[go: up one dir, main page]

JPS624176B2 - - Google Patents

Info

Publication number
JPS624176B2
JPS624176B2 JP54007057A JP705779A JPS624176B2 JP S624176 B2 JPS624176 B2 JP S624176B2 JP 54007057 A JP54007057 A JP 54007057A JP 705779 A JP705779 A JP 705779A JP S624176 B2 JPS624176 B2 JP S624176B2
Authority
JP
Japan
Prior art keywords
molded product
catalyst molded
catalyst
glassy
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54007057A
Other languages
Japanese (ja)
Other versions
JPS5599344A (en
Inventor
Takashi Taniguchi
Mitsuyoshi Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP705779A priority Critical patent/JPS5599344A/en
Publication of JPS5599344A publication Critical patent/JPS5599344A/en
Publication of JPS624176B2 publication Critical patent/JPS624176B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は端部強化耐摩耗性の脱硝用触媒成形
品、特に被処理ガス(被脱硝ガス)中に含まれる
煤塵等による摩耗を有効に防止した少なくとも1
個の通孔を有する筒体状の端部強化耐摩耗性の脱
硝用触媒成形品に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a denitrification catalyst molded article with reinforced abrasion resistance at the edges, particularly at least one molded article that effectively prevents abrasion caused by soot and dust contained in the gas to be treated (gas to be denitrified).
The present invention relates to a denitrification catalyst molded product having a cylindrical shape and having a reinforced end and wear resistance.

燃焼ガスや種々の廃ガス中に含まれる窒素酸化
物(NOx)の除去、すなわち脱硝に使用される
触媒は、通常、ペレツト状、円筒状、角筒状及び
板状等の種々の形状において使用することができ
る。一般には、装置面及び経済性等の点からして
ペレツト状以外の形状で使用されることが多い。
特に1個の通孔を有する円筒体や種々の角筒体に
成形した触媒成形品の多数本を集束した状態〔第
3図のA及びB参照〕で脱硝装置内に収納した
り、或いは多数個の通孔を有する形状(この形状
を通常、「ハニカム状」と呼んでいる。)に成形し
た触媒成形品〔第4図のA及びB参照〕を、もし
くはこの多数個の通孔を有する触媒成形品の2個
以上を集束したものを脱硝装置内に収納して使用
されることが多い。
Catalysts used for removing nitrogen oxides (NOx) contained in combustion gas and various waste gases, that is, denitration, are usually used in various shapes such as pellets, cylinders, square tubes, and plates. can do. Generally, it is often used in shapes other than pellets from the standpoint of equipment and economy.
In particular, a large number of catalyst molded products formed into a cylindrical body with one through hole or various rectangular cylindrical bodies may be stored in a denitrification device in a bundled state (see A and B in Figure 3), or in a large number. A catalyst molded product [see A and B in Figure 4] formed into a shape having several through holes (this shape is usually called a "honeycomb shape"), or a catalyst molded product having a large number of through holes. A bundle of two or more catalyst molded articles is often stored in a denitrification device and used.

他方、被脱硝ガス、たとえばボイラーや焼却炉
等から排出される燃焼ガス中には多量の煤塵が含
まれている。その煤塵量は、重油を燃料とする場
合には比較的に少なくて約5〜10mg/Nm3である
が、石炭を燃料とする場合には約10〜20g/Nm3
もの多量である。また、これらの煤塵粒子はその
大きさが、通常、大部分が100μ以下である。し
たがつて、脱硝工程中の触媒は300〜400℃の高温
下に、かかる多量の煤塵を含んだ、しかも5〜10
m/秒の高速の被脱硝ガスにさらされることにな
る。
On the other hand, the gas to be denitrified, for example, the combustion gas discharged from boilers, incinerators, etc., contains a large amount of soot and dust. The amount of soot and dust is relatively small, about 5 to 10 mg/Nm 3 when using heavy oil as fuel, but about 10 to 20 g/Nm 3 when using coal as fuel.
There are a lot of things. Moreover, the size of these soot dust particles is usually 100 μm or less. Therefore, the catalyst during the denitrification process is exposed to high temperatures of 300 to 400°C and contains such a large amount of soot and dust.
It will be exposed to the gas to be denitrified at a high speed of m/sec.

