[go: up one dir, main page]

JPS6240060B2 - - Google Patents

Info

Publication number
JPS6240060B2
JPS6240060B2 JP13383078A JP13383078A JPS6240060B2 JP S6240060 B2 JPS6240060 B2 JP S6240060B2 JP 13383078 A JP13383078 A JP 13383078A JP 13383078 A JP13383078 A JP 13383078A JP S6240060 B2 JPS6240060 B2 JP S6240060B2
Authority
JP
Japan
Prior art keywords
zeolite
catalyst
weight
rare earth
clay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13383078A
Other languages
Japanese (ja)
Other versions
JPS5472790A (en
Inventor
Uorufu Arubaasu Edoin
Sutoorei Magii Jon
Eritsuku Ritsutaa Ronarudo
Jeroomu Burazetsuku Shinia Jeemusu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WR Grace and Co
Original Assignee
WR Grace and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WR Grace and Co filed Critical WR Grace and Co
Publication of JPS5472790A publication Critical patent/JPS5472790A/en
Publication of JPS6240060B2 publication Critical patent/JPS6240060B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/068Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/12Noble metals
    • B01J29/126Y-type faujasite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高分子量の炭化水素を低分子量の生
成物に分解する触媒として使用できる組成物、さ
らに詳しくは、イオウおよび/または貴金属を含
有し、残留石油留分を含む供給原料をガソリンお
よび加熱油のような製品に経済的に転化する組成
物に関する。 近年において、石油精製工業は高分子量供給原
料の分解をガソリンおよび加熱油の製品の製造に
最適化することにかなり力を入れてきた。これら
の製品に対する需要を満たすため、比較的高いレ
ベルでイオウおよび/または重金属を含有する増
大しつつある量の供給原料が接触分解に付されて
きている。 分解触媒は重金属、たとえばニツケルおよびバ
ナジウムで汚染されたとき、望ましい活性および
選択の特性を失なうことは一般に知られている。
さらに、高いイオウ含量の供給原料の接触分解は
生態学的に許容できない量のイオウ酸化物
(SOx)を放出する。接触分解装置の再生装置の
煙突から大気中に排出されることがありうる一酸
化炭素の量を制限することに関して、規制されま
たは規制が存在する。 接触分解器からのSOxの放出はイオウを単位装
置の生成物供給流内に保持するような方法で触媒
を改質することによつて減少できることが、従来
提案されてきた。 接触分解に関連した望ましくない放出物を減少
する先行技術の例は、米国特許3835031、南アフ
リカ特許74/4642、米国特許3944482および米国
特許3501264である。 炭化水素処理業者が一酸化炭素の放出を抑制で
きかつ残留油供給原料を比較的に経済的な方法で
取り扱うことができる特性をもつ商用接触分解触
媒を入手できる。しかし、こんにちまで、SOxお
よび一酸化炭素の放出を抑制しかつその上重金属
含有供給原料の奪活効果に耐えることができる商
用触媒は工業的に入手できない。 本発明は、既知のタイプのゼオライト分触媒と
他の成分とからなる組成物を提供し、この組成物
は種々のイオウおよび/または重金属含有供給原
料を処理して高収率でガソリン留分を生成すると
同時に、生態学的に許容できないCOおよびSOx
の放出を抑制もしくは減少するために使用でき
る。 本発明によれば、 (a) 約12〜60重量%の希土類金属交換ゼオライ
ト; (b) 必要に応じて75重量%までの粘土;および (c) 無機酸化物結合剤、 からなり、該ゼオライト、粘土、および結合剤
は配合されて粒子とされている炭化水素の分解
用触媒として使用する組成物において、 (d) 20〜50重量%のα−アルミナ三水和物および (e) 約0.1〜20ppmの白金、パラジウムまたはそ
れらの混合物、 を含むことを特徴とする組成物を提供する。 本発明の組成物において好ましいゼオライトは
Y型ゼオライトである;該ゼオライトの量は適当
には組成物の17〜60重量%であることができる。 前記成分は、次の典型的な製造法により、配合
して微細な粒状触媒組成物を形成する; 1 ケイ酸ナトリウム溶液を、無機酸、たとえば
硫酸および/または酸の塩溶液、たとえば硫酸
アルミニウム溶液と混合してPH約2.9〜4.0を有
するゾルを生成することによつて、酸性無機酸
化物のゾル結合剤を製造する。 2 粘土とアルミナをこのゾルまたはゾル形成成
分に加える。 3 必要に応じてPHを3.5〜4.5に調整しながらゼ
オライト成分を水でスラリーとする。このゼオ
ライト成分は、ナトリウム金属陽イオンのみを
含有する、その合成した形であることができ、
あるいはそれはすでに希土類金属とイオン交換
したものであることができる。 4 このゾル/粘土/アルミナ混合物およびゼオ
ライトのスラリーを配合して、PH約2.9〜4.0の
噴霧乾燥器供給混合物を形成する。 5 この噴霧乾燥器供給混合物を次いで噴霧乾燥
して粒状触媒を形成し、これを洗浄しおよび/
またはイオン交換して可溶性塩、たとえばナト
リウムおよび硫酸塩を除去し、そしてゼオライ
トが前もつて希土類金属で交換されていない場
合、希土類イオンで交換する。 洗浄して可溶性塩類を除去した噴霧乾燥した組
成物を次いで白金および/またはパラジウム塩の
溶液を含浸させて、所望濃度の貴金属を付与する
ことができ、または貴金属を粒状の無機酸化物担
体上に含浸し次いで触媒と混合することができ
る。別法として、白金成分は、ゼオライト含有触
媒に似た粒度および密度を有する白金含浸微細球
またはムライト、アルミナまたはシリカ−アルミ
ナのような分離した白金含浸添加剤の形で組成物
に混入できる。 本発明の実施において使用する金属交換したゼ
オライトは好ましくは希土類交換Y型ゼオライト
である。希土類交換Y型ゼオライトは、カ焼した
希土類交換ゼオライト、たとえば、McDaniel、
米国特許3402996に開示されているようなCREY
ゼオライトと標示するものであることができる。
また、Maher、米国特許3293192に開示されてい
るZ−14−USのような熱的に安定化したゼオラ
イトを利用して、交換して希土類形、すなわち、
Z−14−US REにすることができることが考え
られる。さらに、Z−14−USゼオライトとカ焼
した希土類交換ゼオライト(CREY)との組合わ
せ、すなわち、Z−14−US/CREYを利用で
き、および/またはNaYを噴霧乾燥した触媒の交
換により引き続いて交換するCREYとNaYとの組
合わせを利用できることが考えられる。また、米
国特許3607043に開示されている部分的に希土類
交換カ焼Y型ゼオライト(PCY)または米国特
許3676368に開示された希土類水素交換ゼオライ
ト(REHY)を利用できる。本発明の組成物中に
存在できる他の金属交換ゼオライトは、カルシウ
ムフオーム(foam)希土類排出ゼオライト
(CaREY)である。 一般に触媒の製造において利用する希土類交換
ゼオライトの型は、最終触媒に望む選択的特性に
よつて決定されるであろう。たとえば、製造され
るガソリン留分のオクタン価を増加する傾向があ
るC3およびC4オレフインを高収率で製造しよう
とする場合、一般にZ−14−US RE、Z−14−
USとCREYとの組合わせ、またはPCYゼオライ
トが好ましいことがわかつた。さらに、ニツケル
およびバナジウムのような重金属の実質量を含有
する重質残留油供給原料を処理するために触媒を
利用することを考える場合、約11〜22重量%の希
土類イオンを含有する希土類交換ゼオライトY型
ゼオライト(REY)を使用することが一般に好
ましい。 さらに、接触分解装置の再生装置の煙突ガス放
出物中のSOxを高度に抑制しかつ残留油分解能力
を得ようとする場合、CREYのようなゼオライト
を利用することが一般に好ましい。 触媒の粘土成分は、原料カオリン粘土または熱
変性したまたは酸処理した粘土、たとえば、メタ
カオリン、ならびにクロライトのような他の粘土
からなることができる。 現在考える触媒のアルミナ成分は、商業的に多
くの源から入手できる遊離のアルミナ水和物の形
で触媒に混入する。遊離のアルミナ水和物は一般
にα−三水和物と呼ぶ。これらの触媒中のアルミ
ナはゼオライト含量、希土類およびナトリウムの
レベル、ならびに貴金属と関連して、触媒の熱
的/酸化的再生の間SOxの吸着剤および転化剤と
してはたらき、そして接触分解サイクルの再生部
分の間イオウ化合物をイオウ酸化物として保持す
る。再生した触媒は再循環し、分解ゾーンにもど
し、ここでイオウ化合物は硫化水素に還元され、
これは接触分解装置からの生成物流中に集めら
れ、引き続いて分留および/または吸着手段によ
つて分離されうる。 本発明の触媒を製造するために使用できる無機
のゾル結合剤は、一般に酸性ゾル結合剤として記
載されており、米国特許3867308および3957689に
記載されている方法に従つて製造される。これら
のElliottおよびOstermaierの特許は、本発明の
触媒を製造するために使用できる一般法を明らか
に記載している。 本発明の組成物は少量、すなわち、約0.1〜
20ppmの貴金属、白金および/またはパラジウ
ムを含有する。この少量の貴金属は、接触分解装
置の再生区域中において一酸化炭素を二酸化炭素
に酸化するはたらきをする。さらに、白金または
パラジウムの存在は、接触分解装置の再生区域の
煙突ガスを通して発生するSOxの放出を抑制する
うえで、重要である。イオウ含有成分が消耗した
触媒上に形成したイオウに富んだ炭素を経て単位
装置の分解ゾーンから再生装置単位へ運ばれると
き、再生装置区域中に白金が存在すると、イオウ
化合物のSO3への酸化が促進され、そしてSO3
存在するアルミナおよび他の金属と結合して、煙
突ガスといつしよに再生器から除去されないイオ
ウの安定な形態を形成することがわかつた。この
SO4を含有する再生した触媒を次いで還元ゾー
ン、すなわち、分解ゾーンの水素ふん囲気へもど
し、そしてこのSO4は還元され、加水分解して硫
化水素となり、これは接触分解装置の生成物流中
に残る。 一般に、貴金属成分は、噴霧乾燥しかつ洗浄し
た触媒組成物を、白金塩および/またはパラジウ
ム塩、たとえば、 Pt(NH34(NO32およびPd(NH34(NO32
の希薄溶液で含浸することによつて加えることが
好ましい。典型的には、含浸法は触媒組成物を所
望の金属塩の溶液で噴霧することによつて実施す
る。 本発明の組成物は、炭化水素の分解に対して高
度の活性を有する。さらに、組成物は、所望のゼ
オライト促進剤を選ぶことによつて、増大したオ
クタンのガソリン留分の製造に対してとくに選択
的であるように設計できる。さらに、前に論じた
ように、この組成物は残留油留分中に存在する重
金属、ニツケルおよびバナジア成分の被毒に対し
て抵抗性である。また、この組成物は商業的接触
単位装置からのSOxおよび燃料の放出を抑制すた
めに効果的に使用できる。 噴霧乾燥した粒子の形の本発明の組成物は、約
100〜550m2/gの表面積と約0.1〜0.5の孔体積を
一般に有する。 実施例 シリカゲル結合触媒を、Ostermaierおよび
Elliott、米国特許3957689に記載された方法に類
似する方法で製造した。緩衝したシリカヒドロゾ
ル結合剤を次のようにして調製した: 12.78の18゜Beの硫酸溶液に84g/の
Al2O3を含有するAl2SO4溶液8.03を加えること
によつて、酸性みようばん溶液を調製した。生じ
た溶液中に水素イオン当量の40%がアルミニウム
Al+++として存在した。 酸性みようばん溶液を高速ミキサーへ555c.c./
分の速度で送入し、ここでそれをSiO2/Na2O比
が3.25である18゜Beケイ酸ナトリウム溶液と混合
した。このケイ酸塩溶液をミキサーへ1.5/分
の速度で供給した。生ずるヒドロゾルは2.5〜3.0
のPHを有し、ケイ酸塩中に存在するNa2Oを中和
するのに必要な酸−硫酸アルミニウムの20%過剰
量を含有した。 10000gの最終触媒(乾燥基準)を製造するた
め、3500gのα−アルミナ三水和物を30000gの
シリカ−アルミナゾルに加え、スラリーを形成し
た。混合が完了後、10の脱イオン水中の3500g
のCREYゼオライト(PHを希硫酸で4.0に調製し
た)をよくかきまぜながらスラリーに加えた。 5〜10分間はげしくかきまぜた後、生じたスラ
リーを典型的パイロツトプラント型噴霧乾燥器
[6フイート(183cm)のBowen−2流体ノズル乾
燥器]中で噴霧乾燥した。噴霧乾燥した材料アン
モニウムで洗つてNa2Oを除去し:水洗して過剰
の硫酸塩を除去し、そして乾燥した;最終組成物
は35%のCREY、30%のSiO2およびα−三水和物
として35%のAl2O3からなる。 残留する分解およびSOx減少の能力のための試
験前に、乾燥した触媒の必要量をPt(NH34
(NO32の希薄溶液で含浸して、最終触媒上に
3ppmの白金含量を生じさせた。この含浸した材
料を商用銘柄の触媒とその金属許容度についてマ
イクロ活性試験法を用いて比較した;この試験法
において触媒を2モルのV/モルのNiの混合物
からなる奪活性金属の種々の量と組合せた。触媒
