JPS6241319B2 - - Google Patents
Info
- Publication number
- JPS6241319B2 JPS6241319B2 JP55164677A JP16467780A JPS6241319B2 JP S6241319 B2 JPS6241319 B2 JP S6241319B2 JP 55164677 A JP55164677 A JP 55164677A JP 16467780 A JP16467780 A JP 16467780A JP S6241319 B2 JPS6241319 B2 JP S6241319B2
- Authority
- JP
- Japan
- Prior art keywords
- anode
- chamber
- cation exchange
- cathode
- exchange membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Description
【発明の詳細な説明】
本発明は陽イオン交換膜を用いる有機化合物電
解反応を行うに際して、陽極室を保護隔膜にて少
くとも2室以上に分割した構造の電解槽を用い、
電解還元及び電解酸化を同時に行うか又は電解還
元のみを行うことを特徴とする電解方法に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention uses an electrolytic cell having a structure in which an anode chamber is divided into at least two or more chambers by a protective diaphragm when performing an organic compound electrolytic reaction using a cation exchange membrane.
The present invention relates to an electrolytic method characterized in that electrolytic reduction and electrolytic oxidation are performed simultaneously or only electrolytic reduction is performed.
詳しくは、陽極と陰極との間に、少くとも一方
の表面に陽イオン性官能基が存在している陽イオ
ン交換膜により陽極と陰極とが区分され、且つ陽
極と陽イオン交換膜との間が比電気抵抗2000Ω・
cm以下の隔膜によつて区分されることにより、陽
極室、中間室及び陰極室が形成された電解槽を用
い、陰極室に還元可能な官能基を有する有機化合
物の電解質溶液を供給し、陽極室には酸化可能な
官能基を有する有機化合物の電解質溶液または該
有機化合物を含まない電解質溶液を供給して、電
解を行うことを特徴とする有機化合物を電解還元
および電解酸化を同時に実施または電解還元のみ
を実施する電解方法である。 Specifically, the anode and cathode are separated by a cation exchange membrane having a cationic functional group on at least one surface, and the anode and cathode are separated by a cation exchange membrane having a cationic functional group on at least one surface. has a specific electrical resistance of 2000Ω・
Using an electrolytic cell in which an anode chamber, an intermediate chamber, and a cathode chamber are formed by dividing them by a diaphragm of less than cm, an electrolyte solution of an organic compound having a reducible functional group is supplied to the cathode chamber, and an anode An electrolyte solution of an organic compound having an oxidizable functional group or an electrolyte solution not containing the organic compound is supplied to the chamber to conduct electrolysis. This is an electrolytic method that only performs reduction.
陽イオン交換膜を隔膜として用いる有機化合物
電解合成反応においては、通常陽極では水分解が
起り、酸素および水素イオンを生じ陽極室液に酸
化される官能基を持つ有機化合物が存在すれば酸
化反応が起り、有機化合物が存在しなければ主と
して酸素オス或いはハロゲンガスが発生する。ま
た生成した水素イオンは陽イオン交換膜を通つて
陰極室に供給される。他方、陰極では陰極室液に
還元される官能基を持つ有機化合物が存在すれば
還元反応が起り、有機化合物が存在しなければ水
素ガスが発生する。 In an organic compound electrolytic synthesis reaction using a cation exchange membrane as a diaphragm, water decomposition usually occurs at the anode, producing oxygen and hydrogen ions, and if there is an organic compound with a functional group that can be oxidized in the anode chamber solution, an oxidation reaction will occur. If no organic compounds are present, mainly oxygen gas or halogen gas will be generated. Further, the generated hydrogen ions are supplied to the cathode chamber through the cation exchange membrane. On the other hand, at the cathode, if there is an organic compound having a functional group that can be reduced to the cathode chamber solution, a reduction reaction will occur, and if no organic compound is present, hydrogen gas will be generated.
従来から行われている陽イオン交換膜を隔膜と
して用いる有機化合物の電解反応は、陰極又は陽
極のどちらかの極を利用し還元又は酸化のどちら
かの反応を行う方法に限定されることが多く、そ
のため電力原単位が高く、しばしば工業化を見合
せる場合があつた。 Conventional electrolytic reactions of organic compounds using cation exchange membranes as diaphragms are often limited to methods that utilize either the cathode or the anode to perform either reduction or oxidation reactions. As a result, the electricity consumption rate was high, and industrialization was often postponed.
陽、陰両極にて同時に電解合成反応を起こなわ
す場合、お互いの有機化合物の分子量が小さいと
きには陽イオン交換膜を通して拡散で混合するこ
とや、特に陽極室液中にカチオン性有機化合物が
存在するときは水素イオンと共に陽イオン交換膜
を通り抜ける量がかなりあり、これは陰極室にて
還元された有機化合物の純度を低下させ、更に陽
極での酸化生成物の損失になるという欠点がしば
しば生じこのことも有機化合物の還元と酸化反応
を同時に行う電解法が採用され難い理由でもあつ
た。 When electrolytic synthesis reactions occur simultaneously at both the positive and negative electrodes, if the molecular weights of both organic compounds are small, they may be mixed by diffusion through a cation exchange membrane, or if cationic organic compounds are present in the anode chamber solution. When hydrogen ions pass through the cation exchange membrane, a considerable amount passes through the cation exchange membrane, which often has the disadvantage of reducing the purity of the reduced organic compounds in the cathode compartment and further loss of oxidation products at the anode. This was also a reason why it was difficult to adopt an electrolytic method in which the reduction and oxidation reactions of organic compounds were carried out simultaneously.
本発明者等は種々検討の結果、これらの欠点を
解決する方法として先に特開昭55−50471に示す
方法を提案した。すなわち、この方法は還元され
る官能基を有する有機化合物の電解質溶液を陰極
室に、また酸化される官能基を有する有機化合物
の電解質溶液を陽極室にそれぞれ入れて電解還元
および電解酸化を同時に行うにあたり、陽イオン
交換膜として陽イオン性の官能基を実質上膜の電
気抵抗が上昇しない範囲で均一に少なくとも一方
の表面に存在させた陽イオン交換膜を用いること
を特徴とする電解方法である。この方法によれ
ば、両極で有機電解反応が同時に行われるとき有
機化合物のお互いの混合が極めて少なくでき、効
率よく有機電解ができる。 As a result of various studies, the present inventors proposed a method previously disclosed in Japanese Patent Application Laid-Open No. 50471/1983 as a method for solving these drawbacks. That is, in this method, an electrolyte solution of an organic compound having a functional group to be reduced is placed in a cathode chamber, and an electrolyte solution of an organic compound having a functional group to be oxidized is placed in an anode chamber, and electrolytic reduction and electrolytic oxidation are performed simultaneously. This is an electrolysis method characterized by using a cation exchange membrane in which cationic functional groups are uniformly present on at least one surface within a range that does not substantially increase the electrical resistance of the membrane. . According to this method, when organic electrolytic reactions are simultaneously carried out at both electrodes, mixing of organic compounds with each other can be extremely reduced, and organic electrolysis can be carried out efficiently.
しかしながら、特開昭55−50471号の方法でも
長期間の運転を行つた場合には、両極で行われる
有機物の混合が極めて少く、効率よく有機電解が
できるという効果が次第にうすれていく現象がみ
られる。これは陽イオン交換膜の少くとも一方の
表面に陽イオン性の官能基を実質上膜の電気抵抗
が上昇しない範囲で存在させた部分が徐々に酸化
されるためと推測される。 However, even with the method disclosed in JP-A No. 55-50471, when operating for a long period of time, there is a phenomenon that the mixing of organic substances at both electrodes is extremely small, and the effect of efficient organic electrolysis gradually fades. It will be done. This is presumed to be due to the gradual oxidation of the portion in which a cationic functional group is present on at least one surface of the cation exchange membrane within a range that does not substantially increase the electrical resistance of the membrane.
