[go: up one dir, main page]

JPS6239551B2 - - Google Patents

Info

Publication number
JPS6239551B2
JPS6239551B2 JP54079658A JP7965879A JPS6239551B2 JP S6239551 B2 JPS6239551 B2 JP S6239551B2 JP 54079658 A JP54079658 A JP 54079658A JP 7965879 A JP7965879 A JP 7965879A JP S6239551 B2 JPS6239551 B2 JP S6239551B2
Authority
JP
Japan
Prior art keywords
inorganic ferroelectric
composite piezoelectric
ferroelectric powder
piezoelectric
piezoelectric film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54079658A
Other languages
Japanese (ja)
Other versions
JPS564291A (en
Inventor
Tadashi Ido
Yoshinori Fujimori
Hiroki Pponda
Yoshikazu Oda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP7965879A priority Critical patent/JPS564291A/en
Publication of JPS564291A publication Critical patent/JPS564291A/en
Publication of JPS6239551B2 publication Critical patent/JPS6239551B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/852Composite materials, e.g. having 1-3 or 2-2 type connectivity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Description

【発明の詳細な説明】 本発明は高分子材料と無機強誘電体粉末から成
る複合圧電膜体及びその製造方法に係り、特に可
撓性に豊み、大きな圧電効果を有し、且つ複合圧
電膜体において、無機強誘電体粉末の濃度を膜厚
方向に対して連続的に変化せしめた複合圧電膜体
及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite piezoelectric film made of a polymeric material and an inorganic ferroelectric powder, and a method for manufacturing the same. The present invention relates to a composite piezoelectric film body in which the concentration of inorganic ferroelectric powder is continuously varied in the film thickness direction, and a method for manufacturing the same.

従来圧電効果を有する物質として水晶、ロツシ
エル塩等の無機結晶及びチタン酸鉛、チタンジル
コン酸鉛等のセラミツクスが良く知られている。
これ等の圧電材料は、いずれも大きな圧電効果を
保持する反面、硬くて脆く加工が難しいため、薄
膜で大面積の圧電体や可撓性の圧電体を得ること
は、極めて困難とされていた。更に圧電性無機結
晶やセラミツクスを用いた生体用の超音波探触子
では、生体との音響インピーダンスが大きく異な
り、高分子マトリツクス中に無機材料微粉末を複
合化して成るインピーダンス・マツチング層を圧
電素子と接着等により一体化しなければならなか
つた。
Conventionally, inorganic crystals such as quartz crystal and Rothsiel salt, and ceramics such as lead titanate and lead titanium zirconate are well known as substances having a piezoelectric effect.
Although these piezoelectric materials all have a large piezoelectric effect, they are hard, brittle, and difficult to process, so it has been extremely difficult to create thin films with large area piezoelectric bodies or flexible piezoelectric bodies. . Furthermore, in biological ultrasound probes using piezoelectric inorganic crystals or ceramics, the acoustic impedance differs greatly from that of the living body. It had to be integrated by gluing, etc.

他方、ポリベンジルグルタメートの如きアミノ
酸重合体の一軸延伸膜やポリ塩化ビニル、ポリア
ミド等の有機材料にも圧電性を保持させることは
確認されているもののいずれも圧電効果が小さ
く、圧電効果の最も大きいとされるβ型ポリ弗化
ビニリテンにおいてさえも、生体用の超音波探触
子として生体とのインピーダンスマツチングは良
好な反面、伸び圧電定数(d31)は2.5×10-12c
N、厚み振動の圧電定数(d33)は3.1×10-12c/N
に過ぎなかつた。
On the other hand, although it has been confirmed that piezoelectricity can be maintained in uniaxially stretched films of amino acid polymers such as polybenzyl glutamate, and organic materials such as polyvinyl chloride and polyamide, the piezoelectric effect is small in all of them, and the piezoelectric effect is the largest. Even with β-type polyvinyritene fluoride, which is considered to be a biological ultrasonic probe, the impedance matching with the living body is good, but the elongation piezoelectric constant (d 31 ) is 2.5 × 10 -12c /
N, the piezoelectric constant (d 33 ) of thickness vibration is 3.1×10 -12c /N
It was nothing more than

また高分子材料中に可及的に均一に無機強誘電
体粉末を分散させた複合圧電膜体をキーボード用
の圧電素子として用いる事も試みられているが、
特に打撃により圧力を印加するタイプのものでは
圧電素子表面に別途保護層を設ける等の煩雑な工
程が必要であつた。
Also, attempts have been made to use a composite piezoelectric film body in which inorganic ferroelectric powder is dispersed as uniformly as possible in a polymer material as a piezoelectric element for a keyboard.
Particularly, in the case of a type in which pressure is applied by impact, a complicated process such as separately providing a protective layer on the surface of the piezoelectric element is required.