しかも、脱硝触媒は金属酸化物(たとえばチタ
ン、タングステン、バナジウム等の酸化物)の焼
結品であるが、触媒特性との関係からしてその焼
結時の温度が低いために、その強度も低い。その
ために、脱硝触媒は被脱硝ガス、特に石炭等を主
燃料とするボイラー排ガス等に含まれる多量の煤
塵によつて容易に摩耗されるので、そのままでは
触媒としての使用に耐えない。その対策の一つと
して一般的に考えられる手段は、脱硝装置内に収
納された触媒成形品の被脱硝ガス導入側の端部に
金属枠を嵌合することであるが、かかる手段は金
属枠の製造及び嵌合等の点において費用と手間が
かかり、実用的でない。
Moreover, the denitrification catalyst is a sintered product of metal oxides (for example, oxides of titanium, tungsten, vanadium, etc.), but its strength is low because the temperature during sintering is low in relation to the catalyst properties. low. Therefore, the denitrification catalyst is easily worn out by a large amount of dust contained in the gas to be denitrified, especially the exhaust gas of a boiler whose main fuel is coal, etc., so that it cannot be used as a catalyst as it is. One commonly thought of countermeasure is to fit a metal frame to the end of the catalyst molded product housed in the denitration equipment on the side where the gas to be denitrified is introduced; It is expensive and time-consuming to manufacture, fit, etc., and is not practical.

本発明者等は、少なくとも1個の通孔を有する
筒体状の脱硝用触媒成形品の煤塵等による摩耗を
有効に防止することについて種々研究を重ねた結
果、端部を強化した耐摩耗性の脱硝用触媒成形品
の開発に成功したのである。
The inventors of the present invention have conducted various studies on how to effectively prevent abrasion caused by soot and dust on a cylindrical denitrification catalyst molded product having at least one through hole. The company succeeded in developing a catalyst molded product for denitrification.

本発明における「少なくとも1個の通孔を有す
る筒体状の触媒成形品」とは、1個の通孔を有す
る円筒体状若しくは多角筒体状等の種々の筒体状
の触媒成形品であつてもよいし、2個以上の通孔
を有する任意の筒体状の触媒成形品、たとえば断
面ハニカム状の多数の通孔を有する筒体状(以
下、これを単に「ハニカム筒体状」という。)の
触媒成形品であつてもよい。
In the present invention, "a cylindrical catalyst molded product having at least one through hole" refers to various cylindrical catalyst molded products such as a cylindrical shape or a polygonal cylindrical shape having one through hole. Any cylindrical shaped catalyst molded product having two or more through holes, for example, a cylindrical shape having many through holes with a honeycomb cross section (hereinafter referred to simply as "honeycomb cylindrical shape") It may be a catalyst molded article.

本発明の端部強化耐摩耗性の脱硝用触媒成形品
は、少なくとも1個の通孔を有する筒体状の触媒
成形品の端部に、該触媒成形品と一体的に融着し
た、2種以上の金属酸化物を主成分とする融点
400〜800℃のガラス質被膜を形成せしめてなるも
のである。
The end-reinforced wear-resistant catalyst molded article for denitrification of the present invention has two parts integrally fused to the end of a cylindrical catalyst molded article having at least one through hole. Melting point of metal oxides as main components
It is made by forming a glassy film at a temperature of 400 to 800°C.

この種の脱硝用触媒成形品は、その長さが通
常、300〜1000mm程度、たとえば500mmである。た
とえば、1個の通孔を有する触媒成形品の場合に
は上記のようにその多数本を集束した状態で脱硝
装置内に収納して使用されるし、比較的多数の通
孔を有する触媒成形品の場合にはその複数個を脱
硝装置内に収納して使用されるし、極めて多数の
通孔を有する触媒成形品、たとえばハニカム筒体
状の触媒成形品の場合には、その1個又は複数個
を脱硝装置内に収納して使用される。かかる触媒
成形品に本発明にしたがつてガラス質被膜を形成
せしめるのは、脱硝装置内に導入された被脱硝ガ
スが直角に衝突する触媒成形品のガス導入側の先
端面と、その先端面から約50mm以下、好ましくは
約10mm以下までの側壁面である。ガラス質被膜で
被覆された触媒部分は触媒としての機能を失なう
ので、触媒作用の点からすればガラス質被膜を形
成せしめる触媒表面積はなるべく少ない方が望ま
しい。しかし、ガス流と平行な触媒成形品の側壁
面(通孔の内側面を含む。)も、ガス導入側の先
端面に近い部分は、なお導入ガスの乱流等によつ
て摩耗するおそれがあるので、上記した範囲内の
側壁面にもガラス質被膜を形成せしめるのが望ま
しいのである。
This type of denitrification catalyst molded article usually has a length of about 300 to 1000 mm, for example 500 mm. For example, in the case of a catalyst molded product with one through hole, a large number of catalyst molded products are stored in a denitrification device in a bundle as described above, and a catalyst molded product with a relatively large number of through holes is used. In the case of a catalyst molded product having an extremely large number of through holes, such as a honeycomb cylindrical catalyst molded product, one or more of the catalyst molded products are stored in a denitrification device. Multiple units are stored in a denitrification device and used. According to the present invention, a glassy coating is formed on such a catalyst molded product on the gas introduction side end surface of the catalyst molded product, which the gas to be denitrified introduced into the denitrification device collides with at right angles, and on the end surface thereof. 50 mm or less, preferably about 10 mm or less. Since the catalyst portion covered with the glassy film loses its catalytic function, from the viewpoint of catalytic action, it is desirable that the surface area of the catalyst on which the glassy film is formed is as small as possible. However, the side wall surface (including the inner surface of the through hole) of the catalyst molded product that is parallel to the gas flow, and the portion close to the tip surface on the gas introduction side, is still at risk of being worn out due to the turbulent flow of the introduced gas. Therefore, it is desirable to form a glassy coating also on the side wall surface within the above-mentioned range.