したがつて、本発明者らは更に鋭意研究の結
果、陽極と陽イオン交換膜との間に保護隔膜を設
けることによつて、長期間の運転を実施しても極
室における有機物の混入が意外にも極めて少なく
でき、効率よく有機物の電解ができる知見を得て
本発明を完成したものである。即ち、陽イオン交
換膜により陽極と陰極とが区分され、且つ陽極と
陽イオン交換膜との間が比電気抵抗2000Ω−cm以
下の隔膜によつて区分されることにより陽極室、
中間室及び陰極室が形成された電解槽を用い、陰
極室に還元可能な官能基を有する有機化合物の電
解質溶液を供給し、陽極室には酸化可能な官能基
を有する有機化合物の電解質溶液または該有機化
合物を含まない電解質溶液を供給して、電解を行
うことを特徴とする有機化合物を電解還元および
電解酸化を同時に実施または電解還元のみを実施
する電解方法である。 Therefore, as a result of further intensive research, the present inventors found that by providing a protective diaphragm between the anode and the cation exchange membrane, it is possible to prevent organic matter from entering the electrode chamber even after long-term operation. Surprisingly, the present invention was completed based on the knowledge that organic substances can be efficiently electrolyzed with a very small amount. That is, the anode and the cathode are separated by the cation exchange membrane, and the anode and the cation exchange membrane are separated by a diaphragm having a specific electrical resistance of 2000 Ω-cm or less, thereby forming an anode chamber,
Using an electrolytic cell in which an intermediate chamber and a cathode chamber are formed, an electrolyte solution of an organic compound having a reducible functional group is supplied to the cathode chamber, and an electrolyte solution of an organic compound having an oxidizable functional group or an electrolyte solution of an organic compound having an oxidizable functional group is supplied to the anode chamber. This is an electrolytic method in which electrolytic reduction and electrolytic oxidation of an organic compound are simultaneously performed or only electrolytic reduction is performed, characterized in that electrolysis is performed by supplying an electrolyte solution that does not contain the organic compound.
従来から食塩電解等のアルカリ金属塩電解にお
いて、陽極で発生する塩素ガス等のハロガスによ
る陽イオン交換膜の酸化劣化を防ぐ手段として、
保護隔膜のアスベスト、多孔性含ふつ素隔膜等を
陽極と陽イオン交換膜の間に配してアルカリ金属
塩水溶液を電気分解することは知られている。ま
たこの際、陽イオン交換膜と多孔性隔膜で形成さ
れる中間の室に陽極で発生した酸化性物質が侵入
するのを防ぐため、陽極液、中間室液の流速の制
御等が種々提案されている。しかし、アルカリ金
属塩水溶液の電気分解は本質的に酸化性化合物が
発生する無機塩化合物のみの場合であり容易に酸
化されうる官能基を有する有機化合物が陽極液中
に存在する場合と本質的に異なる。またアルカリ
金属塩の電解の場合にはアスベスト、多孔性含ふ
つ素隔膜等の耐酸化性の保護隔膜を配しても、な
お且つ陽イオン交換膜の経時的な性能劣化は避け
られない。これに対して、本発明においては、ア
スベスト等の無機物、テフロン等の含ふつ素系の
保護隔膜を用いて有効であるのみならずパーチメ
ントペーパー、炭化水素系の保護隔膜を用いても
極めて有効であり、イオン交換膜の酸化劣化は完
全に避けることができるのである。また、本発明
の保護隔膜の使用によつて、特に極室における有
機物の混入が極めて少なくできる効果は予想以上
である。アルカリ金属塩電解の場合に比較して何
故にこのように保護隔膜の種類及び保護隔膜の作
用効果が異なるのか、本質的に保護隔膜の作用効
果が本発明の場合に異なるためと思われる。 Conventionally, in alkali metal salt electrolysis such as salt electrolysis, it has been used as a means to prevent oxidative deterioration of cation exchange membranes due to halogen gases such as chlorine gas generated at the anode.
It is known to electrolyze an aqueous alkali metal salt solution by disposing a protective diaphragm such as asbestos or a porous fluorine-containing diaphragm between an anode and a cation exchange membrane. At this time, in order to prevent oxidizing substances generated at the anode from entering the intermediate chamber formed by the cation exchange membrane and the porous diaphragm, various methods have been proposed, such as controlling the flow rate of the anolyte and intermediate chamber liquid. ing. However, electrolysis of an aqueous alkali metal salt solution essentially involves only inorganic salt compounds that generate oxidizing compounds; different. Furthermore, in the case of electrolysis of alkali metal salts, even if an oxidation-resistant protective membrane such as asbestos or a porous fluorine-containing membrane is provided, deterioration of the performance of the cation exchange membrane over time cannot be avoided. On the other hand, in the present invention, not only is it effective to use an inorganic material such as asbestos or a fluorine-containing protective film such as Teflon, but it is also extremely effective to use a protective film made of parchment paper or hydrocarbon. Therefore, oxidative deterioration of the ion exchange membrane can be completely avoided. Furthermore, the use of the protective diaphragm of the present invention has a more than expected effect in that the contamination of organic substances, especially in the electrode chamber, can be extremely reduced. The reason why the type of protective diaphragm and the effect of the protective diaphragm are so different compared to the case of alkali metal salt electrolysis is probably because the effect of the protective diaphragm is essentially different in the case of the present invention.
なお、本発明は電解還元と電解酸化とを同時に
実施する場合に限らず、電解還元のみを実施する
場合にも有効である。 Note that the present invention is effective not only when electrolytic reduction and electrolytic oxidation are performed simultaneously, but also when only electrolytic reduction is performed.
以上のように、先の特開昭55−50471「電解方
法」を種々検討した結果、我々は更に優れた本発
明を完成した。 As described above, as a result of various studies on the ``Electrolytic Method'' disclosed in Japanese Patent Application Laid-open No. 55-50471, we have completed the even more excellent invention.
本発明で使用される保護隔膜は、通常市販のパ
ーチメント紙、アセチルセルローズ膜、セロフア
ンなどの半透膜、ポリ弗化ビニルやABSやポリ
スチレンやポリ塩化ビニル、ポリエチレン、ポリ
プロピレン等を原料とした多孔性中性膜、あるい
は種々の基材布の上にポリ塩化ビニル等ラテツク
スを塗布し乾燥して作られた多孔性隔膜、あるい
は重合性モノマー、必要によつてはプラスチツク
微粉体と非重合性物質を補強材に塗布重合した後
非重合性物質を除くことにより多孔体とした隔膜
等が広く用いられる。又通常市販の布、ネツト等
の織物及び不織布も多孔性隔膜として好適に使用
できる。 The protective membrane used in the present invention is usually a commercially available parchment paper, an acetyl cellulose membrane, a semipermeable membrane made of cellophane, or a porous membrane made of polyvinyl fluoride, ABS, polystyrene, polyvinyl chloride, polyethylene, polypropylene, etc. Neutral membranes, porous diaphragms made by coating latex such as polyvinyl chloride on various base cloths and drying them, or polymerizable monomers, and if necessary plastic fine powder and non-polymerizable substances. Diaphragms and the like that are made into porous bodies by coating and polymerizing reinforcing materials and then removing non-polymerizable substances are widely used. Also, commercially available woven fabrics and nonwoven fabrics such as cloth and net can also be suitably used as the porous diaphragm.
本発明の保護隔膜として要求される性質は有機
化合物電解質あるいは電解質溶液中での電気伝導
度が大きいことが第一であり、2000Ω−cm以下の
比電気抵抗を有するものであれば、透水性、半透
水性、非透水性、非多孔性、多孔性などの呼称の
別なく有効である。更に望ましくは耐酸化性、化
学的、熱的、機械的な性質が優れていること及び
経済的であることなどである。 The first property required for the protective diaphragm of the present invention is high electrical conductivity in an organic compound electrolyte or electrolyte solution, and if it has a specific electrical resistance of 2000 Ω-cm or less, water permeability, It is effective regardless of its name, such as semi-permeable, non-permeable, non-porous, or porous. More preferably, it has excellent oxidation resistance, chemical, thermal, and mechanical properties, and is economical.
一般に保護隔膜を通電方向に投影した時の開孔
率が一般に20%以下好ましくは5%以下であれば
よく、上記の要求される性質との兼合いで、実用
される電解条件に合せて選択すればよい。例えば
フイルム中に連通する孔の径及び数、電解質との
親和性等により、その電気伝導性は大きく変る
が、経済的に見た長期耐久性が保持できる程度ま
でに耐酸化性も含めた機械的強度を低下させて、
代りにフイルムを連通せる孔の径、数を増し、電
気伝導性を大となるようにフイルムを選択すれば
よい。 In general, the porosity of the protective diaphragm when projected in the current direction should generally be 20% or less, preferably 5% or less, and should be selected according to the practical electrolytic conditions in balance with the above-mentioned required properties. do it. For example, electrical conductivity varies greatly depending on the diameter and number of pores communicating in the film, affinity with the electrolyte, etc., but the mechanical properties including oxidation resistance must be maintained to the extent that long-term durability can be maintained from an economical point of view. By reducing the intensity of
Instead, the film may be selected to increase the diameter and number of holes through which the film communicates, and to increase electrical conductivity.