本発明は、上記の欠点に鑑み、薄膜への成形加
工が容易で圧電効果が大きく、可撓性に富んだ経
時変化の少ない上、生体用の超音波探触子として
生体とのインピーダンスマツチングが良好な複合
圧電膜体、またはキーボード用圧電素子において
保護層が一体成形された複合圧電膜体即ち無機強
誘電体粉末の濃度を膜厚方向に対して連続的に変
化せしめた複合圧電膜体及びその製造方法を提供
することを目的する。以下図面をもつて本発明の
複合圧電膜体を詳細に説明する。
In view of the above-mentioned drawbacks, the present invention is easy to form into a thin film, has a large piezoelectric effect, is highly flexible, has little change over time, and has impedance matching with a living body as an ultrasonic probe for living bodies. Composite piezoelectric film body with good properties, or composite piezoelectric film body in which a protective layer is integrally molded in a piezoelectric element for a keyboard, that is, a composite piezoelectric film body in which the concentration of inorganic ferroelectric powder is continuously varied in the film thickness direction. The purpose is to provide a method for producing the same. The composite piezoelectric film body of the present invention will be explained in detail below with reference to the drawings.

第1図は本発明に基ずく複合圧電膜体の構成断
面図で複合圧電膜体1中に無機強誘電体粉末2が
配置されている。第2図は本発明に基ずく複合圧
電膜体の膜厚方向に対する音響インピーダンスを
表わすもので第1図において無機強誘電体粉末2
は膜厚方向に対してその濃度が連続的に変化する
ため、音響インピーダンスも連続的に変化してい
る。従つて第1図において生体用の超音波探触子
として生体側に高分子材料層3側を配置すること
によつて、優れた生体用の超音波探触子用圧電素
子を形成する事ができる。
FIG. 1 is a cross-sectional view of the structure of a composite piezoelectric film body according to the present invention, in which an inorganic ferroelectric powder 2 is arranged in a composite piezoelectric film body 1. As shown in FIG. Figure 2 shows the acoustic impedance in the film thickness direction of the composite piezoelectric film body based on the present invention.
Since its concentration changes continuously in the film thickness direction, the acoustic impedance also changes continuously. Therefore, as shown in FIG. 1, by arranging the polymer material layer 3 side on the living body side as an ultrasound probe for living body, it is possible to form an excellent piezoelectric element for an ultrasound probe for living body. can.

またキーボード用として用いる際には高分子材
料3側を保護層とする事により圧電部分と保護層
とが一体成形され、ものを得る事ができる。
Further, when used as a keyboard, by using the polymer material 3 side as a protective layer, the piezoelectric portion and the protective layer can be integrally molded to obtain a product.

なおキーボード用として用いる場合には無機強
誘電体粉末の濃度が膜厚方向に対してより急激な
変化を有するもの、(つまり充分に遠心力を印加
したもの)を利用する事が好ましい。
When used for a keyboard, it is preferable to use an inorganic ferroelectric powder whose concentration changes more rapidly in the film thickness direction (that is, one to which sufficient centrifugal force is applied).

この様に無機強誘電体粉末の濃度の変化程度
は、無機強誘電体粉末の粒径、比重、高分子材料
の比重粘性、および遠心力等を選択する事により
適宜調整できることは言うまでもない。
It goes without saying that the degree of change in the concentration of the inorganic ferroelectric powder can be adjusted as appropriate by selecting the particle size and specific gravity of the inorganic ferroelectric powder, the specific gravity viscosity of the polymer material, centrifugal force, etc.

次に本発明方法を具体的装置例を示す第3図を
用いて説明する。
Next, the method of the present invention will be explained using FIG. 3 showing a specific example of the apparatus.