本発明において施すガラス質被膜は、その融点
が400〜800℃、好ましくは450〜600℃の範囲内で
ある。ガラス質被膜は、融点が400℃未満では触
媒使用時の温度、すなわち脱硝反応温度で融ける
おそれがあり、煤塵による摩耗を有効に防止でき
なくなるおそれがあるし、融点が800℃を超える
とガラス質被膜の融着時の加熱によつて触媒性能
が低下するので、いずれも不適当である。
The glassy coating applied in the present invention has a melting point of 400 to 800°C, preferably 450 to 600°C. If the melting point is less than 400℃, there is a risk that the glassy coating will melt at the temperature used as a catalyst, that is, at the denitrification reaction temperature, and it may not be able to effectively prevent wear caused by soot and dust.If the melting point exceeds 800℃, the glassy coating All of these methods are unsuitable because the heating during fusion of the coating reduces catalyst performance.

本発明のガラス質被膜に適する好ましいガラス
質物は、B、Si、Pb、Li、K及びNaの群より選
ばれた金属の2種以上の酸化物を主成分とするも
のである。すなわち、その好ましいガラス質物
は、酸化ほう素、酸化鉛、無水珪酸、酸化リチウ
ム、酸化カリウム及び酸化ナトリウムよりなる群
から選ばれた2種以上の酸化物を主成分とするも
のである。
A preferable vitreous material suitable for the vitreous coating of the present invention is one whose main component is an oxide of two or more metals selected from the group of B, Si, Pb, Li, K, and Na. That is, the preferred glassy material is one whose main component is two or more oxides selected from the group consisting of boron oxide, lead oxide, silicic anhydride, lithium oxide, potassium oxide, and sodium oxide.

本発明のガラス質被膜用のガラス質物として特
に好ましいものには、たとえば、PbO2モル及び
SiO21モルの混合物を溶融し、冷却固化して得た
ガラス状物の粉末と、PbO1モル及びB2O32モル
の混合物を溶融し、冷却固化して得たガラス状物
の粉末との混合物(以下、これを「2PbO・SiO2
―PbO・2B2O3」という。)の加熱溶融により生
成するガラス質物がある。このガラス質物は融点
が約525℃である。
Particularly preferred glass materials for the glass coating of the present invention include, for example, PbO2 mol and
A glassy powder obtained by melting a mixture of 1 mole of SiO 2 and solidifying it by cooling, and a glassy powder obtained by melting a mixture of 1 mole of PbO and 2 moles of B 2 O 3 and solidifying it by cooling. mixture (hereinafter referred to as “2PbO・SiO 2
―PbO・2B 2 O 3 ''. ) is produced by heating and melting. This glassy material has a melting point of about 525°C.

また、好ましいそのガラス質物には2PbO・
B2O3及び3PbO・2SiO2―Na2O・SiO2等があり、
前者の融点は493℃、後者の融点は590℃である。
この種のガラス質物は各酸化物の割合を変化させ
ることによつてその融点を変えることができるか
ら、所望の融点のガラス質物を容易に得ることが
できる。
In addition, the preferable glassy material is 2PbO・
There are B 2 O 3 and 3PbO・2SiO 2 ―Na 2 O・SiO 2 , etc.
The melting point of the former is 493°C, and the melting point of the latter is 590°C.
Since the melting point of this type of glassy material can be changed by changing the ratio of each oxide, a glassy material with a desired melting point can be easily obtained.