本発明に用いる保護隔膜としては、非多孔性の
親水性ポリビニルアルコールのフイルム、或いは
エチレン・酢酸ビニル共重合体の加水分解フイル
ム等半透膜も極めて有効である。 As the protective membrane used in the present invention, semipermeable membranes such as non-porous hydrophilic polyvinyl alcohol films or hydrolyzed films of ethylene/vinyl acetate copolymer are also extremely effective.
本発明に用いられる有機化合物はイオン性、非
イオン性のいずれでもよい。また陰極室で用いら
れる還元される官能基を有する有機化合物および
陽極室で用いられる酸化される官能基を有する有
機化合物は特に限定されず、従来公知の有機電解
酸化反応、有機電解還元反応にかかわる官能基及
びそれを有する有機化合物は何ら制限なく用いら
れる。具体的な例を若干示すと、還元される官能
基を有する有機化合物として、ニトロベンゼン、
ニトロアニリン、ジニトロフエノール、ニトロ安
息香酸等の芳香族ニトロ化合物;アセトン、アセ
トフエノン、アリルアルデヒド、グリオキザール
等のカルボニル化合物;安息香酸、蓚酸、プロピ
オン酸等の有機酸;フタル酸、マレイン酸、アク
リロニトリル等の不飽和化合物;シアノピリミジ
ン、ブチロニトリル、マロンニトリル等のシアノ
化合物;ピリジン、キノリン等複素環化合物;ク
ロルアミノピリミジン等のハロゲン化合物;ブド
ウ糖、キシローズ等の糖類などがある。有機化合
物が水不溶の場合には、メタノール、テトラヒド
ロフラン等のコソルベルトを併用したり、アルキ
ル四級アンモニウム塩、アルキル硫酸四級アンモ
ニウム塩を支持塩および乳化剤として使用するこ
とができる。 The organic compound used in the present invention may be either ionic or nonionic. In addition, the organic compound having a functional group to be reduced used in the cathode chamber and the organic compound having a functional group to be oxidized to be used in the anode chamber are not particularly limited. The functional group and the organic compound having the functional group can be used without any restriction. To give some specific examples, examples of organic compounds having a functional group that can be reduced include nitrobenzene,
Aromatic nitro compounds such as nitroaniline, dinitrophenol, nitrobenzoic acid; carbonyl compounds such as acetone, acetophenone, allylaldehyde, glyoxal; organic acids such as benzoic acid, oxalic acid, propionic acid; phthalic acid, maleic acid, acrylonitrile, etc. Unsaturated compounds; cyano compounds such as cyanopyrimidine, butyronitrile, malonitrile; heterocyclic compounds such as pyridine and quinoline; halogen compounds such as chloraminopyrimidine; saccharides such as glucose and xyrose. When the organic compound is water-insoluble, a cosolvate such as methanol or tetrahydrofuran may be used in combination, or an alkyl quaternary ammonium salt or an alkyl sulfuric acid quaternary ammonium salt may be used as a supporting salt and an emulsifier.
酸化される官能基を有する有機化合物として酪
酸エチルエステル、ステアリン酸、グリオキザー
ル等のカルボニル化合物;ベンゼン、ナフタリ
ン、アンスラセン等の芳香族化合物;ピリジン、
キノリン等の複素環化合物;エタノール、プロパ
ノール、γ−アミノプロパノール等のアルコール
などがあり、水不溶の場合には、アルキル四級ア
ンモニウム塩、アルキル硫酸四級アンモニウム塩
を支持塩および乳化剤として使用することができ
る。また有機化合物水溶液の電気伝導性が悪い場
合には適宜酸又はアルカリを添加することができ
る。以上述べた酸化および還元さるべき有機化合
物は、ほんのその一例にすぎず、本発明の主旨か
ら何ら制限されるものではない。 Organic compounds with oxidizable functional groups include carbonyl compounds such as butyric acid ethyl ester, stearic acid, and glyoxal; aromatic compounds such as benzene, naphthalene, and anthracene; pyridine,
Heterocyclic compounds such as quinoline; alcohols such as ethanol, propanol, and γ-aminopropanol; if they are insoluble in water, use alkyl quaternary ammonium salts and alkyl sulfate quaternary ammonium salts as supporting salts and emulsifiers. Can be done. Further, when the electrical conductivity of the organic compound aqueous solution is poor, an acid or alkali can be added as appropriate. The above-mentioned organic compounds to be oxidized and reduced are merely examples, and are not limited to the gist of the present invention.
本発明に使用される陽イオン交換膜は、表面に
陽イオン性の官能基が存在しているものであれば
均質膜、不均質膜、縮合系あるいは重合系の膜、
炭化水素系の膜、含ふつ素系の膜、パーフルオロ
カーボン系の膜、更には補強材の有無、イオン交
換膜の種類等の制限は特になく使用できる。特
に、本発明は前記した如く、特開昭55−50471号
の酸化還元両反応を行わす場合に特に著じるしい
効果を有する。即ち本発明の特徴の一つは、かか
る効果を得るため、陽イオン交換膜の表層部の特
に陽極液に接する側に、陽イオン性の官能基が実
質上膜の電気抵抗を上昇させない範囲で均一に存
在した膜を用いることである。この種の膜として
は従来公知の特公昭46−23607号、同47−3801
号、同47−3802号、同46−42082号、同50−4638
号に記載されているものが何ら制限なく用いられ
る。 The cation exchange membrane used in the present invention may be a homogeneous membrane, a heterogeneous membrane, a condensation type membrane or a polymerization type membrane, as long as it has a cationic functional group on its surface.
Hydrocarbon membranes, fluorine-containing membranes, perfluorocarbon membranes, and the presence or absence of reinforcing materials, types of ion exchange membranes, etc. can be used without particular limitations. In particular, as described above, the present invention has a particularly remarkable effect when both the redox and oxidation reactions described in JP-A-55-50471 are carried out. That is, one of the features of the present invention is that, in order to obtain such an effect, cationic functional groups are added to the surface layer of the cation exchange membrane, particularly on the side that comes into contact with the anolyte, within a range that does not substantially increase the electrical resistance of the membrane. The purpose is to use a uniform film. Conventionally known films of this type include Japanese Patent Publications No. 46-23607 and No. 47-3801.
No. 47-3802, No. 46-42082, No. 50-4638
Items listed in the number may be used without any restriction.
また、本出願人等が、特願昭53−66661号によ
つて提案した陽イオン交換膜、即ち、酸ハライド
基が統計的に均一に分布して存在する高分子膜状
物の一方の面をアルカリ溶液と接触せしめて酸ハ
ライド基を実質的に加水分解し、次いで該膜状物
を第1級又は(及び)第2級アミノ化合物溶液で
反応した後、更にアルカリ溶液中に浸漬して膜内
に残存する酸ハライド基を加水分解して製造した
一方の面にのみ酸アミド基を有する陽イオン交換
膜例えば、ポリエチレンイミンをスルホン基を介
して共有結合で固定化した陽イオン交換膜が好ま
しく使用できる。また分子量100以上の陽イオン
性の官能基を有する低分子、高分子化合物を一種
以上、該膜の表面に吸着、イオン交換、共有結合
性の化学結合、配位結合等によつて、陽イオン交
換膜の表面上に均一に存在させ、且つ該陽イオン
性官能基を存在させない膜の電気抵抗に対して、
存在させた膜の電気抵抗が10倍以上にならない条
件にした膜も有効である。陽イオン性官能基を多
量に存在させると膜の電気抵抗の高騰を招き、生
成物の電力原単位を高めるので工業的でない。一
般にこのような陽イオン性化合物の存在量は、
0.001mg/dm2以上存在すれば有効である。 In addition, the present applicant et al. proposed a cation exchange membrane in Japanese Patent Application No. 53-66661, that is, one side of a polymer membrane in which acid halide groups exist in a statistically uniform distribution. is brought into contact with an alkaline solution to substantially hydrolyze the acid halide groups, and the membrane is then reacted with a primary or/and secondary amino compound solution, and then further immersed in an alkaline solution. For example, a cation exchange membrane that has an acid amide group on one side only and is produced by hydrolyzing the acid halide groups remaining in the membrane. It can be used preferably. In addition, one or more low-molecular or high-molecular compounds having a cationic functional group with a molecular weight of 100 or more are adsorbed onto the surface of the membrane, ion exchange, covalent chemical bonds, coordinate bonds, etc. Regarding the electrical resistance of a membrane that is uniformly present on the surface of the exchange membrane and in which the cationic functional group is not present,
It is also effective to use a film under conditions where the electrical resistance of the existing film does not increase by more than 10 times. The presence of a large amount of cationic functional groups causes a rise in the electrical resistance of the membrane and increases the power consumption of the product, which is not suitable for industrial use. Generally, the abundance of such cationic compounds is
It is effective if it exists in an amount of 0.001 mg/dm 2 or more.
