the present invention, there is an effect of dramatically increasing the membrane area due to the microporous structure, and the presence of benzene rings and sulfur in the main chain. Therefore, the electrical conductivity is
Utilizing the improvement to 10 -8 mho/cm (25°C) or higher, selective permeation is used to recover precious metals and heavy metals, to separate specific substances from electrodialysis membranes, electrolyte aqueous solutions, or solutions consisting of electrolytes and non-electrolytes. membrane, polarity,
It can be used to separate a specific gas from a non-polar mixed gas system, or to use changes in electrical resistance or electromotive force; for example, it can be used in humidity sensors, gas sensors, etc. In addition, since it is a hollow fiber with continuous microporous holes, it can be used as clothing by adsorbing sweat from the outer surface of the fiber, transferring it to the inside of the hollow fiber, and evaporating sweat from the inside of the hollow fiber, so it can be cut into short fibers and knitted. The knitted and woven fabrics can also be used as sweat-absorbing clothing and medical bandages. In particular, since it has excellent heat resistance, it is suitable for firefighting uniforms and work clothes for hot work sites. Furthermore, since it is a hollow fiber, it has heat insulating properties and has good heat resistance, so it can be used as a heat insulating material. Furthermore, since it is a microporous hollow fiber, it has a large ability to absorb and retain oil, and can be used as an oil fence in the event of an oil spill accident at sea or on water. As detailed above, the microporous hollow fiber of the present invention has particularly excellent heat resistance and chemical resistance, and in addition to having unpaired electrons in the sulfur atom, it can be manufactured by melt spinning, heat treatment, and drawing. Because it uses a highly flexible manufacturing method, it is also inexpensive, and in addition to conventional fields of use, it opens up new fields of use that have never existed before. Of course, the uses of the microporous hollow fiber of the present invention are not limited to the above examples. Examples of the present invention are shown below, but the present invention is not limited thereto. Examples 1 to 16 and Comparative Examples 1 to 16 Using a Koka type flow tester, the base was 1 mmφ
Melt viscosity measured at 10 mm L , temperature 305 °C, shear rate 200 sec -1 was 7500 poise, measured by differential calorimeter (DSC) (sample amount 15 mg, heating rate 10 °C/
Poly(p-
The raw material was powder of phenylene sulfide (PPS). This PPS was applied at 60℃ for 1hr, followed by 150℃ for 3hrs.
After drying with hot air, using a melt extrusion spinning machine with a screw diameter of 30 mmφ, the fibers were passed through a hollow fiber nozzle (4-piece slit type nozzle, nozzle outer diameter 5 mmφ, number of filaments: 12), and a discharge rate of 70 g/min was achieved at a nozzle temperature of 310°C. Hollow fibers were spun by varying the draft rate Df by changing the take-up speed while keeping it fixed. Here, the draft rate Df is the hollow fiber spinning take-off speed Vm (cm/min)
and the polymer discharge linear velocity Vo (cm/min) Df
=Vm/Vo. The discharge linear velocity Vo was determined by measuring the following quantities. Vo=Q/Sfρ, where Q: Polymer discharge rate (g/min) S: Cross-sectional area of slit-type die (cm 2 ) f: Number of filaments ρ: Molten polymer density (g/cm 3 ) Obtained hollow fiber The stretching ratio between a set of rolls
Stretching was carried out by varying the DR 1 and supply roll temperature (T 1 °C). DR 1 refers to the ratio of the length after stretching to the original length before stretching (stretching). Next, an electric heater bath (temperature T 2 °C) was placed between a set of rolls, and heat treatment was performed by varying the tension DR 2 between the rolls and varying the temperature T 2 in the heater bath. Tension DR 2 refers to the magnification of the length after heat treatment using rolls relative to the original length before heat treatment. Next, a stretching ratio of DR 3 between a set of rolls,
Stretching was carried out using various supply rolls (temperature T 3 ° C.) (stretching). Subsequently, the stretching ratio is increased between a set of rolls.