本発明のガラス質被膜の形成に用いられるガラ
ス質物は、融点のほかに熱膨脹率をも考慮してそ
の組成を選定するのが望ましい。触媒とガラス質
物との熱膨脹率が異なると、触媒への融着後の冷
却時や触媒の使用時にガラス質被膜が剥離やクラ
ツクを起し、十分な摩耗防止効果を発揮できなく
なる。
It is desirable to select the composition of the vitreous material used to form the vitreous coating of the present invention, taking into consideration not only the melting point but also the coefficient of thermal expansion. If the coefficients of thermal expansion of the catalyst and the glassy material are different, the glassy coating may peel or crack during cooling after being fused to the catalyst or during use of the catalyst, making it impossible to exhibit a sufficient wear-preventing effect.

本発明においては触媒成形品の端部にガラス質
被膜を形成せしめるには、溶融後に所定のガラス
組成が形成される割合において金属酸化物(複合
酸化物等を含む)及び(又は)加熱により金属酸
化物を生成する金属塩の2種以上を粉末状で混合
したものを、たとえば水性分散媒等に分散せし
め、その分散液を、ガラス質被膜を形成せしめる
べき触媒成形品の端部の所定個所に塗布し、その
塗膜を乾燥したのちに所定の温度に加熱溶融して
ガラス質被膜を形成すると同時に融着せしめる。
In the present invention, in order to form a glassy film on the end of a catalyst molded product, metal oxides (including composite oxides, etc.) and/or metals are heated at a rate that forms a predetermined glass composition after melting. A mixture of two or more metal salts that generate oxides in powder form is dispersed in, for example, an aqueous dispersion medium, and the dispersion is applied to a predetermined portion of the end of the catalyst molded product on which a glassy coating is to be formed. After drying, the coating film is heated and melted at a predetermined temperature to form a glassy coating and simultaneously fused.

上記の塗布用分散液には、場合により粒子を安
定に分散せしめるための適当な解膠剤や粘度調節
剤等、たとえば木節粘土、クレイのような粘土鉱
物、アラビヤゴム、メチルセルロース及びポリビ
ニルアルコール等を少量添加することができる。
一般に、その分散液は濃度が高すぎると塗布が困
難になるし、低すぎると1回の塗布で所要の厚さ
が得られず、重ね塗りが必要となるので、適当な
濃度に選定するのが望ましい。上記の2PbO・
SiO2―PbO・2B2O3の場合には、固形分濃度が70
〜20重量%の範囲内において、刷毛塗り及び浸漬
塗布とも1回塗りで所望の塗布厚さが容易に得ら
れる。
The above dispersion for coating may optionally contain suitable deflocculants and viscosity modifiers for stably dispersing the particles, such as Kibushi clay, clay minerals such as clay, gum arabic, methyl cellulose, and polyvinyl alcohol. Can be added in small amounts.
In general, if the concentration of the dispersion is too high, it will be difficult to apply, and if it is too low, the required thickness will not be obtained in one application and multiple applications will be required, so choose an appropriate concentration. is desirable. The above 2PbO・
In the case of SiO 2 - PbO・2B 2 O 3 , the solid content concentration is 70
Within the range of ~20% by weight, the desired coating thickness can be easily obtained in one coat for both brush coating and dip coating.

上記のようにして形成された塗膜の加熱溶融に
よるガラス質被膜の形成及び融着は、その融点よ
りも約30〜100℃高い温度に、約10〜60分間保持
することにより行なわせるのが望ましい。その加
熱時間が長すぎると触媒成分とガラス質物間にお
いて化学反応を起して気泡を発生するし、またそ
の加熱時間が高すぎると粘度が減少し、そのため
に発生ガスが浮力で表面に出るときに多数の小気
泡を発生させるので、いずれも好ましくない。
Formation and fusion of a glassy film by heating and melting the coating film formed as described above can be achieved by holding the film at a temperature approximately 30 to 100°C higher than its melting point for approximately 10 to 60 minutes. desirable. If the heating time is too long, a chemical reaction will occur between the catalyst component and the glassy material, generating bubbles, and if the heating time is too long, the viscosity will decrease, and the generated gas will float to the surface due to buoyancy. Both are undesirable because they generate a large number of small bubbles.

加熱溶融によるガラス質被膜の形成及び融着後
の冷却は、急冷すぎるとガラス質被膜にクラツク
が発生するので、徐冷を行うのが望ましく、たと
えば少なくとも1時間を要して室温まで冷却す
る。かくして形成せしめるガラス質被膜の厚さ
は、通常、0.01〜0.5mm、好ましくは0.05〜0.4mm
である。
Formation of a glassy film by heating and melting and cooling after fusing are preferably carried out gradually, for example, at least one hour is required for cooling to room temperature, since cracks will occur in the glassy film if the cooling is too rapid. The thickness of the glassy film thus formed is usually 0.01 to 0.5 mm, preferably 0.05 to 0.4 mm.
It is.

