JPS623866B2 - - Google Patents
Info
- Publication number
- JPS623866B2 JPS623866B2 JP53083162A JP8316278A JPS623866B2 JP S623866 B2 JPS623866 B2 JP S623866B2 JP 53083162 A JP53083162 A JP 53083162A JP 8316278 A JP8316278 A JP 8316278A JP S623866 B2 JPS623866 B2 JP S623866B2
- Authority
- JP
- Japan
- Prior art keywords
- melt
- melt tension
- temperature
- melting point
- conditions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Artificial Filaments (AREA)
Description
本発明は溶融成形の際の吐出体のよじれやサー
ジングを防止し、これにより繊度の向上、糸切れ
の防止、延伸性の向上を図り、もつて品質のすぐ
れた繊維その他の成形物を取得する方法に関する
ものである。
ポリビニルアルコールはそのままでは溶融成形
は不可能であるが、これを不飽和スルホン酸又は
その塩やα−オレフインで共重合変性すると溶融
成形することができるようになる。かくして得ら
れた繊維その他の成形物は吸汗性、帯電防止性、
耐油性、耐溶剤性、半透膜性等の特質を有するの
で、その実用性が期待されている。又かかるビニ
ルアルコール系共重合体をたとえばポリエステ
ル、ナイロン、ポリプロピレンなどの疎水性熱可
塑性樹脂と共に押出せば興味ある複合繊維が得ら
れる。
しかしながら上記溶融成形可能なビニルアルコ
ール系共重合体を溶融成形する際には、ノズルか
ら吐出された溶融体が第1図のAの如くよじれる
という現象が見られる。この現象は多くの樹脂の
溶融成形に際して見られるものであるが、ビニル
アルコール系共重合体の場合にはその程度が大き
いようである。そしてこのよじれ現象は曳糸性を
低下させ糸切れを起す原因となりやすい。よじれ
現象があると未延伸糸の繊度ムラを生じ、延伸性
にも悪影響を与え、ひいては延伸糸の強度、耐沸
水性の点にも不利を与える。このよじれ現象は膜
状物の溶融成形の場合にも見られ、スウエリン
グ、ネツクイン、蛇行など溶融製膜性の低下の原
因となる。製膜の場合のサージングはダイリツプ
部において溶融樹脂の吐出挙動が、紡糸時のよじ
れ現象と同様にその断面から見ると第1図の場合
と類似の挙動を示すのである。
しかるに本発明者らはトラブル発生の原因とな
る溶融成形時のよじれ現象を解消すべく鋭意研究
を重ねた結果、原料樹脂として溶融成形可能なビ
ニルアルコール系共重合体であつてその融点より
20℃高い温度におけるメルトテンシヨンが0.2g
未満のものを選び、この共重合体にその0.02〜2
重量%の量の迅速反応型メルトテンシヨン向上剤
を配合してそのメルトテンシヨンを0.2〜2gに
高めた組成物を得、この組成物を溶融成形に供す
るときは、ダイ吐出時の溶融体はよじれ現象が著
しく小さくなること、これにより曳糸性が向上し
て糸切れが減少し、延伸性も顕著に向上するこ
と、又溶融製膜時のトラブルも解消することを見
出し、本発明を完成するに至つた。
本発明における溶融成形可能なビニルアルコー
ル系共重合体としてはエチレンスルホン酸、アリ
ルスルホン酸、メタアリルスルホン酸などの不飽
和スルホン酸又はその塩、エチレン、プロピレ
ン、α−ブテン、α−ヘキサン、α−オクテン、
α−デセン、α−ドデセン、α−オクタデセン、
α−エイコセンなど炭素数2〜30又はそれ以上の
α−オレフインで共重合変性されたビニルアルコ
ール系共重合体があげられる。この共重合体は上
記の如きモノマーを酢酸ビニル、その他のビニル
エステルと共重合し、ついでビニルエステル成分
をケン化することによつて取得される。
共重合体中の変性成分の含量は不飽和スルホン
酸又はその塩の場合で0.5〜20モル%、なかんず
く1〜10モル%、α−オレフインの場合も同様に
0.5〜20モル%、なかんずく1〜10モル%の範囲
から選ぶのがよい。ただしα−オレフインがエチ
レンの場合は10〜60モル%の範囲から選ばれる。
変性成分の含量がこの範囲より少ないときは溶融
成形自体ができないか、短時間の溶融成形はでき
ても長時間の溶融成形ができないため、実用性を
欠き、一方この範囲より多いときは重合度が極端
に減少して成形物の機械的強度が劣るようになる
か、エチレンで変性した場合の如く得られる成形
物の帯電防止性、吸汗性、耐油性、気体遮断性な
どの特質が損なわれるようになる。
又ビニルエステル成分のケン化度は高ければ高
いほど好ましく、90モル%以上、さらには95モル
%以上とすべきである。90モル%未満では得られ
る成形物の機械的強度が不足する。
上記組成を有するビニルアルコール系共重合体
であつても、本発明の目的にはそのメルトテンシ
ヨンが一定以下の特性値を持つもののみが用いら
れる。ポリマーのメルトテンシヨンは測定温度に
よつて種々の値をとりうるので、本発明で言うメ
ルトテンシヨンとはポリマーの融点より20℃高い
温度における測定値であると定義する。具体的測
定法を第2図に示す。1はASTM−D1258に準ず
る加熱シリンダー、2は直径2mm、長さ8mmのオ
リフイスである。シリンダー内に試料ポリマーを
充填して一定時間加熱し、ロードセル3に荷重を
かけてピストン4を下降させれば、オリフイス2
からポリマー溶融体が吐出される。この溶融体を
ストレンゲージ付プーリー5、プーリー6を経て
ロール7で引張ることによりメルトテンシヨンが
測定できる。測定条件は
加熱時間 設定温度で5分間
押出速度 0.373c.c./min
エアーギヤツプ(オリフイス2からストレンゲー
ジ付プーリー5までの距離) 25cm
引取速度 500cm/min
雰囲気温度 20℃
フルスケール ロードセル 10Kg
ストレンゲージ 5g
であるとする。
本発明の構成及びその効果の特異性を第3図を
参照して以下に説明する。
本発明においては第3図Aの如くメルトテンシ
ヨン0.2g未満の原料ビニルアルコール系共重合
体にその0.02〜2重量%の迅速反応型メルトテン
シヨン向上剤を配合することにより、配合後の組
成物のメルトテンシヨンが0.2〜2gになるよう
に調整する。即ち原料樹脂としてメルトテンシヨ
ンが0.2g未満のものを用いること、それを迅速
反応型メルトテンシヨン向上剤配合によりメルト
テンシヨン0.2〜2gにまで高めることを必須と
する。一般に市販されているビニルアルコール系
共重合体は第3図B1,B2の如くメルトテンシヨ
ンが0.2g以上である。たとえば0.3g、0.4gなど
である。しかしこのような一般市販のビニルアル
コール系重合体をそのまま溶融成形に供してもノ
ズルから吐出した溶融樹脂によじれ現象が見られ
る。では故意に第3図Cの如くメルトテンシヨン
の小さい樹脂を製造し、溶融成形に供したらどう
なるであろうか。この場合は吐出時のよじれ現象
は一層激しくなり、紡糸にあつては糸切れ、製膜
にあつてはネツクイン、蛇行が著しくなり到底安
定した溶融成形ができなくなる。次にメルトテン
シヨンが0.2g以上の一般のビニルアルコール系
共重合体に迅速反応型メルトテンシヨン向上剤を
配合したケースを考えてみる。第3図のDがこれ
に相当し、特公昭49−20615号公報にも関連技術
が示されているが、この場合は機械強度は向上す
るものの、紡糸時のよじれ防止、製膜時のサージ
ング防止の点ではそれほどの効果は見られない。
しかるに本発明においては原料ビニルアルコール
系共重合体として故意にメルトテンシヨン0.2g
未満のものを用い、それを迅速反応型メルトテン
シヨン向上剤により0.2〜2gにまで高めるとい
う独自の方法を採用することによつて、よじれ防
止、サージング防止の点で顕著な効果を奏しえた
のである。以上述べた第3図A〜Dのケースにお
いて本願発明に相当するAのケースのみが卓効を
奏する理由については明らかではないが、たとえ
同じメルトテンシヨンを有しても効果に種々の差
があるのは溶融樹脂のコンフオメーシヨンの差な
どに基づくのではないかと思われる。
ここで迅速反応型メルトテンヨン向上剤とは、
これをビニルアルコール系共重合体に配合して該
共重合体の融点より20℃高い温度にまで加熱した
とき、その温度に5分間保つたときのメルトテン
シヨンが同温度に10分間保つたときのメルトテン
シヨンの80%以上、好ましくは90%以上のものを
言う。即ち滞留時間5分以内で事実上一定値に達