の活性は、CiapettaおよびHenderson,Cil&Gas
Jour.,Oct.16,1967,88〜93ページの方法を用
いて測定した。この実施例のための金属許容度の
データを表に要約し、この表は標準の触媒より
も著しい改良を明らに示している。
The present invention describes compositions that can be used as catalysts for the cracking of high molecular weight hydrocarbons into low molecular weight products, and more particularly, compositions that contain sulfur and/or precious metals and that can be used to convert feedstocks containing residual petroleum fractions into gasoline and heated It relates to compositions that are economically converted into products such as oils. In recent years, the petroleum refining industry has placed considerable emphasis on optimizing the cracking of high molecular weight feedstocks for the production of gasoline and heating oil products. To meet the demand for these products, increasing amounts of feedstock containing relatively high levels of sulfur and/or heavy metals are being subjected to catalytic cracking. It is generally known that cracking catalysts lose their desirable activity and selectivity properties when contaminated with heavy metals such as nickel and vanadium.
Furthermore, catalytic cracking of feedstocks with high sulfur content releases ecologically unacceptable amounts of sulfur oxides (SOx). Regulations exist regarding limiting the amount of carbon monoxide that may be emitted into the atmosphere from the regenerator stack of a catalytic cracker. It has previously been proposed that SOx emissions from catalytic crackers can be reduced by modifying the catalyst in a manner that retains sulfur within the unit product feed stream. Examples of prior art that reduce undesirable emissions associated with catalytic cracking are US Pat. No. 3,835,031, South African Patent No. 74/4642, US Pat. No. 3,944,482 and US Pat. Commercial catalytic cracking catalysts are available that have properties that allow hydrocarbon processors to reduce carbon monoxide emissions and handle residual oil feedstocks in a relatively economical manner. However, to date, commercial catalysts that can suppress SOx and carbon monoxide emissions and also withstand the deactivation effects of heavy metal-containing feedstocks are not commercially available. The present invention provides a composition of a known type of zeolite fraction catalyst and other ingredients which can be used to process various sulfur and/or heavy metal containing feedstocks to produce gasoline fractions in high yields. producing and ecologically unacceptable CO and SOx
can be used to inhibit or reduce the release of According to the invention, the zeolite comprises: (a) about 12 to 60% by weight rare earth metal exchanged zeolite; (b) optionally up to 75% by weight clay; and (c) an inorganic oxide binder. , clay, and binder are blended into particles in a composition for use as a catalyst for decomposition of hydrocarbons, (d) 20 to 50% by weight of α-alumina trihydrate, and (e) about 0.1% by weight of α-alumina trihydrate. ~20 ppm of platinum, palladium or a mixture thereof. Preferred zeolites in the compositions of the invention are Y-type zeolites; the amount of zeolites can suitably be from 17 to 60% by weight of the composition. The components are combined to form a finely divided catalyst composition according to the following typical manufacturing method: 1. A sodium silicate solution is added to an inorganic acid, such as sulfuric acid, and/or a salt solution of an acid, such as an aluminum sulfate solution. The acidic inorganic oxide sol binder is prepared by mixing with the sol to form a sol having a pH of about 2.9 to 4.0. 2. Add clay and alumina to this sol or sol-forming ingredients. 3. Make a slurry of the zeolite component with water while adjusting the pH to 3.5 to 4.5 as necessary. The zeolite component can be in its synthetic form, containing only sodium metal cations,
Or it can already be ion-exchanged with rare earth metals. 4. Blend this sol/clay/alumina mixture and the zeolite slurry to form a spray dryer feed mixture with a pH of about 2.9 to 4.0. 5 This spray dryer feed mixture is then spray dried to form a particulate catalyst which is washed and/or
or ion exchange to remove soluble salts such as sodium and sulfate, and if the zeolite has not been previously exchanged with rare earth metals, exchange with rare earth ions. The spray-dried composition, washed to remove soluble salts, can then be impregnated with a solution of platinum and/or palladium salts to provide the desired concentration of precious metals, or the precious metals can be deposited onto a granular inorganic oxide support. It can be impregnated and then mixed with the catalyst. Alternatively, the platinum component can be incorporated into the composition in the form of platinum-impregnated microspheres or a separate platinum-impregnated additive such as mullite, alumina or silica-alumina, having a particle size and density similar to the zeolite-containing catalyst. The metal-exchanged zeolite used in the practice of this invention is preferably a rare earth-exchanged Y-type zeolite. Rare earth-exchanged Y-type zeolites are calcined rare earth-exchanged zeolites, such as McDaniel,
CREY as disclosed in U.S. Patent 3,402,996
It may be labeled as a zeolite.
Alternatively, thermally stabilized zeolites such as Z-14-US as disclosed in Maher, U.S. Pat.
It is conceivable that it could be Z-14-US RE. Furthermore, the combination of Z-14-US zeolite with calcined rare earth-exchanged zeolite (CREY), i.e., Z-14-US/CREY can be utilized and/or followed by replacement of the catalyst spray-dried with NaY. It is conceivable that a combination of CREY and NaY to be exchanged can be used. Also available are partially rare earth exchanged calcined zeolites (PCY) as disclosed in US Pat. No. 3,607,043 or rare earth hydrogen exchanged zeolites (REHY) as disclosed in US Pat. No. 3,676,368. Other metal-exchanged zeolites that can be present in the compositions of the invention are calcium foam rare earth excreting zeolites (CaREY). Generally, the type of rare earth exchanged zeolite utilized in catalyst preparation will be determined by the selective properties desired in the final catalyst. For example, when seeking to produce high yields of C3 and C4 olefins, which tend to increase the octane number of the gasoline fraction produced, Z-14-US RE, Z-14-