なお、本発明においてガラス質被膜の施される
触媒成形品の本体を構成する触媒としては、脱硝
触媒であればいかなる触媒でも差支えがない。た
とえばTi―V系、Ti―W系等の酸化物成形触
媒、Ti酸化物成形体にバナジウムやタングステ
ンを担持させた成形触媒等の各種の脱硝触媒があ
げられる。
In the present invention, any catalyst may be used as long as it is a denitrification catalyst as the catalyst constituting the main body of the catalyst molded article to which the glassy coating is applied. Examples include various denitration catalysts such as Ti--V type, Ti--W type oxide shaped catalysts, and shaped catalysts in which vanadium or tungsten is supported on Ti oxide shaped bodies.

次に、本発明を添付図面により説明する。第1
図は円筒体に成形した触媒成形品の端部にガラス
質被膜を施した本発明の触媒成形品を斜視図で示
したものであり、第2図は第1図に示した円筒状
触媒成形品のガラス質被膜を形成せしめた端部を
切断面図で示したものである。各図面において、
1は触媒成形品、2は触媒成形品の端面に形成せ
しめたガラス質被膜、2′は触媒成形品の端面に
近い外側壁に形成せしめたガラス質被膜、2″は
触媒成形品の端面に近い通孔の内側壁に形成せし
めたガラス質被膜、そして3は触媒成形品の通孔
をそれぞれ示す。
Next, the present invention will be explained with reference to the accompanying drawings. 1st
The figure is a perspective view of the catalyst molded product of the present invention in which a vitreous coating is applied to the end of a cylindrical catalyst molded product, and FIG. 2 is a cylindrical catalyst molded product shown in FIG. FIG. 2 is a cross-sectional view showing the end portion of the product on which the glassy coating is formed. In each drawing,
1 is a catalyst molded product, 2 is a glassy coating formed on the end face of the catalyst molded product, 2′ is a glassy coating formed on the outer wall near the end face of the catalyst molded product, and 2″ is a glassy coating formed on the end face of the catalyst molded product. The vitreous coating formed on the inner wall of the adjacent hole, and 3 indicate the hole of the catalyst molded article, respectively.

第1図及び第2図に示したものは、円筒体に成
形した触媒成形品1の端部にガラス質被膜2,
2′及び2″を施したものであるが、この種成形触
媒は円筒体以外にも、前述のように、たとえば四
角筒体、六角筒体等の種々の角筒体に成形される
ことがあるし、多数個の通孔を有するハニカム筒
体状の成形体に成形されることがある。かかる
種々の形状に成形した触媒成形品にあつても、そ
れを本発明の触媒成形品とするには、その端面
と、端面に近い外側壁及び(又は)内側壁にガラ
ス質被膜を施すのである。
In the case shown in FIGS. 1 and 2, a vitreous coating 2 is attached to the end of a catalyst molded product 1 formed into a cylindrical body.
2' and 2'', but this type of shaped catalyst can be formed into various rectangular cylinders, such as square cylinders and hexagonal cylinders, as mentioned above, in addition to cylindrical bodies. In addition, catalyst molded products formed into various shapes may be molded into a honeycomb cylindrical molded product having a large number of through holes. A glassy coating is applied to the end face and the outer and/or inner wall near the end face.