するようなものを言う。このような迅速反応型メ
ルトテンシヨン向上剤としてはホウ酸又はその塩
が典型的なものとしてあげられる。ホウ酸塩とは
ホウ砂、無水ホウ砂、或いはナトリウム塩以外の
ホウ酸塩を言う。一般に架橋剤として知られてい
る特開昭50−45848号公報に例示の如き多官能性
エポキシ化合物、多価カルボン酸、多価イソシア
ネート、尿素化合物、アルデヒド、有機過酸化物
などは、メルトテンシヨンを上げうるものもある
が、迅速反応型とは到底言いがたく、滞留時間を
相当長くとつてもメルトテンシヨンは容易に一定
とならず、しかも滞留時間を相当長くすると今度
はメルトテンシヨンが急激に下がるという現象を
起すこともあつて、安定した成形をすることがで
きない。
迅速反応型メルトテンシヨン向上剤の配合の仕
方としては、ビニルアルコール系共重合体粒子に
向上剤を粉体で或いは水又はアルコール、エステ
ルなどの溶媒に溶解又は分散させて添加、混合す
る方法、共重合体のスラリーに向上剤を添加して
撹拌し、ついで脱液、乾燥することにより付着さ
せる方法、ビニルアルコール系共重合体の製造工
程における適当な段階で向上剤を添加する方法な
ど任意の方法が採用される。もし熱安定性向上の
ために共重合体を酸で処理するときは、その酸処
理の前又は後に向上剤を添加するか、酸処理と同
時に向上剤添加を行なうことができる。配合後の
組成物はできればペレツト化後使用することが望
ましい。このペレツト化における高温短時間の溶
融混練でメルトテンシヨンの向上はほぼ完全に達
成されている。ペレツト化前の組成物でもメルト
テンシヨンは滞留時間を5分とつて測定するの
で、メルトテンシヨンが充分向上した測定値が得
られる。
迅速反応型メルトテンシヨン向上剤の配合量は
先にも述べた如くビニルアルコール系共重合体に
対し0.02〜2重量%の範囲から選ばれる。その配
合量が0.02重量%未満では改質効果が不足し、一
方その配合量が2重量%を越えるときはメルトテ
ンシヨンが余りに高くなつて、紡糸にあつては糸
切れのためドラフト率を上げることができず、そ
のため細デニールでしかも強力、ヤング率の高い
繊維を得ることができず、製膜にあつては膜切れ
やひび割れの原因となることがある。
配合後の組成物のメルトテンシヨンは0.2〜2
gの範囲になるように条件を選ぶできであり、そ
の値が0.2g未満では改質効果が不足し、一方そ
の値が2gを越えるときは紡糸にあつては糸切れ
のためドラフト率を上げることができず、製膜に
あつては膜切れやひび割れの原因となることがあ
る。
溶融成形法としては押出成形法、射出成形法、
圧縮成形法など任意の方法が採用されるが、押出
成形法が本発明の目的には最も有用である。押出
成形法としては繊維、異型断面繊維製造のための
溶融紡糸法、モノフイラメント押出法のほか、
棒、管、異型断面長尺物押出法、T−ダイ、環状
ダイ等によるテープ、薄膜、シート押出法、ブロ
ー成形法、溶融被覆法などがあげられる。
本発明においては、迅速反応型メルトテンシヨ
ン向上剤を配合したビニルアルコール系共重合体
はそれ単独で上記の如き溶融成形に供してもよい
が、他の熱可塑性樹脂と多層構造化してもよい。
多層構造化手段としてはバイメタル型、芯−鞘
型、偏心芯鞘性などの複合紡糸法、T−ダイや環
状ダイにより2層又は3層以上の多層薄膜又は多
層容器を得る共押出法、プラスチツク成形物、複
合成形物、紙、金属箔、金属線条、織布、不織
布、網紐、などに上記樹脂組成物を溶融被覆する
方法など任意の方法が際用される。又上記組成物
の単独組成物や多層構造物に他の薄膜、金属箔な
どを接着剤を用いて一体化したり、加熱加圧によ
り一体化したり、他の樹脂を溶融被覆したりして
複合化を図つてもよい。
溶融成形により得られた成形物は必要に応じ延
伸に供される。延伸に際しては成形物の含水率を
増加するための吸水又は吸湿処理することもある
が、このような処理を施さずにそのまま延伸に供
する方が工程上、装置上は有利である。延伸温
度、延伸倍率は繊維の場合で融点より20〜2℃低
い温度、2〜12倍とすることが多い。薄膜の場合
は一軸延伸の場合で融点より40〜2℃低い温度、
1.1〜12倍、二軸延伸の場合で40〜2℃低い温
度、2〜50倍とすることが多い。上記組成物と他
の熱可塑性樹脂とよりなる複合繊維や多層薄膜に
あつては、上記組成物単独の成形物の場合よりも
著しく延伸が円滑になるという興味ある事実があ
る。
延伸後の成形物は熱処理ないし熱固定をするこ
とにより寸法変化を防ぐことが必要に応じてなさ
れる。
次に実施例をあげて本発明の方法をさらに説明
する。以下「%」とあるのは特にことわりのない
限り重量基準で表わしたものである。
なお融点は、差動走査熱量計によつて昇温速度
20℃/minにて求められる温度−比較曲線の結晶
融解ピーク温度をもつて融点とした。
メルトテンシヨンは、先にも述べたように、ポ
リマーの融点より20℃高い温度における測定値で
ある。なお基準となる融点は樹脂に迅速反応型メ
ルトテンシヨン向上剤を配合しても1〜2℃程度
しか変化しない。
実施例 1
原料樹脂
α−ドデセン含量4.5モル%、酢酸ビニル成分
のケン化度98.8モル%のα−ドデセン−酢酸ビニ
ル共重合体ケン化物粒子で、密度1.20、融点209
℃、メルトテンシヨン0.13gのもの。
組成物
上記原料樹脂粒子に無水ホウ砂の1%水溶液を
スプレーし、これをヘンシエルミキサーで混合後
乾燥し、ついで温度240℃にて押出し、ペレツト
化したもので、無水ホウ砂の配合量が0.15%、メ
ルトテンシヨンが0.40gのもの。なおこのペレツ
トの融点は208℃であり、原料樹脂の融点とほと
んど差はない。
溶融紡糸条件
押出機 20mm径押出機
ノズル形状 径0.5mm、長さ1.5mm、孔数24
シリンダー部温度 240℃
ノズル部温度 260℃
吐出量 18.8g/min
巻取速度 500m/min
上記条件により紡糸を行ない、下記の未延伸糸
を得た。
未延伸糸
繊度 340デニール/24フイラメント
複屈折率(△n) 0.013
この未延伸糸を用いて下記条件で延撚を行なつ
た。
延撚条件
延伸撚糸機 加熱ビン式延伸撚糸機
加熱ピン温度 150℃
延伸倍率 5倍
熱処理温度 200℃
熱処理時間 5秒
延伸巻取速度 200m/min
かくして得られた延伸糸を温度90℃の熱水浴中
に無緊張状態で20分間浸漬する熱水浴処理を行な
つた。
以上における紡糸時の曳糸性、延伸性、延伸糸
物性、熱水浴処理後の糸の物性を第1表に示す。
対照例 1
実施例1で用いた原料樹脂を用いて実施例1と
同様の条件で紡糸を行ない(ただし吐出量は18.0
g/minとした)、未延伸糸を得た。未延伸糸の
繊度は320デニール/24フイラメント、複屈折率
は0.011であつた。ついでこの未延伸糸を用いて
実施例1と同様の条件で延撚及び熱水浴処理を行
なつた。
対照例 2
原料樹脂
実施例1で用いた原料樹脂
組成物
上記原料樹脂粒子に実施例1で述べた方法で無
水ホウ砂を配合した無水ホウ砂の配合量が0.015
%、メルトテンシヨンが0.16gのもの。なおこの
ペレツトの融点は207℃であつた。
上記組成物を用いて実施例1と同様の条件で紡
糸を行ない(ただし吐出量は18.3g/minとし
た)、未延伸糸を得た。未延伸糸の繊度は330デニ
ール/24フイラメント、複屈折率は0.012であつ
た。ついでこの未延伸糸を用いて実施例1と同様
の条件で延撚及び熱水浴処理を行なつた。
対照例 3
原料樹脂
実施例1の原料樹脂と同じα−ドデセン含量、
ケン化度を有するα−ドデセン−酢酸ビニル共重
合体ケン化物であつて、密度1.20、融点208℃、
メルトテンシヨン0.38gのもの。
上記原料樹脂を用いて実施例1と同様の条件で
紡糸を行ない(ただし吐出量は18.6g/minとし
た)、未延伸糸を得た。未延伸糸の繊度は340デニ
ール/24フイラメント、複屈折率は0.013であつ
た。ついでこの未延伸糸を用いて実施例1と同様
の条件で延撚及び熱水浴処理を行なつた。
実施例 2
原料樹脂
α−ヘキサデセン含量7.5モル%、酢酸ビニル
成分のケン化度98.5モル%のα−ヘキサデセン−
酢酸ビニル共重合体ケン化物の粒子で、密度
1.21、融点187℃、メルトテンシヨン0.18gのも
の。
組成物
上記原料樹脂粒子にホウ砂の1%(結晶水を計
算に含めないものとする)水溶液をスプレーし、
これをヘンシエルミキサーで混合後乾燥し、つい
で温度230℃にて押出し、ペレツト化したもの
で、ホウ砂の配合量が0.20%、メルトテンシヨン
が0.60gのもの。なおこのペレツトの融点は185
℃であつた。
溶融紡糸条件
シリンダー部温度 230℃
ノズル部温度 250℃
吐出量 18.6g/min
他の紡糸条件は実施例1と同じ