また特開昭49−89692号、同49−91086号、同49
−91088号、同49−91087号に開示されているよう
な陽イオン性の官能基を導入した陽イオン交換膜
も有効である。 Also, JP-A No. 49-89692, No. 49-91086, No. 49
Cation exchange membranes into which cationic functional groups have been introduced, such as those disclosed in No. 91088 and No. 49-91087, are also effective.
以上のように、特に好ましい陽イオン交換膜と
しては陽イオン性の官能基が実質上膜の電気抵抗
が上昇しない範囲内で均一に少なくとも一方の表
面に共有結合、イオン結合、吸着によつて存在さ
せた陽イオン交換膜を用いる場合や、ポリエチレ
ンイミンをスルホン基を介して共有結合で固定し
た陽イオン交換膜を使用する時に、少なくとも膜
の陽極液に接する膜面に陽イオン性の官能基が存
在すればよく、他に制限はない。 As described above, a particularly preferable cation exchange membrane is one in which cationic functional groups are uniformly present on at least one surface by covalent bonding, ionic bonding, or adsorption within a range that does not substantially increase the electrical resistance of the membrane. When using a cation-exchange membrane with polyethyleneimine or a cation-exchange membrane in which polyethyleneimine is covalently fixed via a sulfone group, cationic functional groups are present at least on the surface of the membrane in contact with the anolyte. It only needs to exist, there are no other restrictions.
また電解方法として陽極室に陽極酸化処理する
有機化合物の他に、分子量100以上で実質上陽イ
オン交換膜を透過しない、使用雰囲気で正の電荷
となる官能基を有する有機、無機の化合物で、電
解酸化に関与しない物質を添加しながら、或は添
加した状態で電解を実施してもよい。この場合、
当然該物質は電気泳動的に陽イオン交換膜の陽極
面に押しつけられて、膜面上に正電荷の層を形成
することになる。 In addition to organic compounds that are anodized in the anode chamber, organic and inorganic compounds with a molecular weight of 100 or more that do not substantially pass through the cation exchange membrane and that have a functional group that becomes positively charged in the operating atmosphere can be used for electrolysis. Electrolysis may be carried out with or without adding a substance that does not participate in oxidation. in this case,
Naturally, the substance is electrophoretically pressed against the anode surface of the cation exchange membrane, forming a positively charged layer on the membrane surface.
次に本発明に用いられる電解槽は、陽極室と陰
極室が存在し、その間に一枚以上の上記した陽イ
オン性電荷を表層部に有する特殊の陽イオン交換
膜が配され、更に陽極と該陽イオン交換膜の間に
前記した保護隔膜を一枚以上存在させたものであ
る。一般に保護隔膜、陽イオン交換膜ともに、工
業装置で用いる場合には大面積となり、膜の両面
の水圧を均等にしなければ、膜状物の変形をきた
し遂にはピンホールの発生・破損等につながる。
したがつて、陰極と陽イオン交換膜を密着させる
か、或いはスペーサー等によつて支持する必要が
ある。望ましくは陰極上に遮へい率が20%以下の
スペーサーを配し、その上に陽イオン交換膜を配
する場合が好ましい。この場合の遮へい率とは同
一の電解槽においてスペーサーを配した場合と配
さない場合で溶液の電気抵抗を測定して、系の電
気抵抗の上昇率で言う。この遮へい率が20%以上
になると系の電気抵抗が増大して工業的に不利に
なるばかりでなく、電極上での還元反応率にも影
響を与え好ましくない。 Next, the electrolytic cell used in the present invention has an anode chamber and a cathode chamber, between which one or more special cation exchange membranes having the above-mentioned cationic charges on the surface layer are disposed, and further between the anode and the cathode chamber. One or more of the above-mentioned protective diaphragms are present between the cation exchange membranes. In general, both protective diaphragms and cation exchange membranes have large areas when used in industrial equipment, and unless the water pressure is equalized on both sides of the membrane, the membrane will become deformed and eventually lead to pinholes and damage. .
Therefore, it is necessary to bring the cathode and the cation exchange membrane into close contact with each other or to support them with a spacer or the like. Preferably, a spacer having a shielding rate of 20% or less is disposed on the cathode, and a cation exchange membrane is disposed thereon. In this case, the shielding rate is defined as the rate of increase in the electrical resistance of the system by measuring the electrical resistance of the solution in the same electrolytic cell with and without a spacer. When this shielding rate exceeds 20%, the electrical resistance of the system increases, which is not only industrially disadvantageous, but also affects the reduction reaction rate on the electrode, which is undesirable.
陽極側には同様に遮へい率20%以上のスペーサ
ーを介して保護隔膜を配することが望ましい。し
かし、陽極の場合には必ずしもスペーサーが介在
しなくとも、直接陽極に保護隔膜を接触支持させ
てもよい。特に陰極で還元反応のみ実施する場合
はスペーサーを用いなくともよい。なお、陰イオ
ン交換膜と保護隔膜との間隙は一般に0.5mm〜50
mmに保持することが好ましい。多孔性の保護隔膜
を用いる場合には、保護隔膜と陽イオン交換膜の
中間室には液の流通があるため該中間室と陽極室
に用いる液性は同一のものであつてよい。また、
保護隔膜として透水性のないものを用いるときは
陽極液と中間室液として別々のものを用いてもよ
い。また多孔性の保護隔膜にあつても透水量の極
めて少ない隔膜の場合には、同様に陽極液、中間
室液ともに別々に供給することができる。かかる
場合、中間室の液圧は陽極室の液圧より高く保つ
て電解することが好ましい。 Similarly, it is desirable to arrange a protective diaphragm on the anode side via a spacer with a shielding rate of 20% or more. However, in the case of an anode, the protective diaphragm may be supported in direct contact with the anode without necessarily using a spacer. In particular, when only the reduction reaction is carried out at the cathode, it is not necessary to use a spacer. In addition, the gap between the anion exchange membrane and the protective diaphragm is generally 0.5 mm to 50 mm.
It is preferable to keep it at mm. When a porous protective diaphragm is used, since liquid flows between the protective diaphragm and the cation exchange membrane, the liquid used in the intermediate chamber and the anode chamber may be the same. Also,
When using a non-water permeable protective diaphragm, separate anolyte and intermediate chamber liquids may be used. Furthermore, even if the protective membrane is porous, in the case of a membrane with extremely low water permeability, both the anolyte and the intermediate chamber liquid can be supplied separately. In such a case, it is preferable to maintain the liquid pressure in the intermediate chamber higher than the liquid pressure in the anode chamber for electrolysis.
この場合の各室における溶液の流速は電流密
度・反応条件によつて異なるが、中間室にあつて
は陽イオン交換膜の限界電流密度以下で運転可能
な両速、或いは撹拌が必要である。陽極液、陰極
液はあまり流速が遅いか、撹拌が少ないと主反応
の他に副反応が生じ、酸化反応、還元反応の収率
の低下をきたす。収率60%以上を維持できる流速
であることが望ましい。その他に液の供給、温度
等については、特に従来公知のものと異なるもの
でなくエネルギーの消費量ができるだけ少なく、
且つ反応効率の最も高い条件が選択される。 In this case, the flow rate of the solution in each chamber varies depending on the current density and reaction conditions, but in the intermediate chamber, it is necessary to have both speeds that can be operated at a current density below the limit current density of the cation exchange membrane, or to use stirring. If the flow rate of the anolyte or catholyte is too slow or the stirring is insufficient, side reactions will occur in addition to the main reaction, resulting in a decrease in the yield of the oxidation reaction and reduction reaction. It is desirable that the flow rate is such that a yield of 60% or more can be maintained. In addition, the supply of liquid, temperature, etc. are not particularly different from those conventionally known, and energy consumption is as low as possible.