第3図は、円筒体脱硝用触媒成形品の使用時の
集束状態を端面図で例示したものである。すなわ
ち、第3図のAは第1図及び第2図に示したよう
な円筒体に成形した触媒成形品の使用時の集束状
態の一例を端面図で示したものであり、Bは同様
の円筒体状触媒成形品の使用時の集束状態の他の
例を端面図で示したものであり、符号4は集束用
バンドを、符号5は集束用の固定板をそれぞれ示
す。また、第4図は多数個の通孔を有するハニカ
ム筒体状の触媒成形品を部分断面図で例示したも
のである。すなわち第4図のAは断面六角形の通
孔を有するハニカム筒体状の触媒成形品を、第4
図のBは断面正方形の通孔を有するハニカム筒体
状の触媒成形品をそれぞれ示す。これらの種々の
形状の触媒成形品に対して本発明を適用するに
は、上記したようにその各触媒成形品のガス導入
側の端部にガラス質被膜を形成せしめるものであ
る。なお、第3図及び第4図における符号1〜3
は第1図及び第2図におけると同様又は均等の部
分を示すものである。
FIG. 3 is an end view illustrating the focusing state of the cylindrical denitrification catalyst molded product during use. That is, A in FIG. 3 is an end view showing an example of the condensation state during use of a catalyst molded product formed into a cylindrical body as shown in FIGS. 1 and 2, and B is a similar end view. Another example of the focusing state of the cylindrical catalyst molded product during use is shown in an end view, in which reference numeral 4 indicates a focusing band and reference numeral 5 indicates a focusing fixing plate. Further, FIG. 4 is a partial sectional view illustrating a honeycomb cylindrical catalyst molded product having a large number of through holes. That is, A in FIG. 4 shows a honeycomb cylindrical catalyst molded product having a through hole with a hexagonal cross section.
B in the figure shows a honeycomb cylindrical catalyst molded product having a through hole with a square cross section. In order to apply the present invention to catalyst molded articles of various shapes, a glassy coating is formed on the end of each catalyst molded article on the gas introduction side, as described above. In addition, the symbols 1 to 3 in FIGS. 3 and 4
1 and 2 indicate similar or equivalent parts to those in FIGS. 1 and 2.

次に、比較例及び実施例をあげて説明をする。 Next, a description will be given with reference to comparative examples and examples.

比較例 酸化チタンを主成分として、7mm×7mmの断面
正方形の通孔を121個有し、各通孔壁の肉厚が2
mmであり、全体の大きさが、縦101mm×横101mm×
長さ500mmの形状に成形されたハニカム筒体状の
脱硝触媒成形品の端面に、空気圧及び粉塵量を変
化できる密閉式のサンドプラスターを用いて、流
速10m/秒、粉塵量500g/Nm3、及び温度20℃
の条件で、フライアツシユ(石炭塵)を吹き付け
たところ、約1分後には触媒成形品の端面の摩耗
がはじまり、約1分30秒で触媒成形品の端面が約
1mm摩耗し、2分後には約1.5〜2mm摩耗した。
Comparative example: Made of titanium oxide as the main component, it has 121 through holes with a square cross section of 7 mm x 7 mm, and the wall thickness of each hole is 2 mm.
mm, and the overall size is 101mm long x 101mm wide x
A sealed sand plaster that can change air pressure and dust amount was used on the end face of a honeycomb cylindrical denitrification catalyst molded product with a length of 500 mm, at a flow rate of 10 m/s and a dust amount of 500 g/Nm 3 . and temperature 20℃
When fly ash (coal dust) was sprayed under these conditions, the end face of the catalyst molded product started to wear out after about 1 minute, the end face of the catalyst molded product wore out about 1 mm in about 1 minute and 30 seconds, and after 2 minutes it started to wear out. Approximately 1.5 to 2 mm of wear occurred.

実施例 1 比較例における同一の断面正方形の通孔を有す
るハニカム筒体状の脱硝触媒成形品の端部の約20
mmを、下記のとおりにして調製した2PbO・SiO2
―PbO・2B2O3の混合酸化物微粉末の水性懸濁液
(固形分濃度42重量%)中に30秒間浸漬して、該
端部の端面及び内外側壁に上記懸濁物の被膜を形
成せしめた。
Example 1 Approximately 20% of the end portion of the honeycomb cylindrical denitrification catalyst molded product having the same square cross-sectional through holes as in the comparative example
2PbO SiO 2 prepared as follows:
- Immerse for 30 seconds in an aqueous suspension of mixed oxide fine powder of PbO・2B 2 O 3 (solid content concentration 42% by weight) to form a film of the suspension on the end face and inner and outer walls of the end. formed.

次いで、該触媒成形品を、上記被膜を赤外線ヒ
ーターで乾燥したのち、電気炉に入れて600℃で
20分間焼成して、該被膜を溶融し、ガラス質被膜
を形成、融着せしめた。
Next, after drying the coating with an infrared heater, the catalyst molded product was placed in an electric furnace at 600°C.
The coating was baked for 20 minutes to melt and form a glassy coating.

該触媒成形品のガラス質被膜を有する端面に比
較例におけると同一の条件でフライアツシユを吹
き付けたところ、約10時間吹付け後においても端
部のガラス質被膜に全く摩耗が認められなかつ
た。
When fly ash was sprayed on the end surface of the catalyst molded article having the glassy coating under the same conditions as in the comparative example, no wear was observed on the glassy coating at the end even after about 10 hours of spraying.