上記条件により紡糸を行ない、繊度330デニー
ル/24フイラメント、複屈折率0.010の未延伸糸
を得た。
延撚条件
加熱ピン温度 145℃
延伸倍率 4倍
熱処理温度 190℃
熱処理時間 5秒
他の延撚条件は実施例1と同じ
かくして得られた延伸糸を実施例1と同様にし
て熱水浴処理を行なつた。
以上対照例1〜3、実施例2の結果を第1表に
合せて示す。
The present invention prevents twisting and surging of the ejected body during melt molding, thereby improving fineness, preventing thread breakage, and improving stretchability, thereby obtaining fibers and other molded products of excellent quality. It is about the method. Polyvinyl alcohol cannot be melt-molded as it is, but it can be melt-molded if it is copolymerized and modified with an unsaturated sulfonic acid or its salt or α-olefin. The fibers and other molded products thus obtained have sweat-absorbing properties, antistatic properties,
Since it has properties such as oil resistance, solvent resistance, and semipermeable membrane properties, its practical use is expected. Interesting composite fibers can also be obtained by extruding such vinyl alcohol copolymers together with hydrophobic thermoplastic resins such as polyester, nylon, and polypropylene. However, when melt-molding the above-mentioned melt-moldable vinyl alcohol copolymer, there is a phenomenon in which the melt discharged from the nozzle is twisted as shown in A in FIG. This phenomenon is observed during melt molding of many resins, but it seems to be to a greater extent in the case of vinyl alcohol copolymers. This twisting phenomenon tends to reduce stringiness and cause yarn breakage. The kinking phenomenon causes unevenness in the fineness of the undrawn yarn, which has an adverse effect on the drawability and is also disadvantageous in terms of the strength and boiling water resistance of the drawn yarn. This kinking phenomenon is also observed in the case of melt forming film-like materials, and causes deterioration in melt film formability such as swelling, necking, and meandering. In the case of surging in film forming, the discharge behavior of the molten resin at the die lip section shows a behavior similar to that shown in FIG. 1 when viewed from the cross section, similar to the twisting phenomenon during spinning. However, the inventors of the present invention have conducted extensive research in order to solve the kinking phenomenon during melt molding that causes trouble, and have found that a vinyl alcohol copolymer that can be melt molded as a raw material resin and whose melting point
Melt tension at 20℃ higher temperature is 0.2g
Select one with less than 0.02 to 2
% by weight of a fast-reacting melt tension improver to obtain a composition in which the melt tension is increased to 0.2 to 2 g, and when this composition is subjected to melt molding, the melt at the time of discharge from the die is The inventors of the present invention have discovered that the kinking phenomenon is significantly reduced, that this improves stringiness, reduces yarn breakage, and significantly improves drawability, and that troubles during melt film formation are also resolved. It was completed. Examples of the melt-moldable vinyl alcohol copolymer used in the present invention include unsaturated sulfonic acids or salts thereof such as ethylene sulfonic acid, allyl sulfonic acid, and meta-allylsulfonic acid, ethylene, propylene, α-butene, α-hexane, α -octene,
α-decene, α-dodecene, α-octadecene,
Examples include vinyl alcohol copolymers copolymerized and modified with α-olefins having 2 to 30 or more carbon atoms, such as α-eicosene. This copolymer is obtained by copolymerizing the monomers described above with vinyl acetate and other vinyl esters, and then saponifying the vinyl ester component. The content of the modifying component in the copolymer is 0.5 to 20 mol% in the case of unsaturated sulfonic acid or its salt, especially 1 to 10 mol%, and the same is true in the case of α-olefin.