Stretching was carried out at various DR 4 and supply roll temperatures (T 4 °C) (stretching). However, when heating at a temperature exceeding 200°C was desired, an electric heater bath was placed between a set of rolls and the temperature of the heater bath was set at T 4 °C for stretching. Finally, an electric heater bath (temperature T 5 ° C.) was placed between a set of rolls, and heat fixation was carried out by varying the tension DR 5 between the rolls and the temperature T 5 in the heater bath. The fiber outer diameter (ODμm) and inner diameter (IDμm) of the obtained hollow fiber were statistically determined from the optical micrograph of the cross section of the hollow fiber detailed above, and the hollowness ratio was (ID/OD) 2 × 100 ( %). The average pore diameter of the micropores was statistically determined from scanning electron micrographs as detailed above. However, the average pore size
In the case of 0.01 μm or less, it was statistically determined from transmission electron micrographs (carbon replica method). Molding conditions, outer diameter of microporous hollow fiber, hollow ratio,
The average pore diameter is shown in Table 1. In Comparative Example 1, the draft rate was too low to be collected. When the draft rate is relatively low as in Examples 1 and 2, stretching () is necessary to achieve amorphous orientation, but when the draft rate is relatively low as in Examples 3 to 16 and Comparative Examples 3 to 16, If it is relatively high, omit stretching () (DR 1 = 1.0)
can. Comparative Example 2 is a case where the draft rate was high and yarn breakage occurred. As in Comparative Example 3, if the relaxation during heat treatment is too large, spherulites are generated during heat treatment, making subsequent stretching () impossible. If the temperature during heat treatment is too low, no matter how the subsequent conditions are manipulated, micropores are not generated (Comparative Example 4), but the T2 temperature changes the micropore diameter significantly (Examples 6 to 8). If the heat treatment temperature T2 is too high, the next stretching () becomes impossible (Comparative Example 5). If the degree of tension during heat treatment is too high, micropores are not generated (Comparative Example 6). Even if the low-temperature stretching () is omitted and only the high-temperature stretching () is performed, no microporosity is generated (Comparative Example 7). The stretching ratio DR 3 of stretching () greatly influences the pore diameter of the micropores (Examples 9 to 12). However, if DR 3 is too large, yarn breakage occurs and stretching becomes impossible (Comparative Example 8). If the stretching temperature T3 is too low or too high, stretching becomes impossible or microporous is not generated (Comparative Examples 9 and 10). As in Example 14, microporous hollow fibers can be obtained even if high-temperature stretching () is omitted (DR 4 = 1.0 );
>1.0), essential when drilling large holes.
However, the stretching ratio DR 4 of stretching () cannot be set to a large value (Comparative Example 11). If the temperature T 4 of stretching () is too high, microporous is not generated (Comparative Example 12). During heat fixation, if the relaxation is too large (Comparative Example 13) or the tension is too large (Comparative Example 14),
No micropores are generated. If the heat setting temperature T5 is too low, the thermal dimensional stability is poor (Comparative Example 15). On the other hand, if T 5 is too high, microporous will not be generated. Examples 1 to 16 are all microporous hollow fibers molded by the method of the present invention. these at 100℃
The tensile strength retention rate (immersion Strength after dipping/strength before dipping x 100%) was measured. The retention rate in all cases is 50-75%. It had extremely excellent mechanical properties, heat resistance, and chemical resistance.
【表】【table】
Claims (1)
イド)からなる原料樹脂を、ドラフト率25以上で
中空繊維紡糸口金を通して溶融紡糸して中空繊維
を形成し、該中空繊維を延伸倍率DR1=1.0〜
3.3、温度T1=20〜(Tg+30)℃(Tgはポリマ
ーのガラス転移温度℃)にて延伸し、次いで、緊
張度DR2=0.5〜1.5、温度T2=(Tg+20)〜(Tg
+180)℃にて熱処理した後、該中空繊維を延伸
倍率DR3=1.05〜2.8、温度T3=10〜(Tg+10)
℃にて延伸し、引続いて延伸倍率DR4=1.0〜
2.5、温度T4=(Tg+10)〜(Tg+180)℃にて
延伸し、最後に、緊張度DR5=0.7〜1.3、温度T5
=(Tg+110)〜(Tg+180)℃にて熱固定する
と共に、その全工程を通じての総延伸倍率(熱固
定後の中空繊維長/紡糸後の中空繊維長)を
DRt、紡糸時のドラフト率をDf,断糸ドラフト率
をDfnaxとして、25Df<0.4Dfnaxの場合に0.8
DRt7.0、および0.4DfnaxDf0.97Dfnaxの場合
に0.7DRt4.0とすることにより、中空繊維に
微多孔を形成させることを特徴とする、微多孔中
空繊維の製造法。1 A raw material resin consisting of poly(p-phenylene sulfide) of 65% or more by weight is melt-spun through a hollow fiber spinneret at a draft rate of 25 or more to form hollow fibers, and the hollow fibers are drawn at a draw ratio of DR 1. =1.0~
3.3, stretching at temperature T 1 = 20 to (Tg + 30) °C (Tg is the glass transition temperature of the polymer °C), then stretching at tension DR 2 = 0.5 to 1.5, temperature T 2 = (Tg + 20) to (Tg
After heat treatment at +180)°C, the hollow fibers were subjected to stretching ratio DR 3 = 1.05 to 2.8 and temperature T 3 = 10 to (Tg + 10).
Stretched at ℃ and then stretched at a stretching ratio DR 4 = 1.0 ~
2.5, stretching at temperature T 4 = (Tg + 10) ~ (Tg + 180) °C, and finally, tension degree DR 5 = 0.7 ~ 1.3, temperature T 5
= (Tg + 110) ~ (Tg + 180) While heat setting at ℃, the total stretching ratio (hollow fiber length after heat setting / hollow fiber length after spinning) throughout the entire process.
DR t is 0.8 when 25Df<0.4Df nax , where the draft rate during spinning is Df and the yarn breakage draft rate is Df nax .