The combination of US and CREY or PCY zeolite was found to be preferable. Furthermore, when considering the utilization of catalysts to treat heavy residual oil feedstocks containing substantial amounts of heavy metals such as nickel and vanadium, rare earth-exchanged zeolites containing about 11-22 wt% rare earth ions It is generally preferred to use zeolite Y (REY). Additionally, it is generally preferred to utilize a zeolite such as CREY when seeking to achieve high levels of SOx suppression and residual oil cracking capability in the stack gas emissions of a catalytic cracker regenerator. The clay component of the catalyst can consist of raw kaolin clay or heat-modified or acid-treated clays, such as metakaolin, as well as other clays such as chlorite. The alumina component of the currently considered catalyst is incorporated into the catalyst in the form of free alumina hydrate, which is commercially available from a number of sources. Free alumina hydrate is commonly referred to as alpha-trihydrate. The alumina in these catalysts, in conjunction with the zeolite content, rare earth and sodium levels, and precious metals, acts as an adsorbent and converter for SOx during the thermal/oxidative regeneration of the catalyst, and in the regeneration portion of the catalytic cracking cycle. During this period, sulfur compounds are retained as sulfur oxides. The regenerated catalyst is recycled back to the cracking zone where the sulfur compounds are reduced to hydrogen sulfide and
This is collected in the product stream from the catalytic cracker and can be subsequently separated by fractional distillation and/or adsorption means. The inorganic sol binders that can be used to make the catalysts of the invention are generally described as acidic sol binders and are made according to the methods described in US Pat. No. 3,867,308 and 3,957,689. These Elliott and Ostermaier patents clearly describe general methods that can be used to make the catalysts of the present invention. The compositions of the present invention can be used in small amounts, i.e. from about 0.1 to
Contains 20ppm of precious metals, platinum and/or palladium. This small amount of precious metal serves to oxidize carbon monoxide to carbon dioxide in the regeneration zone of the catalytic cracker. Additionally, the presence of platinum or palladium is important in suppressing SOx emissions generated through the stack gas in the regeneration zone of the catalytic cracker. When sulfur-containing components are transported from the unit's cracking zone to the regenerator unit via the sulfur-rich carbon formed on the depleted catalyst, the presence of platinum in the regenerator section can lead to oxidation of the sulfur compounds to SO3 . was found to be promoted and the SO 3 to combine with the alumina and other metals present to form a stable form of sulfur that is not removed from the regenerator in conjunction with the stack gases. this
The regenerated catalyst containing SO 4 is then returned to the reduction zone, i.e., the hydrogen atmosphere of the cracking zone, and the SO 4 is reduced and hydrolyzed to hydrogen sulfide, which is added to the catalytic cracker product stream. remain. Generally, the noble metal component is prepared by adding a spray-dried and washed catalyst composition to a platinum salt and/or palladium salt, such as Pt( NH3 ) 4 ( NO3 ) 2 and Pd( NH3 ) 4 ( NO3 ) 2.
Preferably, it is added by impregnation with a dilute solution of. Typically, the impregnation process is carried out by spraying the catalyst composition with a solution of the desired metal salt. The compositions of the invention have a high degree of activity against hydrocarbon decomposition. Furthermore, the composition can be designed to be particularly selective for the production of increased octane gasoline fractions by choosing the desired zeolite promoter. Additionally, as previously discussed, the composition is resistant to poisoning by heavy metal, nickel and vanadia components present in the residual oil fraction. Additionally, the composition can be effectively used to control SOx and fuel emissions from commercial contact unit equipment. The composition of the invention in the form of spray-dried particles comprises about
They generally have a surface area of 100-550 m 2 /g and a pore volume of about 0.1-0.5. Example Silica gel bonded catalysts were prepared by Ostermaier and
Made in a manner similar to that described by Elliott, US Pat. No. 3,957,689. A buffered silica hydrosol binder was prepared as follows:
An acidic alum solution was prepared by adding 8.0 mL of an Al 2 SO 4 solution containing Al 2 O 3 . 40% of the hydrogen ion equivalents in the resulting solution are aluminum
Existed as Al +++ . Acidic alum solution to high speed mixer 555c.c./
It was then mixed with a 18° Be sodium silicate solution with a SiO 2 /Na 2 O ratio of 3.25. This silicate solution was fed to the mixer at a rate of 1.5/min. The resulting hydrosol is 2.5-3.0
It contained a 20% excess of the acid-aluminum sulfate needed to neutralize the Na 2 O present in the silicate. To produce 10,000 g of final catalyst (dry basis), 3,500 g of alpha-alumina trihydrate was added to 30,000 g of silica-alumina sol to form a slurry. After mixing is complete, 10 g of 3500 g in deionized water
of CREY zeolite (pH adjusted to 4.0 with dilute sulfuric acid) was added to the slurry with thorough stirring. After vigorous agitation for 5-10 minutes, the resulting slurry was spray dried in a typical pilot plant spray dryer (6 foot Bowen-2 fluid nozzle dryer). Spray-dried materials were washed with ammonium to remove Na 2 O; water to remove excess sulfate and dried; the final composition was 35% CREY, 30% SiO 2 and α-trihydrate. Consisting of 35% Al 2 O 3 as a material. Add the required amount of dry catalyst to Pt( NH3 ) 4 before testing for residual decomposition and SOx reduction ability.
( NO3 ) onto the final catalyst by impregnating with a dilute solution of 2
A platinum content of 3 ppm was produced. This impregnated material was compared with a commercial grade catalyst for its metal tolerance using a microactivity test method; combined with. Catalyst activity was determined by Ciapetta and Henderson, Cil & Gas
Jour., Oct. 16, 1967, pages 88-93. The metal tolerance data for this example is summarized in a table that clearly shows a significant improvement over the standard catalyst.