It is preferable to select from the range of 0.5 to 20 mol%, especially 1 to 10 mol%. However, when the α-olefin is ethylene, the amount is selected from the range of 10 to 60 mol%.
If the content of the modifying component is less than this range, it is impractical because melt molding itself cannot be performed, or melt molding can be performed for a short time but cannot be performed for a long time.On the other hand, when the content is higher than this range, the degree of polymerization is drastically reduced, resulting in poor mechanical strength of the molded product, or properties such as antistatic properties, sweat absorption, oil resistance, gas barrier properties, etc. of the molded product obtained when modified with ethylene are impaired. It becomes like this. The degree of saponification of the vinyl ester component is preferably as high as possible, and should be at least 90 mol%, more preferably at least 95 mol%. If it is less than 90 mol%, the resulting molded product will lack mechanical strength. Even if a vinyl alcohol copolymer has the above composition, only one whose melt tension has a characteristic value below a certain level is used for the purpose of the present invention. Since the melt tension of a polymer can take various values depending on the measurement temperature, the melt tension in the present invention is defined as a value measured at a temperature 20° C. higher than the melting point of the polymer. A specific measurement method is shown in Figure 2. 1 is a heating cylinder according to ASTM-D1258, and 2 is an orifice with a diameter of 2 mm and a length of 8 mm. Fill the cylinder with a sample polymer, heat it for a certain period of time, apply a load to the load cell 3, and lower the piston 4, the orifice 2
A polymer melt is discharged from the tube. The melt tension can be measured by pulling this melt through a pulley 5 with a strain gauge and a pulley 6 with a roll 7. The measurement conditions are: Heating time: 5 minutes at set temperature Extrusion speed: 0.373cc/min Air gap (distance from orifice 2 to pulley with strain gauge 5): 25cm Take-up speed: 500cm/min Ambient temperature: 20℃ Full scale Load cell: 10Kg Strain gauge: 5g do. The configuration of the present invention and the specificity of its effects will be explained below with reference to FIG. In the present invention, as shown in FIG. 3A, by blending 0.02 to 2% by weight of a rapid reaction type melt tension improver into a raw material vinyl alcohol copolymer having a melt tension of less than 0.2 g, the composition after blending is Adjust the melt tension of the material to 0.2 to 2 g. That is, it is essential to use a raw material resin with a melt tension of less than 0.2 g, and to increase the melt tension to 0.2 to 2 g by adding a rapid reaction type melt tension improver. Commercially available vinyl alcohol copolymers generally have a melt tension of 0.2 g or more, as shown in Figure 3 B1 and B2 . For example, 0.3g, 0.4g, etc. However, even if such general commercially available vinyl alcohol polymers are directly subjected to melt molding, kinking phenomenon is observed in the molten resin discharged from the nozzle. What would happen if we intentionally manufactured a resin with a small melt tension as shown in Figure 3C and subjected it to melt molding? In this case, the twisting phenomenon during discharge becomes even more severe, and thread breakage occurs during spinning, and neck-in and meandering occur during film formation, making stable melt molding impossible. Next, let us consider a case where a quick-reacting melt tension improver is blended with a general vinyl alcohol copolymer having a melt tension of 0.2 g or more. D in Figure 3 corresponds to this, and related technology is also shown in Japanese Patent Publication No. 49-20615, but in this case, although the mechanical strength is improved, it is difficult to prevent twisting during spinning, and prevents surging during film formation. There is no significant effect in terms of prevention.
However, in the present invention, the raw material vinyl alcohol copolymer intentionally has a melt tension of 0.2 g.
By using a unique method of increasing the melt tension to 0.2 to 2 g using a quick-reacting melt tension improver, we were able to achieve remarkable effects in preventing twisting and surging. be. Although it is not clear why only case A, which corresponds to the present invention, is highly effective among the cases shown in FIGS. 3 A to D described above, there are various differences in effectiveness even if they have the same melt tension It is thought that this difference is due to differences in conformation of the molten resin. Here, what is a rapid reaction melt tension improver?
When this is blended with a vinyl alcohol copolymer and heated to a temperature 20°C higher than the melting point of the copolymer, the melt tension when kept at that temperature for 5 minutes is the same as when kept at the same temperature for 10 minutes. 80% or more, preferably 90% or more of the melt tension. That is, it refers to something that virtually reaches a constant value within 5 minutes of residence time. A typical example of such a rapid reaction type melt tension improver is boric acid or a salt thereof. Borates refer to borates other than borax, anhydrous borax, or sodium salts. Polyfunctional epoxy compounds, polycarboxylic acids, polyisocyanates, urea compounds, aldehydes, organic peroxides, etc., as exemplified in JP-A No. 50-45848, which are generally known as crosslinking agents, have melt tension properties. Although there are some that can increase the melt tension, they are far from being rapid reaction types, and even if the residence time is considerably long, the melt tension does not easily become constant. A phenomenon of sudden drop may occur, making it impossible to perform stable molding. The rapid reaction type melt tension improver can be blended by adding the improver to the vinyl alcohol copolymer particles in the form of a powder, or by dissolving or dispersing it in a solvent such as water, alcohol, or ester, and mixing; Any method can be used, such as adding the improver to a slurry of the copolymer, stirring it, then removing liquid and drying it, or adding the improver at an appropriate stage in the manufacturing process of the vinyl alcohol copolymer. method is adopted. If the copolymer is treated with an acid to improve its thermal stability, the improver can be added before or after the acid treatment, or the improver can be added simultaneously with the acid treatment. It is desirable to use the blended composition after pelletizing it if possible. The improvement in melt tension is almost completely achieved by melt kneading at high temperature and for a short time in this pelletizing process. Even for the composition before pelletization, the melt tension is measured with a residence time of 5 minutes, so that a measured value in which the melt tension is sufficiently improved can be obtained. As mentioned above, the amount of the rapid reaction melt tension improver is selected from the range of 0.02 to 2% by weight based on the vinyl alcohol copolymer. If the amount is less than 0.02% by weight, the modification effect will be insufficient, while if the amount exceeds 2% by weight, the melt tension will become too high and the draft rate will increase due to yarn breakage during spinning. Therefore, it is not possible to obtain fibers with a fine denier, strong strength, and high Young's modulus, which may cause film breakage and cracks during film formation. The melt tension of the composition after blending is 0.2-2
The conditions can be selected so that the value falls within the range of 0.2g, and if the value is less than 0.2g, the modification effect will be insufficient, while if the value exceeds 2g, the draft rate will be increased due to thread breakage. This may cause film breakage or cracks during film formation. Melt molding methods include extrusion molding, injection molding,
Although any method may be employed, such as compression molding, extrusion molding is most useful for the purposes of this invention. Extrusion molding methods include melt spinning, monofilament extrusion, and monofilament extrusion for producing fibers and irregular cross-section fibers.