In addition, conditions with the highest reaction efficiency are selected.
本発明は上記のごとく陽極室と一枚以上の保護
隔膜、一枚以上の陽イオン交換膜及び陰極室が用
いられる態様を示しているが、電解槽の製作上、
保守管理上、また経済的な制約から最も好ましい
態様は、陽極室と一枚の保護隔膜、一枚または二
枚の陽イオン交換膜及び陰極室からなる三室また
は四室構造の電解槽を用いた場合である。そし
て、多量の有機化合物を電解する場合には上記少
なくとも三室または四室構成の単位を一つとし
て、これを多数積層して実施すればよい。この場
合の電解槽への給電方法は調ゆる単極式、複極式
のいずれであつてもよい。又給液方法も各室各個
給液方法でも、分岐給液方法でもよい。 As described above, the present invention shows an embodiment in which an anode chamber, one or more protective diaphragms, one or more cation exchange membranes, and a cathode chamber are used, but in manufacturing the electrolytic cell,
In view of maintenance and economical constraints, the most preferred embodiment uses an electrolytic cell with a three- or four-chamber structure consisting of an anode chamber, one protective diaphragm, one or two cation exchange membranes, and a cathode chamber. This is the case. In the case of electrolyzing a large amount of organic compounds, the above-mentioned at least three- or four-chamber unit may be used as one unit, and a large number of these units may be laminated. In this case, the method of supplying power to the electrolytic cell may be either a monopolar type or a bipolar type. Also, the liquid supply method may be an individual liquid supply method for each chamber or a branched liquid supply method.
また、電極は陰極材料として、鉄、ニツケル、
パラジウム、鉛、鉛合金、銀、白金、金、チタン
等、陽極材料としては過酸化鉛、鉛、鉛合金、白
金メツキ、ニオブ、チタン、タンタル、カーボ
ン、チタン上に酸化チタンと酸化ルテニウム等の
貴金属酸化物を存在させたもの等従来公知の電極
材料が何ら制限なく平板又は網状体又は棒状体と
して用いられる。 In addition, the cathode materials used for the electrodes include iron, nickel,
Palladium, lead, lead alloy, silver, platinum, gold, titanium, etc.; as anode materials, lead peroxide, lead, lead alloy, platinum plating, niobium, titanium, tantalum, carbon, titanium oxide, ruthenium oxide, etc. on titanium; Conventionally known electrode materials, such as those containing noble metal oxides, can be used as flat plates, net-like bodies, or rod-like bodies without any limitations.
本発明の電解方法によれば、長期間の連続運転
あるいはバツチ運転を繰り返しても、陽イオン交
換膜の耐久性がよく、また極室における有機物の
混合が極めて少なく、効率よく有機物の電解還元
および電解酸化を同時に実施するか、または電解
還元のみを実施することができる。したがつて、
本発明の電解方法は一般に陽極での水の分解電圧
以下で実施されるが、さらに酸化性の強い運転条
件下においても有効に採用される。例えば、酸化
が進みにくい有機化合物の酸化反応を行う場合や
酸素ガスを発生しながら行う場合あるいは他の酸
化性物質ができる場合等において有効である。 According to the electrolysis method of the present invention, the cation exchange membrane has good durability even after repeated long-term continuous operation or batch operation, and the mixing of organic substances in the electrode chamber is extremely small, resulting in efficient electrolytic reduction and reduction of organic substances. Electrolytic oxidation can be carried out simultaneously or only electrolytic reduction can be carried out. Therefore,
The electrolysis method of the present invention is generally carried out below the water decomposition voltage at the anode, but it can also be effectively employed under highly oxidizing operating conditions. For example, it is effective when performing an oxidation reaction of an organic compound that is difficult to oxidize, when performing an oxidation reaction while generating oxygen gas, or when other oxidizing substances are produced.
以下に、実施例に使用した陽イオン交換膜の製
造法を記載するが、陽イオンとなりうる官能基が
実質上膜の電気抵抗が上昇しない範囲で表面に存
在する陽イオン交換膜の製造法については、先に
例示した種々の方法があり本例で示される膜が、
その一例にすぎないことはいうまでもない。 The method for manufacturing the cation exchange membrane used in the examples is described below, and the method for manufacturing the cation exchange membrane in which functional groups that can become cations are present on the surface within a range that does not substantially increase the electrical resistance of the membrane is described. There are various methods as exemplified above, and the film shown in this example is
Needless to say, this is just one example.
(1) ポリ塩化ビニル粉末0.1部、スチレン1.8部、
ジビニルベンゼン0.2部、ジオクチルフタレー
ト0.3部、ベンゾイルペルオキシド0.1部を均一
に混合した後、ポリ塩化ビニル布に塗布し、両
面をセロフアンフイルムで覆い、110℃で4時
間重合して得られるフイルムを硫酸−クロルス
ルホン酸(1:1)混合溶液で40℃、30分間反
応させ、反応させた膜を80%硫酸水溶液、30%
硫酸水溶液に各々10分ずつ浸漬し、純水洗浄
後、片面を3000〜7000の分子量を有するポリエ
チレンイミンの10%水溶液で、室温下に24時間
反応させ、片面をスルホン酸アミド化した。次
いで、10%苛性ソーダ水溶液で30分間室温下に
浸漬し、膜中のスルホニルクロライド基を加水
分解し、10%硫酸水溶液で30分処理の後、十分
水洗し、電解酸化還元用の膜として使用した。
この膜を実施例中ではA膜と記載した。(1) 0.1 part of polyvinyl chloride powder, 1.8 parts of styrene,
After uniformly mixing 0.2 parts of divinylbenzene, 0.3 parts of dioctyl phthalate, and 0.1 parts of benzoyl peroxide, the mixture was applied to a polyvinyl chloride cloth, covered with cellophane film on both sides, and polymerized at 110°C for 4 hours. - React with a mixed solution of chlorsulfonic acid (1:1) at 40℃ for 30 minutes, and apply the reacted membrane to an 80% aqueous sulfuric acid solution and 30%
Each sample was immersed in an aqueous sulfuric acid solution for 10 minutes, and after washing with pure water, one side was reacted with a 10% aqueous solution of polyethyleneimine having a molecular weight of 3,000 to 7,000 at room temperature for 24 hours to form a sulfonic acid amide on one side. Next, the membrane was immersed in a 10% caustic soda aqueous solution for 30 minutes at room temperature to hydrolyze the sulfonyl chloride groups, treated with a 10% sulfuric acid aqueous solution for 30 minutes, thoroughly rinsed with water, and used as a membrane for electrolytic redox. .
This film was referred to as A film in the examples.
(2) 前記ポリエチレンイミン処理前の膜を10%苛
性ソーダ水溶液で処理し、スルホニルクロライ
ド基を加水分解し、次いで、純水洗浄10%硫酸
水溶液処理の後、十分に純水洗浄した。この膜
をB膜と記載した。(2) The membrane before the polyethyleneimine treatment was treated with a 10% aqueous solution of caustic soda to hydrolyze the sulfonyl chloride groups, then washed with pure water, treated with a 10% aqueous sulfuric acid solution, and thoroughly washed with pure water. This film was designated as B film.
(3) B膜を重合度300のポリ(N−メチル−N−
ヒドロキシ)2ビニルピリジンの0.1%水溶液
で8時間片面処理し十分水洗した。この膜をC
膜と記載した。(3) Film B is made of poly(N-methyl-N-
One side was treated with a 0.1% aqueous solution of (hydroxy)2vinylpyridine for 8 hours and thoroughly washed with water. This film is C
It was described as a membrane.
(4) B膜を重合度340のポリ(N・N・N−トリ
メチル)ビニルベンジルアンモニウムヒドロキ
シドの0.1%水溶液で8時間片面処理し次いで
十分水洗した。この膜をD膜と記載した。(4) Film B was treated on one side with a 0.1% aqueous solution of poly(N·N·N-trimethyl)vinylbenzylammonium hydroxide having a degree of polymerization of 340 for 8 hours, and then thoroughly washed with water. This film was designated as D film.