【表】 実施例 実施例の操作と同じ材料を用いて触媒を製造
した;ただし、ゼオライトはNaYであり、そして
噴霧乾燥した触媒を希土類塩化物溶液で、硫酸ア
ンモニウムの洗浄後、7.5重量%のRE2O3のレベ
ルに交換した。希土類交換後、触媒を水でさらに
洗い(過剰の塩化物を除去するため)、乾燥し
た。 実施例 80%のAl2O3材料を含有するシリカ−アルミナ
ゲルとシリカヒドロゾル結合剤、α−アルミナ三
水和物と組合わせることによつて触媒を製造し
た。最終組成は次の通りであつた: 25%のAl2O3(α−三水和物)、27%(80%の
Al2O3、20%のSiO2ゲル)、25%のNaYおよび23
%のSiO2(結合剤として)。 この組成物を噴霧乾燥し、硫酸アンモニウムで
洗い、希土類塩化物で4.5重量%のRE2O3のレベ
ルに交換し、3ppmの白金を含浸した。 実施例 実施例の方法により触媒を製造したが、ゼオ
ライト添加物は17%のNaYおよび12%のZ−14−
US(MaherおよびMcDaniel、米国特許3293129に
記載されているような)、α−三水和物の形の25
%のAl2O3、16%のカオリン粘土および結合剤と
して30%のSiO2からなつていた。 噴霧乾燥後、触媒を硫酸アンモニウムで洗い、
希土類塩化物溶液で4.3重量%のRE2O3のレベル
に交換し、そして3ppmの白金で含浸した。 実施例 触媒を実施例記載の方法により製造したが、
ゼオライト添加物は25%のNaY、α−アルミナ三
水和物の形の25%のAl2O3、27%のカオリン粘土
および結合剤として23%のSiO2からなつてい
た。 前記実施例におけるように、触媒のスラリー
を噴霧乾燥し、次いで硫酸アンモニウムで洗い、
次いで希土類塩化物溶液で4.5重量%のRE2O3
レベルに交換し、そして3ppmの白金で含浸し
た。 試験例 1 本発明の触媒の高温におけるイオウ酸化物を吸
着および固定する能力を明らかにするため、実施
例の触媒の試料を商用触媒(CBZ−1)の試料
と比較した。この商用触媒はシリカ−アルミナ/
粘土マトリツクス中の希土類金属交換Y型ゼオラ
イトからなつていた。触媒の試料を、2000ppm
のSO2、4%のO2および残部のN2を含有するガス
の流れに1150〓(621℃)の温度において12時間
暴露した。触媒の試料は次いで硫酸塩(SO4)含
量の増加について分析した。結果を下表に要約
する。
Table: Example Catalysts were prepared using the same materials as in the example procedure; except that the zeolite was NaY, and the spray-dried catalyst was treated with a rare earth chloride solution, after washing with ammonium sulfate, with 7.5% by weight of RE. Exchanged to 2 O 3 level. After rare earth exchange, the catalyst was further washed with water (to remove excess chloride) and dried. EXAMPLE A catalyst was prepared by combining a silica-alumina gel containing 80% Al2O3 material with a silica hydrosol binder, alpha - alumina trihydrate. The final composition was as follows: 25% Al 2 O 3 (α-trihydrate), 27% (80%
Al2O3 , 20% SiO2 gel), 25% NaY and 23
% SiO2 (as binder). The composition was spray dried, washed with ammonium sulfate, exchanged with rare earth chloride to a level of 4.5% by weight RE 2 O 3 and impregnated with 3 ppm platinum. Example A catalyst was prepared according to the method of the example, but the zeolite additives were 17% NaY and 12% Z-14-
US (as described in Maher and McDaniel, US Pat. No. 3,293,129), 25 in the form of the α-trihydrate
% Al 2 O 3 , 16% kaolin clay and 30% SiO 2 as binder. After spray drying, the catalyst was washed with ammonium sulfate and
Exchanged with rare earth chloride solution to a level of 4.3% by weight RE 2 O 3 and impregnated with 3 ppm platinum. Example A catalyst was produced by the method described in the example, but
The zeolite additive consisted of 25% NaY, 25% Al2O3 in the form of alpha-alumina trihydrate, 27% kaolin clay and 23% SiO2 as a binder. As in the previous example, the slurry of catalyst was spray dried and then washed with ammonium sulfate;
It was then exchanged with rare earth chloride solution to a level of 4.5% by weight RE 2 O 3 and impregnated with 3 ppm platinum. Test Example 1 To demonstrate the ability of the catalyst of the present invention to adsorb and fix sulfur oxides at high temperatures, a sample of the catalyst of the example was compared with a sample of a commercial catalyst (CBZ-1). This commercial catalyst is silica-alumina/
It consisted of rare earth metal exchanged Y-type zeolite in a clay matrix. Catalyst sample, 2000ppm
of SO 2 , 4% O 2 and the balance N 2 for 12 hours at a temperature of 1150°C (621°C). Samples of the catalyst were then analyzed for increased sulfate (SO 4 ) content. The results are summarized in the table below.