Examples include extrusion of rods, tubes, long objects with irregular cross-sections, tapes, thin films and sheets using T-dies, annular dies, etc., blow molding, melt coating, and the like. In the present invention, the vinyl alcohol copolymer blended with a rapid reaction type melt tension improver may be subjected to melt molding as described above alone, but it may also be formed into a multilayer structure with other thermoplastic resins. .
Examples of multilayer structure forming methods include composite spinning methods such as bimetal type, core-sheath type, and eccentric core-sheath type, coextrusion method to obtain a multilayer thin film or multilayer container with two or more layers using a T-die or annular die, and plastic. Any method can be used, such as a method of melt-coating the resin composition on a molded article, composite molded article, paper, metal foil, metal wire, woven fabric, nonwoven fabric, net string, etc. In addition, composites can be created by integrating other thin films, metal foils, etc. into single compositions or multilayer structures of the above compositions using adhesives, by heating and pressurizing them, or by melt-coating with other resins. You may also try to The molded product obtained by melt molding is subjected to stretching if necessary. During stretching, water absorption or moisture absorption treatment may be performed to increase the moisture content of the molded product, but it is more advantageous in terms of the process and equipment to subject the molded product to stretching without such treatment. In the case of fibers, the stretching temperature and stretching ratio are often 20 to 2°C lower than the melting point and 2 to 12 times. In the case of thin films, the temperature is 40 to 2°C lower than the melting point in the case of uniaxial stretching,
1.1 to 12 times, and in the case of biaxial stretching, the temperature is often 40 to 2°C lower and 2 to 50 times. It is an interesting fact that composite fibers or multilayer thin films made of the above composition and other thermoplastic resins can be stretched much more smoothly than molded products made of the above composition alone. The molded product after stretching is heat-treated or heat-set to prevent dimensional changes, if necessary. Next, the method of the present invention will be further explained with reference to Examples. In the following, "%" is expressed on a weight basis unless otherwise specified. The melting point was measured using a differential scanning calorimeter based on the heating rate.
The crystal melting peak temperature of the temperature-comparison curve determined at 20° C./min was defined as the melting point. As mentioned above, melt tension is a value measured at a temperature 20°C higher than the melting point of the polymer. Note that the reference melting point changes only by about 1 to 2°C even if a rapid reaction type melt tension improver is blended with the resin. Example 1 Raw resin Saponified α-dodecene-vinyl acetate copolymer particles with α-dodecene content of 4.5 mol% and saponification degree of vinyl acetate component of 98.8 mol%, density 1.20, melting point 209
℃, melt tension 0.13g. Composition A 1% aqueous solution of anhydrous borax was sprayed onto the raw material resin particles, mixed with a Henschel mixer, dried, extruded at a temperature of 240°C, and pelletized. 0.15%, melt tension 0.40g. The melting point of these pellets is 208°C, which is almost the same as the melting point of the raw resin. Melt spinning conditions Extruder 20mm diameter extruder Nozzle shape Diameter 0.5mm, length 1.5mm, number of holes 24 Cylinder temperature 240℃ Nozzle temperature 260℃ Discharge amount 18.8g/min Winding speed 500m/min Spinning under the above conditions The following undrawn yarn was obtained. Undrawn yarn fineness: 340 denier/24 filament birefringence (△n) 0.013 Using this undrawn yarn, drawing and twisting was performed under the following conditions. Stretching and twisting conditions Stretching and twisting machine Heating bottle type stretching and twisting machine Heating pin temperature 150℃ Stretching ratio 5 times Heat treatment temperature 200℃ Heat treatment time 5 seconds Stretching winding speed 200m/min The thus obtained drawn yarn was placed in a hot water bath at a temperature of 90℃ A hot water bath treatment was performed in which the specimens were immersed for 20 minutes in a stress-free state. Table 1 shows the spinnability, stretchability, physical properties of the drawn yarn during spinning, and the physical properties of the yarn after hot water bath treatment. Control example 1 Spinning was performed under the same conditions as in Example 1 using the raw material resin used in Example 1 (however, the discharge rate was 18.0
g/min), an undrawn yarn was obtained. The fineness of the undrawn yarn was 320 denier/24 filaments, and the birefringence was 0.011. Then, using this undrawn yarn, drawing and twisting and hot water bath treatment were performed under the same conditions as in Example 1. Control example 2 Raw material resin Raw resin used in Example 1 Composition Anhydrous borax was blended with the raw material resin particles by the method described in Example 1, and the blending amount of anhydrous borax was 0.015.
%, melt tension is 0.16g. The melting point of this pellet was 207°C. Using the above composition, spinning was carried out under the same conditions as in Example 1 (however, the discharge rate was 18.3 g/min) to obtain an undrawn yarn. The undrawn yarn had a fineness of 330 denier/24 filaments and a birefringence of 0.012. Then, using this undrawn yarn, drawing and twisting and hot water bath treatment were performed under the same conditions as in Example 1. Control example 3 Raw resin Same α-dodecene content as the raw resin of Example 1,
A saponified α-dodecene-vinyl acetate copolymer having a degree of saponification, a density of 1.20, a melting point of 208°C,
Melt tension 0.38g. Using the above raw material resin, spinning was carried out under the same conditions as in Example 1 (however, the discharge rate was 18.6 g/min) to obtain an undrawn yarn. The fineness of the undrawn yarn was 340 denier/24 filaments, and the birefringence was 0.013. Then, using this undrawn yarn, drawing and twisting and hot water bath treatment were performed under the same conditions as in Example 1. Example 2 Raw material resin α-hexadecene with α-hexadecene content of 7.5 mol% and saponification degree of vinyl acetate component of 98.5 mol%
Particles of saponified vinyl acetate copolymer, density
1.21, melting point 187℃, melt tension 0.18g. Composition Spray a 1% (crystalline water is not included in the calculation) aqueous solution of borax onto the raw resin particles,
This was mixed in a Henschel mixer, dried, and then extruded at a temperature of 230°C to form pellets, with a borax content of 0.20% and a melt tension of 0.60g. The melting point of this pellet is 185
It was warm at ℃. Melt spinning conditions Cylinder temperature: 230°C Nozzle temperature: 250°C Output rate: 18.6 g/min Other spinning conditions are the same as in Example 1. Spinning was performed under the above conditions, with a fineness of 330 denier/24 filaments and an unstretched birefringence of 0.010. Got the thread. Drawing and twisting conditions Heating pin temperature: 145°C Stretching ratio: 4 times Heat treatment temperature: 190°C Heat treatment time: 5 seconds Other drawing and twisting conditions are the same as in Example 1 The drawn yarn thus obtained was subjected to hot water bath treatment in the same manner as in Example 1. I did it. The results of Control Examples 1 to 3 and Example 2 are shown in Table 1.