なお、前記のA膜、B膜、C膜およびD膜の膜
抵抗は、0.5N−NaCl水溶液中での交流1000サイ
クルを用いて測定したところ次のとおりであつ
た。 The membrane resistances of the A, B, C, and D membranes were measured using 1000 alternating current cycles in a 0.5N-NaCl aqueous solution and were as follows.
A膜………2.7Ωcm2 B膜………2.5Ωcm2
C膜………3.0Ωcm2 D膜………3.4Ωcm2
実施例 1
陰極に鉛平板を陽極に過酸化鉛被覆鉛板を用
い、極間距離4mm間に陰極室と陽極室をスルホン
酸型陽イオン交換膜Aを表面処理層を陽極側に向
けて設置して分割し、更に通電方向に投影した時
の開孔率3%の市販のポリ塩化ビニル製の布(厚
さ0.15mm)を保護隔膜(電気抵抗1.1Ω−cm2)と
して用いて、陽極室を2分割し、全体として3室
構造とした。各室内にはそれぞれスペーサー(ポ
リエチレン製網)を介在させた。スペーサーの遮
へい率は6%であつた。陰極、陽極とも有効電極
面積は2dm2である。A film: 2.7Ωcm 2 B film: 2.5Ωcm 2 C film: 3.0Ωcm 2 D film: 3.4Ωcm 2 Example 1 Using a lead flat plate as the cathode and a lead plate coated with lead peroxide as the anode. , the cathode chamber and the anode chamber are divided by installing the sulfonic acid type cation exchange membrane A with the surface treatment layer facing the anode side with a distance between electrodes of 4 mm, and the porosity is 3% when projected in the direction of current flow. A commercially available polyvinyl chloride cloth (thickness: 0.15 mm) was used as a protective diaphragm (electrical resistance: 1.1 Ω-cm 2 ) to divide the anode chamber into two, resulting in a three-chamber structure as a whole. A spacer (polyethylene mesh) was placed in each room. The shielding rate of the spacer was 6%. The effective electrode area of both the cathode and anode is 2 dm 2 .
陰極液には1モル/のマレイン酸水溶液を、
陽極室には3N−硫酸水溶液にとかした1モル/
のピペリジンを用いた。陽極液、陰極液それぞ
れ2の循環タンクを介して陰極液と陽極液の流
速が共に50cm/secになるように循環させながら
30℃で電流密度5A/dm2で100AHr電解したとこ
ろ、陰極での電流効率88%、陽極での電流効率72
%で、それぞれコハク酸10.2%、マレイン酸1.3
%の水溶液とグルタル酸2.2%、コハク酸0.6%含
むピペリジン6.1%の水溶液が得られた。陽極室
から陰極室に移動したピペリジン量を紫外吸収ス
ペクトルで定量したところ、陰極液中に0.1ppm
存在していた。 The catholyte contains a 1 mol/mole maleic acid aqueous solution,
In the anode chamber, 1 mol/ml dissolved in 3N-sulfuric acid aqueous solution
piperidine was used. The catholyte and catholyte are circulated through two circulation tanks each at a flow rate of 50cm/sec.
When electrolyzed at 30°C with a current density of 5 A/dm 2 at 100 AHr, the current efficiency at the cathode was 88% and the current efficiency at the anode was 72.
%, succinic acid 10.2%, maleic acid 1.3% respectively
% aqueous solution and a 6.1% aqueous solution of piperidine containing 2.2% glutaric acid and 0.6% succinic acid. When the amount of piperidine transferred from the anode chamber to the cathode chamber was quantified using ultraviolet absorption spectroscopy, it was found that 0.1 ppm was found in the catholyte.
It existed.
次いで上記のバツチ実験を50回繰返した。電解
終了後に上記と同様な方法で陰極液中のピペリジ
ンを定量したところ、3ppm存在し陽イオン交換
膜Aの表面処理層は殆んど劣化していなかつた。 The batch experiment described above was then repeated 50 times. When the amount of piperidine in the catholyte was determined in the same manner as above after the electrolysis was completed, it was found that 3 ppm was present, and the surface treatment layer of cation exchange membrane A had hardly deteriorated.
比較例 1
陰極に鉛平板を、陽極に過酸化鉛被覆鉛板を用
い、極間距離4mm間にスルホン酸型陽イオン交換
膜Aを表面処理層を陽極側に向けて設置した。各
電極と陽イオン交換膜の間にはそれぞれスペーサ
ー(ポリエチレン製網)を介在させた。なお、ス
ペーサーは実施例1と同様のものを用いた。陰
極、陽極とも有効電極面積は2dm2である。Comparative Example 1 A lead flat plate was used as the cathode, a lead plate coated with lead peroxide was used as the anode, and a sulfonic acid type cation exchange membrane A was installed with a distance between the electrodes of 4 mm with the surface treatment layer facing the anode side. A spacer (polyethylene mesh) was interposed between each electrode and the cation exchange membrane. Note that the same spacer as in Example 1 was used. The effective electrode area of both the cathode and anode is 2 dm 2 .
陰極液には1モル/のマレイン酸水溶液を、
陰極室には3N−硫酸水溶液にとかした1モル/
のピペリジンを用いた。陽極液、陰極液それぞ
れ2の循環タンクを介して、陰極液と陽極液の
流速が共に50cm/secになるように循環させなが
ら、30℃で電流密度5A/dm2で100AHr電解した
ところ、陰極での電流効率88%、陽極での電流効
率72%で、それぞれ、コハク酸10.2%、マレイン
酸1.3%の水溶液と、グルタル酸2.2%、コハク酸
0.6%含むピペリジン6.1%の水溶液が得られた。
陽極室から陰極室に移動したピペリジン量を紫外
吸収スペクトルで定量したところ陰極液中に
0.1ppm存在していた。 The catholyte contains a 1 mol/mole maleic acid aqueous solution,
In the cathode chamber, 1 mol/ml dissolved in 3N-sulfuric acid aqueous solution was added.
piperidine was used. When the catholyte and the anolyte were circulated through two circulation tanks each at a flow rate of 50 cm/sec, electrolysis was carried out at 30°C with a current density of 5 A/dm 2 for 100 Ahr. The current efficiency at the electrode was 88%, and the current efficiency at the anode was 72%, respectively.
A 6.1% aqueous solution of piperidine containing 0.6% was obtained.
The amount of piperidine transferred from the anode chamber to the cathode chamber was quantified using ultraviolet absorption spectroscopy, and it was found that it was in the catholyte.
It was present at 0.1ppm.
次いで上記のバツチ実験を50回繰返した後に、
陽極室から陰極室に移動したピペリジン量を定量
したところ、陰極液中に550ppm存在していた。 Next, after repeating the above batch experiment 50 times,
When the amount of piperidine transferred from the anode chamber to the cathode chamber was quantified, it was found that 550 ppm was present in the catholyte.
実施例 2
実施例1と同様の3室型の電解装置を用い陽イ
オン交換膜としてスルホン酸型陽イオン交換膜C
を用いて表面処理層を陽極側に向けて設置し、保
護隔膜としてはポリエチレンスクリーンに膜材と
してポリ塩化ビニルを用いた厚さ0.22mm、電気抵
抗0.1Ω−cm2のユミクロン(湯浅電池(株)製)を用
いた。Example 2 A sulfonic acid type cation exchange membrane C was used as a cation exchange membrane using the same three-chamber electrolyzer as in Example 1.
The surface treatment layer was installed facing the anode side using a polyethylene screen, and as a protective diaphragm, a Umicron (Yuasa Battery Co., Ltd. ) was used.
陰極液には1モル/の蓚酸水溶液を、陽極に
はβ−アミノプロピルアルコール1モル/の
3N−硫酸水溶液を用いた。陽極液と陰極液をそ
れぞれ2の循環タンクを介して50cm/secとな
るように陰、陽極室の流速を調整し、26〜30℃で
電流密度5A/dm2で100AHr電解した。陰極での
蓚酸のグリオキシル酸への電流効率は72%、陽極
でのβ−アミノプロピルアルコールのβ−アラニ
ンへの電流効率が81%であり、それぞれグリオキ
シル酸5.0%の2.1%蓚酸水溶液と、β−アラニン
4.0%の4.7%β−アミノプロピルアルコール酸性
溶液が得られた。一定量の陰極液をサンプリング
し水分を蒸発乾燥の後、赤外吸収スペクトルから
定量をした結果約2ppm程度のβ−アミノプロピ
ルアルコールの存在が確認された。 The catholyte contains 1 mol of oxalic acid aqueous solution, and the anode contains 1 mol of β-aminopropyl alcohol.