【表】 上の結果から明らかなように、本発明の組成物
は高温においてO2およびN2の存在下にSO2を吸着
する能力を有するが、従来のCBZ−1触媒はそれ
をもたない。本発明の組成物はまた商業的流体接
触分解単位装置の再生区域においてイオウ酸化物
を吸着する能力を有する。吸着された酸化物は接
触分解サイクルの間H2Sに還元され、そしてH2S
は分解された炭化水素ガス流から容易に回収され
うると信じられる。したがつて、本発明の触媒は
イオウ酸化物の大気中への放出を減少する能力を
有するであろうと結論される。 試験例 2 本発明の触媒の工業的規模での性能を明らかに
するため、触媒量400トンの流動接触分解装置に
先ず従来の商用触媒(触媒A)を装入して運転し
たのち、実施例で製造された本発明の触媒(触
媒X)を追加して運転した。なお、触媒Aおよび
触媒Xは、表に示す通りの組成を有するもので
あつた。
[Table] As is clear from the above results, the composition of the present invention has the ability to adsorb SO 2 in the presence of O 2 and N 2 at high temperatures, whereas the conventional CBZ-1 catalyst does not. do not have. The compositions of the present invention also have the ability to adsorb sulfur oxides in the regeneration zone of commercial fluid catalytic cracking units. The adsorbed oxides are reduced to H2S during the catalytic cracking cycle, and H2S
It is believed that can be easily recovered from cracked hydrocarbon gas streams. It is therefore concluded that the catalyst of the present invention will have the ability to reduce the emission of sulfur oxides into the atmosphere. Test Example 2 In order to clarify the performance of the catalyst of the present invention on an industrial scale, a conventional commercial catalyst (catalyst A) was first charged and operated in a fluid catalytic cracking apparatus with a catalyst capacity of 400 tons, and then the Example The catalyst of the present invention (catalyst X) prepared in 1 was additionally operated. Note that Catalyst A and Catalyst X had the compositions shown in the table.