【表】【table】
【表】
実施例 3
原料樹脂
エチレンスルホン酸ソーダ含量3.5モル%、酢
酸ビニル成分のケン化度99.6モル%のエチレンス
ルホン酸ソーダ−酢酸ビニル共重合体ケン化物粒
子で、密度1.22、融点200℃、メルトテンシヨン
0.08gのもの。
組成物
上記原料樹脂に無水ホウ砂を添加し、押出し、
ペレツト化したもので、無水ホウ砂の配合量が
0.20%、融点199℃、メルトテンシヨン0.35gの
もの。
溶融紡糸条件
シリンダー部温度 230℃
ノズル部温度 240℃
吐出量 16.5g/min
他の条件は実施例1と同じ
上記条件により紡糸を行ない、繊度300デニー
ル/24フイラメント、複屈折率0.017の未延伸糸
を得た。この未延伸糸を用いて下記条件で延撚を
行なつた。
延撚条件
加熱ピン温度 180℃
延伸倍率 3倍
熱処理温度 200℃
熱処理時間 5秒
他の条件は実施例1と同じ
結果を第2表に示す。
対照例 4
実施例3の原料樹脂を用いて実施例3と同様の
条件で紡糸を行ない(ただし吐出量は16.0g/
minとした)、未延伸糸を得た。未延伸の繊度は
290デニール/24フイラメント、複屈折率は0.014
であつた。ついでこの未延伸糸を用いて実施例3
と同様の条件で延伸を行なつたが、延伸操作中の
糸切れがひんぱつし、円滑な到底なしえなかつ
た。
対照例 5
実施例3の原料樹脂に無水ホウ砂を添加し、押
出し、ペレツト化することにより、無水ホウ砂の
配合量が0.04%、融点200℃、メルトテンシヨン
0.15gのペレツトを得た。
このペレツトを用いて実施例3と同様の条件で
紡糸を行ない(ただし吐出量を16.3g/minとし
た)、未延伸糸を得た。未延伸糸の繊度は290デニ
ール/24フイラメント、複屈折率は0.015であつ
た。ついでこの未延伸糸を用いて実施例3と同様
の条件で延撚を行なつた。
実施例 4
原料樹脂
アリルスルホン酸ソーダ含量2.1モル%、酢酸
ビニル成分のケン化度99.6モル%のアリルスルホ
ン酸ソーダ−酢酸ビニル共重合体ケン化物粒子
で、密度1.22、融点214℃、メルトテンシヨン
0.11gのもの。
組成物
上記原料樹脂にホウ酸を添加し、これをヘンシ
エルミキサーで混合後乾燥し、ついで温度250℃
で押出し、ペレツト化したもので、ホウ酸の含量
が0.18%、融点213℃、メルトテンシヨン0.36g
のもの。
上記組成物を用いて実施例3と同様の条件で紡
糸を行ない(ただし吐出量を16.2g/minとし
た)、未延伸糸を得た。未延伸糸の繊度は290デニ
ール/24フイラメント、複屈折率は0.014であつ
た。ついでこの未延伸糸を用いて実施例3と同様
の条件で延撚を行なつた。
以上対照例4〜5、実施例4の結果を第2表に
合せて示す。[Table] Example 3 Raw resin Sodium ethylene sulfonate-vinyl acetate copolymer saponified particles with a sodium ethylene sulfonate content of 3.5 mol% and a saponification degree of vinyl acetate component of 99.6 mol%, a density of 1.22, a melting point of 200°C, melt tension
0.08g. Composition Anhydrous borax is added to the above raw material resin, extruded,
It is made into pellets, and the amount of anhydrous borax is
0.20%, melting point 199℃, melt tension 0.35g. Melt spinning conditions Cylinder part temperature: 230°C Nozzle part temperature: 240°C Output rate: 16.5 g/min Other conditions are the same as in Example 1. Spinning was performed under the above conditions, and undrawn yarn with a fineness of 300 denier/24 filaments and a birefringence index of 0.017 I got it. Using this undrawn yarn, drawing and twisting was performed under the following conditions. Stretching and twisting conditions Heating pin temperature: 180°C Stretching ratio: 3 times Heat treatment temperature: 200°C Heat treatment time: 5 seconds Other conditions were the same as in Example 1. The results are shown in Table 2. Control Example 4 Using the raw material resin of Example 3, spinning was carried out under the same conditions as in Example 3 (however, the discharge amount was 16.0 g/
min), an undrawn yarn was obtained. The unstretched fineness is
290 denier/24 filaments, birefringence is 0.014
It was hot. Next, using this undrawn yarn, Example 3
Stretching was carried out under the same conditions as above, but the threads frequently broke during the stretching operation, and it was impossible to do it smoothly. Control Example 5 By adding anhydrous borax to the raw material resin of Example 3, extruding it, and pelletizing it, the blending amount of anhydrous borax was 0.04%, the melting point was 200°C, and the melt tension was
0.15g of pellets were obtained. Using this pellet, spinning was carried out under the same conditions as in Example 3 (however, the discharge rate was 16.3 g/min) to obtain an undrawn yarn. The fineness of the undrawn yarn was 290 denier/24 filaments, and the birefringence was 0.015. The undrawn yarn was then drawn and twisted under the same conditions as in Example 3. Example 4 Raw material resin Sodium allylsulfonate-vinyl acetate copolymer saponified particles with a sodium allylsulfonate content of 2.1 mol% and a degree of saponification of vinyl acetate component of 99.6 mol%, density 1.22, melting point 214°C, melt tension
0.11g. Composition Boric acid is added to the above raw material resin, mixed with a Henschel mixer and dried, then at a temperature of 250°C.
It is extruded and pelletized with a boric acid content of 0.18%, a melting point of 213℃, and a melt tension of 0.36g.
Of things. Using the above composition, spinning was carried out under the same conditions as in Example 3 (however, the discharge rate was 16.2 g/min) to obtain an undrawn yarn. The undrawn yarn had a fineness of 290 denier/24 filaments and a birefringence of 0.014. The undrawn yarn was then drawn and twisted under the same conditions as in Example 3. The results of Control Examples 4 to 5 and Example 4 are shown in Table 2.