A 3N-sulfuric acid aqueous solution was used. The anolyte and catholyte were each passed through two circulation tanks, and the flow rates in the anode and anode chambers were adjusted to 50 cm/sec, and 100 Ahr electrolysis was carried out at 26 to 30° C. and a current density of 5 A/dm 2 . The current efficiency of oxalic acid to glyoxylic acid at the cathode is 72%, and the current efficiency of β-aminopropyl alcohol to β-alanine at the anode is 81%. -alanine
A 4.7% β-aminopropyl alcohol acidic solution of 4.0% was obtained. After sampling a certain amount of catholyte and evaporating the water to dryness, quantitative analysis from an infrared absorption spectrum confirmed the presence of approximately 2 ppm of β-aminopropyl alcohol.
次いで上記のバツチ実験を30回繰返した電解終
了時、上記と同様にして陰極液中のβ−アミノプ
ロピルアルコールを定量したところ、約5ppm程
度で、陽イオン交換膜Cの表面処理層はほとんど
劣化していなかつた。 Next, at the end of the electrolysis after repeating the above batch experiment 30 times, β-aminopropyl alcohol in the catholyte was determined in the same manner as above, and it was found to be about 5 ppm, and the surface treatment layer of cation exchange membrane C was almost degraded. I hadn't done it.
比較例 2
比較例1と同様の電解装置を用い、陽イオン交
換膜としてスルホン酸型陽イオン交換膜Cを用い
て、表面処理層を陽極側に向けて設置した。陰極
液には1モルの蓚酸水溶液を、陽極にはβ−アミ
ノプロピルアルコール1モルの3N−硫酸水溶液
を用いた。陽極液と陰極液それぞれ2の循環タ
ンクを介して50cm/secとなるように陰、陽極室
の流速を調整し26〜30℃で電流密度5A/dm2で
100AHr電解した。陰極での蓚酸のグリオキシル
酸への電流効率は72%、陽極でのβ−アミノプロ
ピルアルコールのβ−アラニンへの電流効率が81
%であり、それぞれグリオキシル酸5.0%の2.1%
蓚酸水溶液とβ−アラニン4.0%の4.7%β−アミ
ノプロピルアルコール酸性溶液が得られた。一定
量の陰極液をサンプリングし、水分を蒸発乾燥
後、赤外吸収スペクトルから定量を試みた結果、
約2ppm程度のβ−アミノプロピルアルコールの
存在が確認された。Comparative Example 2 Using the same electrolytic device as in Comparative Example 1, a sulfonic acid type cation exchange membrane C was used as the cation exchange membrane, and the surface treatment layer was installed facing the anode side. A 1 mol oxalic acid aqueous solution was used as the catholyte, and a 3N sulfuric acid aqueous solution containing 1 mol β-aminopropyl alcohol was used as the anode. The flow rate in the negative and anode chambers was adjusted to 50 cm/sec through two circulation tanks for the anolyte and catholyte, and the current density was 5 A/dm2 at 26 to 30°C.
Electrolyzed with 100Ahr. The current efficiency of oxalic acid to glyoxylic acid at the cathode is 72%, and the current efficiency of β-aminopropyl alcohol to β-alanine at the anode is 81%.
% and glyoxylic acid 5.0% and 2.1% respectively
An aqueous oxalic acid solution and a 4.7% β-aminopropyl alcohol acidic solution containing 4.0% β-alanine were obtained. As a result of sampling a certain amount of catholyte and evaporating the water to dryness, we attempted to quantify it from the infrared absorption spectrum.
The presence of approximately 2 ppm of β-aminopropyl alcohol was confirmed.
次いで上記のバツチ実験を30回繰返した電解終
了時、上記と同様にして陰極液中のβ−アミノプ
ロピルアルコールを定量したところ、約450ppm
が存在していた。 Next, at the end of the electrolysis after repeating the above batch experiment 30 times, β-aminopropyl alcohol in the catholyte was determined in the same manner as above, and it was found to be approximately 450 ppm.
existed.
実施例 3
実施例1と同様の3室型の電解装置を用い陽イ
オン交換膜としてスルホン酸型陽イオン交換膜D
を用いて表面処理層を陽極側に向けて設置し、保
護隔膜として石綿布(電気抵抗0.5Ω−cm2、厚み
は0.8mm)を用いた。電極としては陽極に酸化鉛
を陰極にスズ板を用いて、陽極でα−ピコリンの
酸化を陰極でP−ニトロサルチル酸の還元を行つ
た。Example 3 Using the same three-chamber electrolyzer as in Example 1, a sulfonic acid type cation exchange membrane D was used as the cation exchange membrane.
The surface treatment layer was installed facing the anode side using a 100% carbon fiber, and asbestos cloth (electrical resistance 0.5Ω-cm 2 , thickness 0.8mm) was used as a protective diaphragm. As electrodes, lead oxide was used as an anode and a tin plate was used as a cathode. α-picoline was oxidized at the anode and P-nitrosalcylic acid was reduced at the cathode.
陽極液にα−ピコリン76gを3N−硫酸に溶液
2を用い、陰極にはP−ニトロサルチル酸83g
を20%塩酸−エタノール(1:4)溶液にとかし
た溶液2を用意し、5A/dm2で35℃で100AHr
電解酸化還元を行つた。陽極でのα−ピコリンの
ピコリン酸への電流効率は51%であり、陰極での
P−ニトロサルチル酸のP−アミノサルチル酸へ
の電流効率は55%であつた。陽極室から陰極室に
電解中に移動したα−ピコリン量は、紫外吸収ス
ペクトルから0.4ppmであつた。 For the anolyte, 76 g of α-picoline and 3N sulfuric acid solution 2 were used, and for the cathode, 83 g of P-nitrosalcylic acid.
Prepare solution 2 by dissolving it in 20% hydrochloric acid-ethanol (1:4) solution, and inject 100Ahr at 35℃ at 5A/ dm2.
Electrolytic redox was performed. The current efficiency of α-picoline to picolinic acid at the anode was 51%, and the current efficiency of P-nitrosalcylic acid to P-aminosalicylic acid at the cathode was 55%. The amount of α-picoline transferred from the anode chamber to the cathode chamber during electrolysis was 0.4 ppm based on the ultraviolet absorption spectrum.
次いで、上記のバツチ実験を10回繰返した電解
終了時、上記と同様にして陰極室中のα−ピコリ
ンを定量したところ、1.5ppmで、陽イオン交換
膜Dの表面処理層はほとんど劣化していなかつ
た。 Next, at the end of the electrolysis after repeating the above batch experiment 10 times, α-picoline in the cathode chamber was quantified in the same manner as above, and it was found to be 1.5 ppm, indicating that the surface treatment layer of cation exchange membrane D had hardly deteriorated. Nakatsuta.
比較例 3
比較例1と同様の電解装置を用い、陽イオン交
換膜として陽イオン交換膜Dを用いて、表面処理
層を陽極側に向けて陽極に酸化鉛を陰極にスズ板
を用いて、陽極でα−ピコリンの酸化を、陰極で
P−ニトロサルチル酸の還元を行つた。Comparative Example 3 Using the same electrolytic device as Comparative Example 1, using cation exchange membrane D as the cation exchange membrane, with the surface treatment layer facing the anode side, using lead oxide as the anode and a tin plate as the cathode, Oxidation of α-picoline was carried out at the anode, and reduction of P-nitrosalcylic acid was carried out at the cathode.
陽極にα−ピコリン76gを3N−硫酸に溶解し
た溶液2を用い、陰極にはP−ニトロサルチル
酸83gを20%塩酸−エタノール(1:4)溶液に
とかした溶液2を用意し、5A/dm2で35℃
で、100AHr電解酸化還元を行つた。 Solution 2, prepared by dissolving 76 g of α-picoline in 3N sulfuric acid, was used for the anode, and solution 2, prepared by dissolving 83 g of P-nitrosalcylic acid in a 20% hydrochloric acid-ethanol (1:4) solution, was prepared for the cathode. 35℃ at dm2
Then, 100Ahr electrolytic redox was performed.