第3図において円筒4の一端が回転部5と接続
されている。円筒の内面は、十分で平滑で、本発
明に基ずいて円筒4の内面に高分子材料無機強誘
電体混合溶液6を塗布具7に塗布し遠心力で塗工
するものである。即ち本発明方法は、PbTiO3
やPZT系等の無機強誘電体粉末を、ポリ弗化ビニ
リデン(以下PVDFと称す)やポリ弗化ビニリデ
ン−三弗化エチレン(以下PVDF−TrFEと称
す)等の高分子材料溶液中に分散させ、この混合
溶液を遠心力により膜状に塗工し、さらに遠心力
により無機強誘電体粉末濃度が膜厚方向に対して
連続的な変化を生じた際に固化成形することによ
り、第1図に断面的に示す如き複合圧電膜体を得
るというものである。次いで膜体の両面に電極を
施し、これ等の表裏の電極間に高電圧を印加して
適宜分極処理を施している。
In FIG. 3, one end of the cylinder 4 is connected to the rotating part 5. The inner surface of the cylinder 4 is sufficiently smooth, and according to the present invention, the polymer material and inorganic ferroelectric mixed solution 6 is applied to the inner surface of the cylinder 4 using an applicator 7 using centrifugal force. That is, the method of the present invention converts inorganic ferroelectric powder such as PbTiO 3 type or PZT type into polyvinylidene fluoride (hereinafter referred to as PVDF), polyvinylidene fluoride-ethylene trifluoride (hereinafter referred to as PVDF-TrFE), etc. This mixed solution is applied in the form of a film by centrifugal force, and when the concentration of the inorganic ferroelectric powder changes continuously in the film thickness direction due to centrifugal force. By solidifying and molding, a composite piezoelectric film body as shown in cross section in FIG. 1 is obtained. Next, electrodes are provided on both sides of the membrane body, and a high voltage is applied between these front and back electrodes to perform appropriate polarization treatment.

本発明に基ずく複合圧電膜体及びその製造方法
を更に詳述すれば、例えば1150℃で焼結し、粉砕
した粒径1.0μ〜10μの無機強誘電体粉末を、あ
らかじめ有機溶媒に溶解した高分子材料中に混合
分散し、この混合溶液を遠心力によつて基板上に
塗布し、乾燥後基板から離脱させた後、Ag等の
電極を真空蒸着法等で両表面に設置し、溶融点以
下の温度で100KV/cm程度の直流電界を印加して
やれば、無機強誘電体粉末濃度が膜厚方向に対し
て連続的に変化する複合圧電膜体を形成すること
ができる。なお遠心力によつて基板上に塗工した
膜体を有機溶媒が完全に乾燥する前に基板から離
脱させ、延伸処理を施すことにより膜体の機械的
強度を大巾に改善できるばかりでなく高分子材料
として有極性のものを用いた場合は、圧電効果を
も改善することができる。
More specifically, the composite piezoelectric film body and the manufacturing method thereof based on the present invention are described in more detail. The mixed solution is mixed and dispersed in a polymeric material, applied to the substrate by centrifugal force, and removed from the substrate after drying. Electrodes such as Ag are installed on both surfaces by vacuum evaporation, etc. By applying a direct current electric field of about 100 KV/cm at a temperature below the point, it is possible to form a composite piezoelectric film in which the concentration of inorganic ferroelectric powder changes continuously in the film thickness direction. By separating the membrane coated onto the substrate using centrifugal force from the substrate before the organic solvent has completely dried, and performing a stretching process, not only can the mechanical strength of the membrane be greatly improved. When a polar polymer material is used, the piezoelectric effect can also be improved.

なお本発明において用いる無機強誘電体粉末と
しては一般式(A2+B4+O3,A1+B5+O3
A3+B3+O3)で示されるペロフスカイト型構造のも
のが挙げられ、その量は実用上20〜90重量%とす
ることができる。
The inorganic ferroelectric powder used in the present invention has the general formula (A 2+ B 4+ O 3 , A 1+ B 5+ O 3 ,
Examples include those having a perovskite structure represented by A 3+ B 3+ O 3 ), and the amount thereof can be practically set at 20 to 90% by weight.

上記の如き本発明によれば圧電効果が大きく、
可撓性に豊み、経時変化に優れ且つ膜厚方向に対
して無機強誘電体粉末の濃度が連続的に変化した
複合圧電膜体を得ることができる。このため生体
用の超音波探触子としても生体とのインピーダン
スマツチングが優れており、接着等によつてマツ
チング層を設ける必要がない点は特筆すべきであ
る。またキーボード用の圧電素子として用いる際
にも保護膜を一体成形する事ができ、実用上、利
用価値の大きなものと言える。
According to the present invention as described above, the piezoelectric effect is large,
It is possible to obtain a composite piezoelectric film that is highly flexible, has excellent change over time, and in which the concentration of the inorganic ferroelectric powder changes continuously in the film thickness direction. Therefore, it is noteworthy that the impedance matching with the living body is excellent even as an ultrasonic probe for living bodies, and there is no need to provide a matching layer by adhesion or the like. Moreover, when used as a piezoelectric element for a keyboard, a protective film can be integrally formed, and it can be said to be of great practical value.