【表】 装置に供給されるガス中のイオウ量および装置
から放出されるガス中のイオウ量を測定し、表
に示す結果を得た。
[Table] The amount of sulfur in the gas supplied to the device and the amount of sulfur in the gas released from the device was measured, and the results shown in the table were obtained.

【表】 との比
測定1および測定2は装置が触媒Aを用いて運
転されているときになされ、測定3は触媒Xの添
加を開始してから1週間後になされ、測定4は触
媒Xの添加を開始してから18週間後になされた。
その時点において、装置内の触媒の約30〜35%が
触媒Xであつた。 測定2のときまでにおける上記比の平均値は、 0.0842+0.0795/2=0.0820 と計算される。 測定3のデーターに基けば、触媒Xを添加して
から1週間後において、放出ガス中のイオウの量
は、 0.0690/0.0820×100=80% に低下したと計算される。 また、測定4のデーターに基けば、触媒Xを添
加してから18週間後において、放出ガス中のイオ
ウの量は、 0.0568/0.0820×100=69% に低下したと計算される。 斯くして、この工業的規模の装置での試験にお
いては、触媒Xの添加により、放出イオウ量を31
%も減少せしめることができた。
[Table] Measurements 1 and 2 were made when the apparatus was operating with catalyst A, measurement 3 was made one week after starting the addition of catalyst This was done 18 weeks after the addition started.
At that point, about 30-35% of the catalyst in the unit was Catalyst X. The average value of the above ratio up to the time of measurement 2 is calculated as follows: 0.0842+0.0795/2=0.0820. Based on the data of measurement 3, it is calculated that one week after adding catalyst X, the amount of sulfur in the released gas decreased to 0.0690/0.0820×100=80%. Also, based on the data from Measurement 4, it is calculated that 18 weeks after adding catalyst Ru. Thus, in tests on this industrial scale equipment, the addition of catalyst X reduced the amount of sulfur released by 31
% was also able to be reduced.

Claims (1)