陽極でのα−ピコリンのピコリン酸への電流効
率は51%であり、陰極でのP−ニトロサルチル酸
のP−アミノサルチル酸への電流効率は55%であ
つた。陽極室から陰極室に電解で移動したα−ピ
コリン量は、紫外吸収スペクトルから0.4ppmで
あつた。 The current efficiency of α-picoline to picolinic acid at the anode was 51%, and the current efficiency of P-nitrosalcylic acid to P-aminosalicylic acid at the cathode was 55%. The amount of α-picoline transferred from the anode chamber to the cathode chamber by electrolysis was 0.4 ppm based on the ultraviolet absorption spectrum.
次いで上記のバツチ実験を5回繰返した電解終
了時に上記と同様にして陰極液中のα−ピコリン
を定量したところ、0.5%であつた。 Then, at the end of the electrolysis after repeating the above batch experiment five times, the amount of α-picoline in the catholyte was determined in the same manner as above, and it was found to be 0.5%.
比較例 4
実施例3で陽イオン交換膜Bを用いる以外は全
く同一の条件下で酸化還元を行つた。α−ピコリ
ンのピコリン酸への電流効率は55%、P−ニトロ
サルチル酸のP−アミノサルチル酸への電流効率
は49%であり、陽極室から陰極室へ移動したα−
ピコリン量は1.0%であつた。Comparative Example 4 Redox was carried out under exactly the same conditions as in Example 3 except that cation exchange membrane B was used. The current efficiency of α-picoline to picolinic acid was 55%, and the current efficiency of P-nitrosalcylic acid to P-aminosalicylic acid was 49%.
The amount of picoline was 1.0%.
ついで、上記のバツチ実験を10回繰返した電解
終了後、同様にして陽極室から陰極室へ移動した
α−ピコリンを定量したところ、1.0%であり、
α−ピコリンのピコリン酸への電流効率は55%、
P−ニトロサルチル酸のP−アミノサルチル酸へ
の電流効率は49%であつた。 Then, after the above batch experiment was repeated 10 times and the electrolysis was completed, the amount of α-picoline that had moved from the anode chamber to the cathode chamber was determined to be 1.0%.
The current efficiency of α-picoline to picolinic acid is 55%,
The current efficiency of P-nitrosalicylic acid to P-aminosalicylic acid was 49%.
実施例 4
実施例3で酸化反応は行わないで還元反応のみ
行う点以外は全く同一の条件下で電解を行つた。
但し、陽極液としては3N−硫酸溶液を用いた。Example 4 Electrolysis was carried out under exactly the same conditions as in Example 3 except that the oxidation reaction was not performed and only the reduction reaction was performed.
However, a 3N-sulfuric acid solution was used as the anolyte.
その結果、陰極でのP−ニトロサルチル酸のP
−アミノサルチル酸への電流効率は55%であつ
た。 As a result, P of P-nitrosalcylic acid at the cathode
-The current efficiency to aminosalicylic acid was 55%.
ついで、このバツチ実験を5回繰返した後に実
施例3と全く同一の条件下で酸化還元の両方の反
応を行つた。陽極でのα−ピコリンのピコリン酸
への電流効率は51%であり、陰極でのP−ニトロ
サルチル酸のP−アミノサルチル酸への電流効率
は55%であつた。また陽極室から陰極室に電解中
に移動したα−ピコリン量は紫外吸収スペクトル
から1.1ppmであつた。 Then, after repeating this batch experiment five times, both redox and redox reactions were carried out under exactly the same conditions as in Example 3. The current efficiency of α-picoline to picolinic acid at the anode was 51%, and the current efficiency of P-nitrosalcylic acid to P-aminosalicylic acid at the cathode was 55%. The amount of α-picoline transferred from the anode chamber to the cathode chamber during electrolysis was 1.1 ppm based on the ultraviolet absorption spectrum.
Claims (1)
陽イオン性官能基が存在している陽イオン交換膜
により陽極と陰極とが区分され、且つ陽極と陽イ
オン交換膜との間が比電気抵抗2000Ω・cm以下の
隔膜によつて区分されることにより、陽極室、中
間室及び陰極室が形成された電解槽を用い、陰極
室に還元可能な官能基を有する有機化合物の電解
質溶液を供給し、陽極室には酸化可能な官能基を
有する有機化合物の電解質溶液または該有機化合
物を含まない電解質溶液を供給して、電解を行う
ことを特徴とする有機化合物を電解還元および電
解酸化を同時に実施または電解還元のみを実施す
る電解方法。1 The anode and the cathode are separated by a cation exchange membrane having a cationic functional group on at least one surface, and the ratio between the anode and the cation exchange membrane is Using an electrolytic cell in which an anode chamber, an intermediate chamber, and a cathode chamber are formed by dividing them by a diaphragm with an electrical resistance of 2000 Ω・cm or less, an electrolyte solution of an organic compound having a reducible functional group is poured into the cathode chamber. The organic compound is subjected to electrolytic reduction and electrolytic oxidation, characterized in that an electrolyte solution of an organic compound having an oxidizable functional group or an electrolyte solution not containing the organic compound is supplied to the anode chamber to perform electrolysis. An electrolysis method in which simultaneous or electrolytic reduction is carried out only.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55164677A JPS5789488A (en) | 1980-11-25 | 1980-11-25 | Electrolysis of organic compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55164677A JPS5789488A (en) | 1980-11-25 | 1980-11-25 | Electrolysis of organic compound |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5789488A JPS5789488A (en) | 1982-06-03 |
JPS6241319B2 true JPS6241319B2 (en) | 1987-09-02 |
Family
ID=15797737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55164677A Granted JPS5789488A (en) | 1980-11-25 | 1980-11-25 | Electrolysis of organic compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5789488A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0819539B2 (en) * | 1987-05-11 | 1996-02-28 | 株式会社トクヤマ | Method for producing quaternary ammonium hydroxide |
JP2012072477A (en) * | 2010-09-30 | 2012-04-12 | Hitachi Ltd | Device for manufacturing organic hydride |
JP6400410B2 (en) * | 2014-09-25 | 2018-10-03 | 国立大学法人横浜国立大学 | Electrolysis cell for organic chemical hydride production |
-
1980
- 1980-11-25 JP JP55164677A patent/JPS5789488A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5789488A (en) | 1982-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4312720A (en) | Electrolytic cell and process for electrolytic oxidation | |
US4384941A (en) | Process for electrolyzing water | |
PL97696B1 (en) | DIAPHRAGM OF POLYMERIC PLASTIC FOR ELECTROLYSIS AND METHOD OF MANUFACTURING IT | |
US11091846B2 (en) | Electrochemical process and reactor | |
US5039389A (en) | Membrane/electrode combination having interconnected roadways of catalytically active particles | |
RU97100560A (en) | METHOD FOR ELECTROLYSIS OF AQUEOUS SOLUTIONS OF HYDROCHLORIDE ACID | |
US20070056847A1 (en) | Electrochemical liquid treatment equipments | |
Sata | Recent trends in ion exchange membrane research | |
JP2004510060A (en) | Electrochemical production of hydrogen peroxide | |
CN114502623A (en) | Stable anion exchange membrane based on fluorinated aliphatic hydrocarbon and preparation method thereof | |
KR20010086305A (en) | Synthesis of tetramethylammonium hydroxide | |
JP3421021B2 (en) | Electrolysis method of alkali chloride | |
JPH0586971B2 (en) | ||
EP0330772A1 (en) | Method of double decomposition of neutral salt | |
US4752369A (en) | Electrochemical cell with improved energy efficiency | |
JPH05238736A (en) | Method for electrochemically regenerating chromosulfuric acid | |
JPS6241319B2 (en) | ||
US4738741A (en) | Method for forming an improved membrane/electrode combination having interconnected roadways of catalytically active particles | |
EP0008232B1 (en) | Oxygen electrode rejuvenation methods | |
JP3493242B2 (en) | Method and apparatus for electrochemical recovery of nitrate | |
US3992269A (en) | Production of pinacols in a membrane cell | |
US3723273A (en) | Electrodialytic production of stannic oxide sol | |
JPH08246178A (en) | Electrochemical recovering method of salts and device therefor | |
JPS6154875B2 (en) | ||
EP0004191A2 (en) | Chloralkali electrolytic cell and method for operating same |