以下、本発明を実施例により詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

〈実施例 1〉 まず無機強誘電体微粉末として平均粒径5μの
球状のPZT微末500grを、20重量%のPVDF−ジ
メチルホルラアミド溶液1Kgにホールミルで混合
分散させた。この混合溶液を回転軸に固定された
円筒の内面に配置し、回転速度を徐々に75〜
420rpmまで変化させ、遠心力と比重差を利用し
て膜厚方向に無機強誘電体粉末濃度が連続的に変
化する複合圧電膜体を形成した。この膜体中にジ
メチルホルムアミドが若干残留する状態で膜体を
円筒の内面から離脱し1.5倍に2軸延伸した後、
減圧乾燥を施した、次いでこの膜体の両面に3.5
×10-6torr以下の真空中でAg電極を設けた後、
120℃の恒温槽中で1.5時間、電極間に200K.V./
cmの直流電界を2時間印加し、電圧を印加した
まゝ室温まで冷却して分極操作を完了し、複合圧
電膜体を得た。この膜体について圧電特性を測定
したところ、伸びの圧電定数d31は5.3×10-11c
N、厚み振動の圧電定数d33は、8・9×10-11c
Nであつた。なお本実施例に基ずく複合圧電膜体
が厚さ方向に無機強誘電体粉末の濃度が連続的に
変化しているか否かは、膜体を順次ラツピング
し、ラツピング時の膜厚と膜体の比重を測定する
ことによつて確認した。
<Example 1> First, 500 gr of spherical PZT fine powder with an average particle size of 5 μm as an inorganic ferroelectric fine powder was mixed and dispersed in 1 kg of a 20% by weight PVDF-dimethylforramide solution using a hole mill. This mixed solution is placed on the inner surface of a cylinder fixed to a rotating shaft, and the rotation speed is gradually increased from 75 to
By changing the speed up to 420 rpm, we formed a composite piezoelectric film in which the concentration of inorganic ferroelectric powder changes continuously in the film thickness direction using centrifugal force and the difference in specific gravity. After removing the film from the inner surface of the cylinder with some dimethylformamide remaining in the film and biaxially stretching it to 1.5 times,
After drying under reduced pressure, both sides of this membrane were coated with 3.5
After installing the Ag electrode in a vacuum below ×10 -6 torr,
200K.V./between electrodes for 1.5 hours in a constant temperature bath at 120℃
A DC electric field of cm was applied for 2 hours, and the polarization operation was completed by cooling to room temperature while applying the voltage, to obtain a composite piezoelectric film. When the piezoelectric properties of this membrane were measured, the piezoelectric constant of elongation d31 was 5.3×10 -11c /
N, the piezoelectric constant d 33 of thickness vibration is 8・9×10 -11c /
It was N. Note that whether or not the concentration of the inorganic ferroelectric powder in the composite piezoelectric film body based on this example changes continuously in the thickness direction can be determined by sequentially wrapping the film body and checking the film thickness at the time of wrapping and the film body. This was confirmed by measuring the specific gravity of

次にこの複合圧電膜体を利用して、超音波特性
(水中へ超音波を発射し、水中のアクリル板から
の反射を観察する)を測定した結果、インピーダ
ンスマツチングは良好となり、高感度特性を持つ
超音波探触子が得られた。
Next, using this composite piezoelectric film body, we measured the ultrasonic characteristics (by emitting ultrasonic waves into water and observing the reflection from the acrylic plate in the water), and the results showed that the impedance matching was good and the characteristics were high sensitivity. An ultrasonic probe with

また打撃により圧力を印加するタイプのキーボ
ード用圧電素子として用いた場合にも良好な特性
を示した。
It also showed good characteristics when used as a piezoelectric element for a keyboard that applies pressure by impact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る複合圧電膜体の断面図。 1……複合圧電膜体、2……無機強誘電体粉
末、3……高分子材料。 第2図は本発明に係る複合圧電膜体の膜厚方向
に対する音響インピーダンスを示す曲線図、 第3図は本発明方法を用いた装置例を示す一部
切欠斜視図。
FIG. 1 is a sectional view of a composite piezoelectric film body according to the present invention. 1... Composite piezoelectric film body, 2... Inorganic ferroelectric powder, 3... Polymer material. FIG. 2 is a curve diagram showing the acoustic impedance in the film thickness direction of the composite piezoelectric film body according to the present invention, and FIG. 3 is a partially cutaway perspective view showing an example of a device using the method of the present invention.