【特許請求の範囲】 1 (a) 約12〜60重量%の希土類金属交換ゼオラ
イト; (b) 必要に応じて75重量%までの粘土;および (c) 無機酸化物結合剤、 からなり、該ゼオライト、粘土、および結合剤は
配合されて粒子とされている炭化水素の分解用触
媒として使用する組成物において、 (d) 20〜50重量%のα−アルミナ三水和物および (e) 約0.1〜20ppmの白金、パラジウムまたはそ
れらの混合物、 を含むことを特徴とする組成物。 2 ゼオライトはY型ゼオライトであることを特
徴とする特許請求の範囲第1項記載の組成物。 3 該ゼオライトは、必要に応じてZ−14−US
と混合した、REY、Z−14−USRE、PCY、
CaREY、REHY、CREYと表示されたものの少
なくとも1種であることを特徴とする特許請求の
範囲第2項記載の組成物。 4 該ゼオライトは約11〜22重量%の希土類金属
イオンを含有するREYであることを特徴とする
特許請求の範囲第3項記載の組成物。 5 該結合剤は該触媒の約15〜40重量%の量で存
在することを特徴とする特許請求の範囲第1〜4
項のいずれかに記載の組成物。 6 約2〜10ppmの貴金属を含有することを特
徴とする特許請求の範囲第1〜5項のいずれかに
記載の組成物。 7 該貴金属は該触媒粒子上に含浸されているこ
とを特徴とする特許請求の範囲第6項記載の組成
物。 8 該貴金属は該触媒と混合されている粒状の無
機酸化物担体上に含浸されていることを特徴とす
る特許請求の範囲第6項記載の組成物。 9 (a) 約12〜60重量%の希土類金属交換ゼオラ
イト; (b) 必要に応じて75重量%までの粘土;および (c) 無機酸化物結合剤、 を含み、該ゼオライト、粘土、および結合剤は
配合されて粒子とされており、更に (d) 20〜50重量%のα−アルミナ三水和物および (e) 約0.1〜20ppmの白金、パラジウムまたはそ
れらの混合物、 を含む、炭化水素の分解用触媒として使用する組
成物の製造法において、 成分(c)および(d)および必要に応じて成分(b)をナ
トリウム型ゼオライトとしての成分(a)と配合し、
この配合物を粒状形に成形し、次いで該粒子を希
土類金属とイオン交換し、そして貴金属をゼオラ
イト含有粒子上に含浸することを特徴とする製造
法。 10 (a) 約12〜60重量%の希土類金属交換ゼオ
ライト; (b) 必要に応じて75重量%までの粘土;および (c) 無機酸化物結合剤、 を含み、該ゼオライト、粘土、および結合剤は
配合されて粒子とされており、更に (d) 20〜50重量%のα−アルミナ三水和物および (e) 約0.1〜20ppmの白金、パラジウムまたはそ
れらの混合物、 を含む、炭化水素の分解用触媒として使用する組
成物の製造法において、 成分(c)および(d)および必要に応じて成分(b)を希
土類金属の形態のゼオライトとしての成分(a)と配
合し、この配合物を粒状形に成形し、そして貴金
属をゼオライト含有粒子上に含浸することを特徴
とする製造法。
[Scope of Claims] 1. (a) about 12 to 60% by weight of a rare earth metal-exchanged zeolite; (b) optionally up to 75% by weight of clay; and (c) an inorganic oxide binder, comprising: In a composition for use as a catalyst for the cracking of hydrocarbons, the zeolite, clay, and binder are combined into particles, (d) 20 to 50% by weight of alpha-alumina trihydrate, and (e) approx. A composition comprising: 0.1 to 20 ppm of platinum, palladium or a mixture thereof. 2. The composition according to claim 1, wherein the zeolite is a Y-type zeolite. 3 The zeolite may be used as Z-14-US as necessary.
REY, Z−14−USRE, PCY, mixed with
The composition according to claim 2, characterized in that it is at least one of CaREY, REHY, and CREY. 4. The composition of claim 3, wherein the zeolite is REY containing about 11-22% by weight of rare earth metal ions. 5. Claims 1-4, wherein the binder is present in an amount of about 15-40% by weight of the catalyst.
The composition according to any of paragraphs. 6. A composition according to any one of claims 1 to 5, characterized in that it contains about 2 to 10 ppm of noble metal. 7. The composition according to claim 6, wherein the noble metal is impregnated onto the catalyst particles. 8. The composition according to claim 6, wherein the noble metal is impregnated onto a granular inorganic oxide carrier mixed with the catalyst. 9 (a) about 12 to 60% by weight rare earth metal exchanged zeolite; (b) optionally up to 75% by weight clay; and (c) an inorganic oxide binder, the zeolite, clay, and binder comprising: The agent is formulated into particles and further comprises: (d) 20-50% by weight alpha-alumina trihydrate; and (e) about 0.1-20 ppm platinum, palladium or mixtures thereof. In the method for producing a composition used as a catalyst for the decomposition of
A manufacturing process characterized in that the formulation is shaped into granules, the particles are then ion-exchanged with rare earth metals, and the precious metals are impregnated onto the zeolite-containing particles. 10 (a) about 12 to 60% by weight rare earth metal exchanged zeolite; (b) optionally up to 75% by weight clay; and (c) an inorganic oxide binder, the zeolite, clay, and binder comprising: The agent is formulated into particles and further comprises: (d) 20-50% by weight alpha-alumina trihydrate; and (e) about 0.1-20 ppm platinum, palladium or mixtures thereof. Components (c) and (d) and optionally component (b) are blended with component (a) as a zeolite in the form of a rare earth metal, A manufacturing method characterized in that the material is shaped into a granular form and the precious metal is impregnated onto the zeolite-containing particles.
JP13383078A 1977-11-02 1978-11-01 Decomposition catalyst composition Granted JPS5472790A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US84780077A 1977-11-02 1977-11-02

Publications (2)

Publication Number Publication Date
JPS5472790A JPS5472790A (en) 1979-06-11
JPS6240060B2 true JPS6240060B2 (en) 1987-08-26

Family

ID=25301544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13383078A Granted JPS5472790A (en) 1977-11-02 1978-11-01 Decomposition catalyst composition

Country Status (7)

Country Link
JP (1) JPS5472790A (en)
AU (1) AU522835B2 (en)
CA (1) CA1117511A (en)
DE (1) DE2847005A1 (en)
FR (1) FR2407745A1 (en)
GB (1) GB2007107B (en)
NL (1) NL7810826A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132443A (en) * 1987-11-18 1989-05-24 Mazda Motor Corp Structure for knee protector of vehicle
JPH0454044Y2 (en) * 1988-07-29 1992-12-18