DR t 7.0, and 0.7DR t 4.0 in the case of 0.4Df nax Df0.97Df nax , thereby forming microporous hollow fibers in the hollow fiber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61029995A JPS6215323A (en) | 1986-02-14 | 1986-02-14 | Manufacturing method of microporous hollow fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61029995A JPS6215323A (en) | 1986-02-14 | 1986-02-14 | Manufacturing method of microporous hollow fiber |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16844682A Division JPS5959917A (en) | 1982-09-29 | 1982-09-29 | Microporous hollow fiber and its manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6215323A JPS6215323A (en) | 1987-01-23 |
JPS6242046B2 true JPS6242046B2 (en) | 1987-09-07 |
Family
ID=12291516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61029995A Granted JPS6215323A (en) | 1986-02-14 | 1986-02-14 | Manufacturing method of microporous hollow fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6215323A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK0434960T3 (en) * | 1989-12-19 | 1996-10-14 | Pharmacia Spa | Chiral 1,5-diiodo-2-methoxy or benzyloxy intermediates |
US5202023A (en) * | 1991-12-20 | 1993-04-13 | The Dow Chemical Company | Flexible hollow fiber fluid separation module |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5230609A (en) * | 1975-09-01 | 1977-03-08 | Yanmar Agricult Equip | Traction controller of agricultural tractor |
JPS5652123A (en) * | 1979-09-28 | 1981-05-11 | Hitachi Ltd | Crop disposal from shearing machine |
JPS5742919A (en) * | 1980-08-22 | 1982-03-10 | Mitsubishi Rayon Co Ltd | Porous hollow polyethylenic fiber and its preparation |
JPS5766114A (en) * | 1980-10-14 | 1982-04-22 | Mitsubishi Rayon Co Ltd | Porous polyethylene hollow fiber and its production |
JPS57143518A (en) * | 1981-02-25 | 1982-09-04 | Toray Ind Inc | Production of aromatic sulfide fiber |
JPS6037201A (en) * | 1983-08-08 | 1985-02-26 | Kawasaki Steel Corp | Rolling method for providing step difference to thick plate |
-
1986
- 1986-02-14 JP JP61029995A patent/JPS6215323A/en active Granted
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5230609A (en) * | 1975-09-01 | 1977-03-08 | Yanmar Agricult Equip | Traction controller of agricultural tractor |
JPS5652123A (en) * | 1979-09-28 | 1981-05-11 | Hitachi Ltd | Crop disposal from shearing machine |
JPS5742919A (en) * | 1980-08-22 | 1982-03-10 | Mitsubishi Rayon Co Ltd | Porous hollow polyethylenic fiber and its preparation |
JPS5766114A (en) * | 1980-10-14 | 1982-04-22 | Mitsubishi Rayon Co Ltd | Porous polyethylene hollow fiber and its production |
JPS57143518A (en) * | 1981-02-25 | 1982-09-04 | Toray Ind Inc | Production of aromatic sulfide fiber |
JPS6037201A (en) * | 1983-08-08 | 1985-02-26 | Kawasaki Steel Corp | Rolling method for providing step difference to thick plate |
Also Published As
Publication number | Publication date |
---|---|
JPS6215323A (en) | 1987-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW408201B (en) | Wet spinning process for aramid polymer containing salts | |
JP5068168B2 (en) | Vinylidene fluoride resin hollow fiber porous membrane | |
EP1435261B1 (en) | Method for production of a hollow fiber membrane | |
JP5339677B2 (en) | Vinylidene fluoride resin hollow fiber porous filtration membrane and production method thereof | |
KR20050109556A (en) | Porous membrane of vinylidene fluoride resin and process for producing the same | |
KR20100113322A (en) | Hollow fiber membrane and method for manufacturing the same | |
JPH0647066B2 (en) | Porous separation membrane and method for producing the same | |
JP4269576B2 (en) | Method for producing microporous membrane | |
JP3937050B2 (en) | Method for producing meta-type wholly aromatic polyamide fiber and fiber obtained thereby | |
JP3995532B2 (en) | Method for producing dense meta-type wholly aromatic polyamide fiber | |
JPH028047B2 (en) | ||
JPS6242046B2 (en) | ||
JPS60248202A (en) | Hollow fiber membrane and its manufacturing method | |
JPS63182413A (en) | Polyphenylene sulfone fiber and production thereof | |
CN117679951A (en) | Pollution-resistant internal pressure type hollow fiber nanofiltration membrane and preparation method thereof | |
CN113195081A (en) | Porous membranes for high pressure filtration | |
Eashoo et al. | Fibers from a low dielectric constant fluorinated polyimide: solution spinning and morphology control | |
CN114618322A (en) | Polyvinylidene fluoride hollow fiber membrane and preparation method and application thereof | |
JPS62213813A (en) | Method for improving water permeability of micro-porous membrane | |
JP2001348726A (en) | Method for producing dense poly(metaphenyleneisophthalamide)-based fiber | |
KR101184212B1 (en) | Manufaturing method of hallow fiber membrane for water treatment and hallow fiber membrane thereby | |
US4409162A (en) | Process for producing acrylonitrile separation membranes in fibrous form | |
JPH0254377B2 (en) | ||
Chang et al. | Effect of inner non-solvent condition on morphology of PVDF hollow fiber membranes prepared by NIPS spinning process | |
CN113195082A (en) | Porous membranes for high pressure filtration |