Claims (1)

【特許請求の範囲】 1 高分子材料中に無機強誘電体粉末が分散して
成る複合圧電膜体において、無機強誘電体粉末の
濃度を膜厚方向に対して連続的に変化せしめたこ
とを特徴とする複合圧電膜体。 2 無機強誘電体粉末が分散した高分子材料より
なる混合溶液を遠心力により膜状とする工程と、
前記遠心力により無機強誘電体粉末濃度が膜厚方
向に対して連続的な変化を生じた際に固化成形す
る工程とを具備したことを特徴とする複合圧電膜
体の製造方法。
[Claims] 1. In a composite piezoelectric film body made of inorganic ferroelectric powder dispersed in a polymeric material, the concentration of the inorganic ferroelectric powder is continuously changed in the film thickness direction. Features a composite piezoelectric film body. 2. Forming a mixed solution made of a polymeric material in which inorganic ferroelectric powder is dispersed into a film by centrifugal force;
A method for manufacturing a composite piezoelectric film body, comprising the step of solidifying and forming the inorganic ferroelectric powder when the concentration of the inorganic ferroelectric powder continuously changes in the film thickness direction due to the centrifugal force.
JP7965879A 1979-06-26 1979-06-26 Composite piezoelectric film and manufacture thereof Granted JPS564291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7965879A JPS564291A (en) 1979-06-26 1979-06-26 Composite piezoelectric film and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7965879A JPS564291A (en) 1979-06-26 1979-06-26 Composite piezoelectric film and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS564291A JPS564291A (en) 1981-01-17
JPS6239551B2 true JPS6239551B2 (en) 1987-08-24

Family

ID=13696236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7965879A Granted JPS564291A (en) 1979-06-26 1979-06-26 Composite piezoelectric film and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS564291A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130985A (en) * 1980-03-18 1981-10-14 Nippon Telegr & Teleph Corp <Ntt> Manufacture of piezoelectric bimorph
JPS61222525A (en) * 1985-03-28 1986-10-03 Tokyo Met Gov Kankyo Seibi Koushiya Purification of exhaust gas containing mercury
JPWO2023276131A1 (en) * 2021-07-02 2023-01-05

Also Published As

Publication number Publication date
JPS564291A (en) 1981-01-17

Similar Documents

Publication Publication Date Title
JP3074404B2 (en) Polymer piezoelectric material
Fukada New piezoelectric polymers
CA1183595A (en) Piezoelectric polymer material, a process for producing the same and an ultrasonic transducer utilized the same
JP5347503B2 (en) Ultrasonic probe and method of manufacturing ultrasonic probe
JP6018108B2 (en) Polymer composite piezoelectric material
CN112646296A (en) Preparation method of 0-0-3 type flexible piezoelectric composite film
JPS58122790A (en) Method of producing block of piezoelectric molecular material and block obtained by same method
JPH06216422A (en) Flexible laminated piezoelectric element
US12281223B2 (en) Piezoelectric composite material and method
Dahiya et al. Deposition, processing and characterization of P (VDF-TrFE) thin films for sensing applications
JPS6239551B2 (en)
Chauhan et al. Development and Optimization of Highly Piezoelectric BTO/PVDF-TrFE Nanocomposite Film for Energy Harvesting Application
JP2008188415A (en) Piezoelectric element, manufacturing method thereof, and ultrasonic probe including the piezoelectric element
Su et al. A curve-structured flexible pmut with enhanced acoustic sensitivity
Fukada History and recent progress in piezoelectric polymer research
JP2004304193A (en) Functional element, device using functional element, and method of manufacturing functional element
Mansour et al. Synergy of PMN-PT with piezoelectric polymer using sugar casting method for sensing applications
Lilliehorn et al. Multilayer piezoelectric copolymer transducers
Zeng et al. Piezoelectric ultrathin polymer films synthesized by electrostaticself-assembly processing
Stroyan Processing and characterization of PVDF, PVDF-TrFE, and PVDF-TrFE-PZT composites
Brown et al. High vinylidene-fluoride content P (VDF-TrFE) films for ultrasound transducers
Riaz et al. Piezoelectric Acoustic Vibration Sensor Based on Flexible-PCB Spin-coated with PVDF-TrFE
WO2023277118A1 (en) Composite material for power generation and method for producing composite material for power generation
Wu et al. High-frequency (> 100MHz) PZT thick film transducers and Kerfless arrays
JPS5841789B2 (en) Composite piezoelectric material and its manufacturing method