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU539269B2 (en) * 1979-10-15 1984-09-20 Mobil Oil Corp. Preparing a zeolite containing group 8 metal catalyst
SE420353B (en) * 1980-04-23 1981-09-28 Pharos Ab DEVICE FOR CHECKING MATERIAL
EP0073874B1 (en) * 1981-03-19 1987-08-26 Ashland Oil, Inc. Immobilisation of vanadia deposited on catalytic materials during the conversion of oil that contains coke precursors and heavy metals
US4429053A (en) * 1981-12-04 1984-01-31 Union Oil Company Of California Rare earth-containing Y zeolite compositions
US4584287A (en) * 1981-12-04 1986-04-22 Union Oil Company Of California Rare earth-containing Y zeolite compositions
US4565621A (en) * 1981-12-04 1986-01-21 Union Oil Company Of California Hydrocracking with rare earth-containing Y zeolite compositions
US4604187A (en) * 1981-12-04 1986-08-05 Union Oil Company Of California Hydrocracking with rare earth-containing Y zeolite compositions
EP0109064A3 (en) * 1982-11-16 1985-06-19 W.R. Grace & Co. Hydrocarbon conversion catalysts
ATE24542T1 (en) * 1983-05-02 1987-01-15 Union Carbide Corp CATALYST AND PROCESS FOR CATALYTIC CRACKING.
ATE27827T1 (en) * 1983-05-02 1987-07-15 Union Carbide Corp CATALYST AND PROCESS FOR HYDROCRACKING.
DE3473887D1 (en) * 1983-08-12 1988-10-13 Engelhard Corp A fluid catalytic cracking catalyst for cracking sulfur containing petroleum feedstocks and a process for using it
US5168086A (en) * 1989-03-02 1992-12-01 W. R. Grace & Co.-Conn. Catalytic cracking catalysis
US5147836A (en) * 1991-10-18 1992-09-15 W. R. Grace & Co.-Conn. Catalytic cracking catalysts
US5304526A (en) 1991-10-18 1994-04-19 W. R. Grace & Co.-Conn. Silica bayerite/eta alumina
ES2079941T3 (en) * 1992-04-27 1996-01-16 Grace W R & Co CATALYTIC CRAYING CATALYSTS AND ADDITIVES.
US5376608A (en) * 1993-01-27 1994-12-27 W. R. Grace & Co.-Conn. Sulfur reduction in FCC gasoline
US20020153283A1 (en) 1998-12-28 2002-10-24 Arthur W Chester Gasoline sulfur reduction in fluid catalytic cracking
US6974787B2 (en) 1998-08-31 2005-12-13 Exxonmobil Corporation Gasoline sulfur reduction in fluid catalytic cracking
US6852214B1 (en) 1998-08-31 2005-02-08 Mobil Oil Corporation Gasoline sulfur reduction in fluid catalytic cracking
US6846403B2 (en) 1998-12-28 2005-01-25 Mobil Oil Corporation Gasoline sulfur reduction in fluid catalytic cracking
US7803267B2 (en) 1998-12-28 2010-09-28 W. R. Grace & Co.-Conn. Gasoline sulfur reduction in fluid catalytic cracking
US7507686B2 (en) 2002-12-03 2009-03-24 W. R. Grace & Co. - Conn. Gasoline sulfur reduction in fluid catalytic cracking
JP4818131B2 (en) * 2007-01-16 2011-11-16 一般財団法人石油エネルギー技術センター Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4916320B2 (en) * 2007-01-19 2012-04-11 一般財団法人石油エネルギー技術センター Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4818135B2 (en) * 2007-01-19 2011-11-16 一般財団法人石油エネルギー技術センター Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4818156B2 (en) * 2007-02-19 2011-11-16 一般財団法人石油エネルギー技術センター Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3267022A (en) * 1964-01-24 1966-08-16 Union Oil Co Hydrocracking process and catalysts
DE1542188A1 (en) * 1965-10-05 1970-03-26 Grace W R & Co Catalyst for hydrocracking hydrocarbons
FR1529190A (en) * 1967-06-26 1968-06-14 Exxon Research Engineering Co Improved catalysts and their use in hydrocarbon conversion processes
US3554899A (en) * 1968-11-26 1971-01-12 Union Oil Co Hydrocracking process
US3607043A (en) * 1969-11-19 1971-09-21 Grace W R & Co Cation and thermal stabilization of a faujasite-type zeolite
US3867308A (en) * 1973-12-10 1975-02-18 Grace W R & Co Process for preparing a petroleum cracking catalyst
US3957689A (en) * 1974-08-02 1976-05-18 W. R. Grace & Co. Process for preparing an attrition resistant zeolite hydrocarbon conversion catalyst
CA1046484A (en) * 1976-04-12 1979-01-16 Elroy M. Gladrow Hydrocarbon conversion catalyst containing a co oxidation promoter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132443A (en) * 1987-11-18 1989-05-24 Mazda Motor Corp Structure for knee protector of vehicle
JPH0454044Y2 (en) * 1988-07-29 1992-12-18

Also Published As

Publication number Publication date
JPS5472790A (en) 1979-06-11
FR2407745A1 (en) 1979-06-01
DE2847005A1 (en) 1979-05-03
CA1117511A (en) 1982-02-02
FR2407745B1 (en) 1984-11-09
GB2007107A (en) 1979-05-16
NL7810826A (en) 1979-05-04
AU522835B2 (en) 1982-07-01
AU4109578A (en) 1980-05-01
GB2007107B (en) 1982-05-19

Similar Documents

Publication Publication Date Title
JPS6240060B2 (en)
JP3693362B2 (en) Catalyst composition and method for reducing sulfur in FCC gasoline
US4137151A (en) Hydrocarbon conversion with cracking catalyst having co-combustion promoters lanthanum and iron
US4369130A (en) Composition for removing sulfur oxides from a gas
US4151121A (en) Hydrocarbon conversion catalyst containing a co-oxidation promoter
JP4065201B2 (en) Gasoline sulfur reduction catalyst for fluid catalytic cracking process.
GB1575707A (en) Catalyst compositions
JPH0153717B2 (en)
JPS6354944A (en) Cracking catalyst having aromatic selectivity
US4097410A (en) Hydrocarbon conversion catalyst containing a CO oxidation promoter
JP2554706B2 (en) Method for catalytic cracking of feedstock containing high levels of nitrogen
CA1051411A (en) Cracking catalyst and cracking process using same
GB2079737A (en) Zeolite-containing catalyst preparation
JPH0478343B2 (en)
US4164465A (en) Hydrocarbon cracking with catalyst containing a CO oxidation promoter in ultra-stable zeolite particles
JPS6344011B2 (en)
US3276993A (en) Compositions and methods for the conversion of hydrocarbons employing a crystalline alumina-silicate catalyst composite
JPS61216735A (en) Catalyst and SOx reduction method for reducing SOx emissions of FCC equipment
KR101120901B1 (en) Gasoline sulfur reduction catalyst for fluid catalytic cracking process
JPH08299794A (en) Combustion promoting composition by reducing nox by fcc process
JPH01500571A (en) Improved vanadium, rare earth metal-containing spinel compositions and methods of using the same
GB2085861A (en) Thermally-stabilised/aluminium- exchanged type Y zeolite
US4187199A (en) Hydrocarbon conversion catalyst
AU618829B2 (en) Carbon monoxide oxidation catalyst
JPS6241782B2 (en)