【表】
実施例 5
原料樹脂
エチレン含量28モル%、酢酸ビニル成分のケン
化度99.6モル%のエチレン−酢酸ビニル共重合体
ケン化物粒子であつて、密度1.21、融点188℃、
メルトテンシヨン0.15gのもの。
組成物
上記原料樹脂に無水ホウ砂を添加し、押出し、
ペレツト化したもので、無水ホウ砂の配合量が
0.25%、融点186℃、メルトテンシヨン0.80gの
もの。
溶融紡糸条件
シリンダー部温度 230℃
ノズル部温度 260℃
吐出量 17.5g/min
巻取速度 430m/min
他の条件は実施例1と同じ
上記条件により紡糸を行ない、繊度360デニー
ル/24フイラメント、複屈折率0.015の未延伸糸
を得た。この未延伸糸を用いて下記条件で延撚を
行ない、その後延伸糸を温度98℃の沸水浴中に無
緊張状態で30分間浸漬する沸騰水浴処理を行なつ
た。
延撚条件
加熱ピン温度 145℃
延伸倍率 6.0倍
熱処理温度 165℃
熱処理時間 3秒
他の条件は実施例1と同じ
結果を第3表に示す。
対照例 3
実施例5の原料樹脂を用いて実施例5と同様の
条件で紡糸を行ない(ただし吐出量は16.3g/
minとした)、未延伸糸を得た。未延伸糸の繊度
は340デニール/24フイラメント、複屈折率は
0.014であつた。ついでこの未延伸糸を用いて実
施例5と同様の条件で延撚及び沸騰水浴浸漬を行
なつた。
対照例 7
原料樹脂
エチレン含量28モル%、ケン化度99.1モル%の
エチレン−酢酸ビニル共重合体ケン化物粒子であ
つて、密度1.21、融点186℃、メルトテンシヨン
0.53gのもの。
上記原料樹脂を用いて実施例5と同様の条件で
紡糸を行ない(ただし吐出量は16.0g/minとし
た)、未延伸糸を得た。未延伸糸の繊度は330デニ
ール/24フイラメント、複屈折率は0.015であつ
た。ついでこの未延伸糸を用いて実施例5と同様
の条件で延伸及び沸騰水浴処理を行なつた。
以上対照例6〜7の結果を第3表に合せて示
す。[Table] Example 5 Raw material resin Saponified ethylene-vinyl acetate copolymer particles with an ethylene content of 28 mol% and a saponification degree of vinyl acetate component of 99.6 mol%, a density of 1.21, a melting point of 188°C,
Melt tension 0.15g. Composition Anhydrous borax is added to the above raw material resin, extruded,
It is made into pellets, and the amount of anhydrous borax is
0.25%, melting point 186℃, melt tension 0.80g. Melt spinning conditions Cylinder temperature: 230°C Nozzle temperature: 260°C Discharge rate: 17.5 g/min Winding speed: 430 m/min Other conditions are the same as in Example 1 Spinning was performed under the above conditions, fineness: 360 denier/24 filaments, birefringence. An undrawn yarn with a ratio of 0.015 was obtained. This undrawn yarn was drawn and twisted under the following conditions, and then subjected to a boiling water bath treatment in which the drawn yarn was immersed in a boiling water bath at a temperature of 98°C for 30 minutes without tension. Stretching and twisting conditions Heating pin temperature: 145°C Stretching ratio: 6.0 times Heat treatment temperature: 165°C Heat treatment time: 3 seconds Other conditions were the same as in Example 1. The results are shown in Table 3. Control Example 3 Using the raw material resin of Example 5, spinning was carried out under the same conditions as in Example 5 (however, the discharge amount was 16.3 g/
min), an undrawn yarn was obtained. The fineness of the undrawn yarn is 340 denier/24 filaments, and the birefringence is
It was 0.014. This undrawn yarn was then stretched and twisted and immersed in a boiling water bath under the same conditions as in Example 5. Control example 7 Raw material resin Saponified ethylene-vinyl acetate copolymer particles with an ethylene content of 28 mol% and a degree of saponification of 99.1 mol%, a density of 1.21, a melting point of 186°C, and a melt tension.
0.53g. Using the above raw material resin, spinning was carried out under the same conditions as in Example 5 (however, the discharge rate was 16.0 g/min) to obtain an undrawn yarn. The undrawn yarn had a fineness of 330 denier/24 filaments and a birefringence of 0.015. This undrawn yarn was then subjected to drawing and boiling water bath treatment under the same conditions as in Example 5. The results of Control Examples 6 and 7 are also shown in Table 3.
【表】
実施例 6
組成物
実施例1のα−ドデセン−酢酸ビニル共重合体
ケン化物と無水ホウ砂よりなる組成物。
溶融製膜条件
押出機 T−ダイを備えた40mm径押出機
シリンダー温度 240℃
ダイ温度 230℃
ダイ有効巾 300mm
エアギヤツプ 120mm
冷却ロール 水冷
引取速度 15m/min
上記条件により製膜を行ない、厚み29μの薄膜
を得た。結果を第4表に示す。
対照例 8
対照例1の原料樹脂を用いて実施例6と同様の
条件で溶融製膜を行なつた。
対照例 9
対照例3の原料樹脂を用いて実施例6と同様の
条件で溶融製膜を行なつた。
対照例8〜9の結果を第4表に合せて示す。[Table] Example 6 Composition A composition comprising the saponified α-dodecene-vinyl acetate copolymer of Example 1 and anhydrous borax. Melt film forming conditions Extruder: 40 mm diameter extruder equipped with T-die Cylinder temperature: 240°C Die temperature: 230°C Die effective width: 300 mm Air gap: 120 mm Cooling roll Water cooling Take-up speed: 15 m/min Film forming was performed under the above conditions, resulting in a thin film with a thickness of 29μ. I got it. The results are shown in Table 4. Control Example 8 Using the raw material resin of Control Example 1, melt film formation was performed under the same conditions as in Example 6. Control Example 9 Melt film formation was performed using the raw material resin of Control Example 3 under the same conditions as in Example 6. The results of Control Examples 8 and 9 are also shown in Table 4.
【表】【table】
【表】
実施例 7
原料樹脂
エチレン含量33モル%、酢酸ビニル成分のケン
化度98.5モル%のエチレン−酢酸ビニル共重合体
ケン化物粒子であつて、密度1.18、融点180℃、
メルトテンシヨン0.10gのもの。
組成物
上記原料樹脂にホウ砂を添加し、ペレツト化し
たもので、ホウ砂の配合量(結晶水を除く計算
で)が0.30%、融点178℃、メルトテンシヨン1.1
gのもの。
上記組成物を用いて実施例6と同様の条件で溶
融製膜を行ない(ただしシリンダー温度は230
℃、ダイ温度は210℃とした)、厚み28μの薄膜を
得た。結果を第5表に示す。
対照例 10
実施例7の原料樹脂を用いて実施例7と同様の
条件で溶融製膜を行なつた。
対照例 11
原料樹脂
エチレン含量33モル%、酢酸ビニル成分のケン
化度98.7モル%のエチレン−酢酸ビニル共重合体
ケン化物粒子であつて、密度1.18、融点181℃、
メルトテンシヨン0.82gのもの。
上記原料樹脂を用いて実施例7と同様の条件で
溶融製膜を行なつた。
対照例10〜11の結果を第5表に合せて示す。[Table] Example 7 Raw resin Saponified ethylene-vinyl acetate copolymer particles with an ethylene content of 33 mol% and a degree of saponification of the vinyl acetate component of 98.5 mol%, a density of 1.18, a melting point of 180°C,
Melt tension 0.10g. Composition Borax is added to the above raw material resin and made into pellets, the amount of borax blended (calculated excluding crystallization water) is 0.30%, the melting point is 178°C, and the melt tension is 1.1.
g's. Using the above composition, melt film formation was carried out under the same conditions as in Example 6 (however, the cylinder temperature was 230°C).
℃, die temperature was 210℃), and a thin film with a thickness of 28μ was obtained. The results are shown in Table 5. Control Example 10 Melt film formation was performed using the raw material resin of Example 7 under the same conditions as in Example 7. Control example 11 Raw material resin Saponified ethylene-vinyl acetate copolymer particles with an ethylene content of 33 mol% and a saponification degree of vinyl acetate component of 98.7 mol%, a density of 1.18, a melting point of 181°C,
Melt tension 0.82g. Melt film formation was performed using the above raw material resin under the same conditions as in Example 7. The results of Control Examples 10 to 11 are also shown in Table 5.