酸化物懸濁液の調製 PbO2モルとSiO21モルの割合の混合物を1050℃
に加熱溶融したのち、冷却してガラス状物とし、
これを粉砕して粒度50〜200メツシユの微粉末と
した。また、PbO1モルとB2O32モルの割合の混
合物を1000℃に加熱溶融し、冷却してガラス状物
とし、これを粉砕して粒度50〜200メツシユの微
粉末とした。
Preparation of oxide suspension A mixture of 2 mol of PbO and 1 mol of SiO 2 was heated to 1050℃.
After heating and melting, it is cooled to form a glass-like substance,
This was ground into a fine powder with a particle size of 50 to 200 mesh. Further, a mixture of 1 mole of PbO and 2 moles of B 2 O 3 was heated and melted at 1000° C., cooled to form a glassy substance, and this was crushed to form a fine powder with a particle size of 50 to 200 mesh.

次いで、これらの両粉末を重量比1:1の割合
で混合し、水中に添加し、撹拌して固形分濃度42
重量%の懸濁液とした。
Next, these two powders were mixed at a weight ratio of 1:1, added to water, and stirred to a solid concentration of 42.
It was made into a suspension of % by weight.

実施例 2 比較例におけると同一のハニカム筒体状の触媒
成形品の端部約20mmを3PbO・2SiO2―Na2O・
SiO2の混合酸化物微粉末の水性懸濁液(固形分
40重量%)中に30秒間浸漬して、該端部の端面及
び内外側壁に上記懸濁物の被膜を形成せしめた。
Example 2 Approximately 20 mm of the end of the same honeycomb cylindrical catalyst molded product as in the comparative example was treated with 3PbO・2SiO 2 ―Na 2 O・
Aqueous suspension of mixed oxide fine powder of SiO2 (solids content
40% by weight) for 30 seconds to form a film of the suspension on the end face and inner and outer walls of the end portion.

次いで、該触媒成形品の上記被膜を赤外線ヒー
ターで乾燥した後、電気炉に入れて、650℃で20
分間焼成して、該被膜を溶融し、ガラス質被膜を
形成、融着せしめた。
Next, after drying the coating of the catalyst molded article with an infrared heater, it was placed in an electric furnace and heated at 650°C for 20 minutes.
The film was fired for 1 minute to melt the film and form and fuse the vitreous film.

該触媒成形品のガラス質被膜を有する端面に比
較例におけるのと同一条件でフライアツシユを吹
きつけたところ、約12時間吹付後においても、端
部のガラス質被膜に全く摩耗が認められなかつ
た。
When fly ash was sprayed on the end surface of the catalyst molded article having the glassy coating under the same conditions as in the comparative example, no wear was observed on the glassy coating at the end even after about 12 hours of spraying.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の円筒状触媒成形品
を例示したものであり、第1図はその一部切欠斜
視図、第2図は第1図に示した成形品のガラス質
被膜を形成せしめた端部の切断面図である。ま
た、第3図のA及びBは第1図に示した円筒状の
触媒成形品の使用時の集束状態をそれぞれ端面図
で例示したものである。また、第4図のA及びB
は、それぞれ断面正六角形及び正方形の通孔を多
数個有するハニカム筒体状の触媒成形品を部分断
面図で示したものである。各図面における符号は
それぞれ下記のものを示す。 1…触媒成形品、2,2′,2″…ガラス質被
膜、3…触媒成形品の通孔、4…触媒成形品の集
束用バンド、5…触媒成形品の集束用固定板。
1 and 2 illustrate a cylindrical catalyst molded article of the present invention, FIG. 1 is a partially cutaway perspective view thereof, and FIG. 2 is a vitreous coating of the molded article shown in FIG. 1. FIG. Further, A and B in FIG. 3 are end views respectively illustrating the focusing state of the cylindrical catalyst molded product shown in FIG. 1 when in use. Also, A and B in Figure 4
1 is a partial sectional view of a honeycomb cylindrical catalyst molded product having a large number of through holes with a regular hexagonal cross section and a square cross section, respectively. The symbols in each drawing indicate the following. DESCRIPTION OF SYMBOLS 1... Catalyst molded product, 2, 2', 2''... Glassy coating, 3... Through hole of catalyst molded product, 4... Band for focusing the catalyst molded product, 5... Fixing plate for focusing the catalyst molded product.

Claims (1)

【特許請求の範囲】 1 少なくとも1個の通孔を有する筒体状の触媒
成形品の端部に、該触媒成形品と一体的に融着し
た、2種以上の金属酸化物を主成分とする融点
400〜800℃のガラス質被膜を形成せしめてなる端
部強化耐摩耗性の脱硝用触媒成形品。 2 ガラス質被膜が、B,Si,Pb,Li,K,及
びNaの群より選ばれた金属の2種以上の酸化物
を主成分とするものである特許請求の範囲第1項
記載の触媒成形品。 3 ガラス質被膜が、触媒成形品の端部に金属酸
化物及び(又は)加熱により金属酸化物を生成す
る金属塩の2種以上の混合物を塗布したのち加熱
溶融して形成されてなる特許請求の範囲第1項又
は第2項記載の触媒成形品。
[Claims] 1. A cylindrical catalyst molded product having at least one through hole, the main component being two or more metal oxides integrally fused to the end of the catalyst molded product. melting point
A denitrification catalyst molded product with reinforced edges and wear resistance formed by forming a glassy film at a temperature of 400 to 800°C. 2. The catalyst according to claim 1, wherein the glassy coating is mainly composed of oxides of two or more metals selected from the group of B, Si, Pb, Li, K, and Na. Molding. 3. A patent claim in which the glassy coating is formed by applying a mixture of two or more types of metal oxide and/or a metal salt that produces a metal oxide upon heating to the end of a catalyst molded product, and then heating and melting the mixture. The catalyst molded article according to item 1 or 2.
JP705779A 1979-01-26 1979-01-26 End part reinforced abrasion-resistant catalyst molding for denitration Granted JPS5599344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP705779A JPS5599344A (en) 1979-01-26 1979-01-26 End part reinforced abrasion-resistant catalyst molding for denitration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP705779A JPS5599344A (en) 1979-01-26 1979-01-26 End part reinforced abrasion-resistant catalyst molding for denitration

Publications (2)

Publication Number Publication Date
JPS5599344A JPS5599344A (en) 1980-07-29
JPS624176B2 true JPS624176B2 (en) 1987-01-29

Family

ID=11655429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP705779A Granted JPS5599344A (en) 1979-01-26 1979-01-26 End part reinforced abrasion-resistant catalyst molding for denitration

Country Status (1)

Country Link
JP (1) JPS5599344A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174650A (en) * 1984-09-18 1986-04-16 Toyota Motor Corp Monolithic catalyst for purifying exhaust gas
JP2003103181A (en) * 2001-09-28 2003-04-08 Ngk Insulators Ltd Honeycomb catalyst, method for manufacturing honeycomb intermediate and honeycomb catalyst
JP4294964B2 (en) * 2002-03-15 2009-07-15 日本碍子株式会社 Manufacturing method of ceramic honeycomb structure

Also Published As

Publication number Publication date
JPS5599344A (en) 1980-07-29

Similar Documents

Publication Publication Date Title
JP4455708B2 (en) Honeycomb structure and manufacturing method thereof
US3473938A (en) Process for making high strength refractory structures
JP2002154882A (en) Silicon carbide porous body and method for producing the same
EP0696650B1 (en) Methods of applying heat and oxidation resistant coating materials
US4810677A (en) Heat-insulating lining for a gas turbine
JPH06100381A (en) Porous mullite article resistive to heat shock and creep produced from topaz and method of producing the same
AU2004292452A1 (en) Free flowing dry back-up insulating material
SE470308B (en) Method and powder composition to form a porous, refractory mass on a surface
ES2224003T3 (en) CERAMIC COATING FOR COMBUSTION BOILERS.
CN101328569A (en) Thermal sprayed protective layer for metallic substrates
WO1994020435A1 (en) Heat-insulating refractory material
US6610359B2 (en) Ceramic foam and process for producing the same
JP3088652B2 (en) Vitreous sprayed material coated member having self-repairing action and method of manufacturing the same
EP2297055A1 (en) Coated reactor tube, method of making the coated tube, method for making bismuth containing glass frit powders using aerosol decomposition in said reactor tube.
JPS624176B2 (en)
JP3086704B2 (en) Manufacturing method of siliceous refractory materials
US4595664A (en) Burner skeleton
JPH08196902A (en) Inorganic cured body for air purification
EP0989103A1 (en) Man-made vitreous fibre products for use in thermal insulation, and their production
JPS6164867A (en) Glass reinforced thermal spraying material
WO2003051792A2 (en) Product based on expanded vermiculite coated with coating material
JPH11211357A (en) Inorganic fiber block and furnace
KR101513534B1 (en) Dry mix for treating refractory substrates and process using same
JP3746111B2 (en) Method for producing sodium silicate cullet
JPH03131347A (en) Abrasion-resistant plate-shaped denitrification catalyst and preparation thereof