第1図はノズル吐出時の溶融体のよじれ現象を
示した説明図、第2図はメルトテンシヨンの測定
法を示した説明図、第3図は本発明の構成と効果
を説明するためのモデル図である。
Fig. 1 is an explanatory diagram showing the twisting phenomenon of the melt during discharge from a nozzle, Fig. 2 is an explanatory diagram showing the method for measuring melt tension, and Fig. 3 is an explanatory diagram showing the structure and effects of the present invention. It is a model diagram.
Claims (1)
であつてその融点より20℃高い温度におけるメル
トテンシヨンが0.2g未満のものに該共重合体に
対し0.02〜2重量%の迅速反応型メルトテンシヨ
ン向上剤を配合して得られたメルトテンシヨン
0.2〜2gの組成物を溶融成形することを特徴と
する成形物の製造法。 2 成形物が繊維である特許請求の範囲第1項記
載の方法。 3 迅速反応型メルトテンシヨン向上剤がホウ酸
又はその塩である特許請求の範囲第1項記載の方
法。 4 温度150〜270℃にて溶融成形する特許請求の
範囲第1項記載の方法。[Scope of Claims] 1. A vinyl alcohol copolymer that can be melt molded and has a melt tension of less than 0.2 g at a temperature 20°C higher than its melting point, in an amount of 0.02 to 2% by weight based on the copolymer. Melt tension obtained by incorporating a rapid reaction type melt tension improver
A method for producing a molded article, which comprises melt-molding 0.2 to 2 g of a composition. 2. The method according to claim 1, wherein the molded product is a fiber. 3. The method according to claim 1, wherein the fast-reacting melt tension improver is boric acid or a salt thereof. 4. The method according to claim 1, which comprises melt molding at a temperature of 150 to 270°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8316278A JPS5512108A (en) | 1978-07-08 | 1978-07-08 | Preparation of formed product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8316278A JPS5512108A (en) | 1978-07-08 | 1978-07-08 | Preparation of formed product |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5512108A JPS5512108A (en) | 1980-01-28 |
JPS623866B2 true JPS623866B2 (en) | 1987-01-27 |
Family
ID=13794550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8316278A Granted JPS5512108A (en) | 1978-07-08 | 1978-07-08 | Preparation of formed product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5512108A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018124232A1 (en) | 2016-12-28 | 2018-07-05 | 日本合成化学工業株式会社 | Ethylene-vinyl alcohol copolymer composition pellet and method for producing ethylene-vinyl alcohol copolymer composition pellet |
US10370468B2 (en) | 2015-10-28 | 2019-08-06 | Mitsubishi Chemical Corporation | Saponified ethylene-vinyl ester-based copolymer pellet and producing method therefor |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5734148A (en) * | 1980-08-08 | 1982-02-24 | Kuraray Co Ltd | Ethylene-vinyl alcohol copolymer resin composition |
JPS57176214A (en) * | 1981-04-23 | 1982-10-29 | Sumitomo Chem Co Ltd | Production of fiber of saponified ethylene-vinyl acetate copolymer |
US6174949B1 (en) * | 1997-07-25 | 2001-01-16 | Nippon Gohsei Kagaku Kogyo Kabushiki Kaisha | Resin composition, process for preparing the same, and laminate containing layer of said resin composition |
JP2001019712A (en) * | 1999-07-06 | 2001-01-23 | Nippon Synthetic Chem Ind Co Ltd:The | Saponified ethylene-vinyl acetate copolymer and laminate |
US6686405B1 (en) | 1999-07-23 | 2004-02-03 | Kuraray Co., Ltd. | Process for producing ethylene-vinyl alcohol copolymer resin, process for producing pellets and resin pellets |
CA2326557C (en) | 1999-11-18 | 2006-03-14 | Kuraray Co., Ltd. | Saponified, alkoxyl group-containing ethylene-vinyl acetate copolymer, and its processed products |
US6838029B2 (en) | 2001-01-19 | 2005-01-04 | Kuraray Co., Ltd. | Method for producing ethylene-vinyl alcohol copolymer resin |
JP6572557B2 (en) * | 2015-02-26 | 2019-09-11 | 三菱ケミカル株式会社 | Resin composition |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5625872B2 (en) * | 1972-06-17 | 1981-06-15 | ||
JPS5649737B2 (en) * | 1972-10-19 | 1981-11-25 |
-
1978
- 1978-07-08 JP JP8316278A patent/JPS5512108A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10370468B2 (en) | 2015-10-28 | 2019-08-06 | Mitsubishi Chemical Corporation | Saponified ethylene-vinyl ester-based copolymer pellet and producing method therefor |
WO2018124232A1 (en) | 2016-12-28 | 2018-07-05 | 日本合成化学工業株式会社 | Ethylene-vinyl alcohol copolymer composition pellet and method for producing ethylene-vinyl alcohol copolymer composition pellet |
Also Published As
Publication number | Publication date |
---|---|
JPS5512108A (en) | 1980-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4163770A (en) | Melt-spinning acrylonitrile polymer fibers | |
DE69007811T2 (en) | Mixtures of ethylene-vinyl alcohol copolymer and amorphous polyamide and multi-layer containers made from them. | |
US5677360A (en) | Hydrophilic polymer alloy, fiber and porous membrane comprising this polymer alloy, and methods for preparing them | |
TWI793152B (en) | melt forming material | |
DE69824272T2 (en) | METHOD FOR THE PRODUCTION OF PELLETS FROM LEAKED ETHYLENE / VINYL ACETATE COPOLYMER | |
JPS60101032A (en) | Preparation of drawn substance of crystalline polymer of high strength and high elasticity modulus | |
JPS623866B2 (en) | ||
JPS62106904A (en) | Method for producing saponified ethylene-vinyl acetate copolymer pellets with improved quality | |
CN1170015C (en) | Hydrophilic additive | |
US6344539B1 (en) | Process for crystallization polyester granules | |
US4301107A (en) | Melt-spinning a plurality of acrylonitrile polymer fibers | |
US3173977A (en) | Production of shaped objects from highmolecular polyolefins | |
Galanti et al. | Polypropylene fibers and films | |
US4283365A (en) | Process for melt-spinning acrylonitrile polymer fiber using vertically disposed compression zone | |
JP2001172821A (en) | Production of polyoxymethylene fiber | |
US4097652A (en) | Poly (ethylene oxide) monofilament | |
CN1058063C (en) | A process for preparing a thermal bondable fiber | |
JPS6241311A (en) | Improved polypropylene monofilament and production thereof | |
JP4753449B2 (en) | Ethylene-vinyl acetate copolymer saponified biaxially stretched film and process for producing the same | |
JPH0314840A (en) | Biaxially cold-stretched vinylidene fluoride polymer film and its preparation | |
JPS5945762B2 (en) | Spinning method for acrylonitrile polymer | |
JPH03279413A (en) | Molecularly oriented molded body of high-molecular weight polyethylene | |
JP7336282B2 (en) | Polyvinyl alcohol fiber and method for producing the same | |
JPS59163413A (en) | Melt spinning of acrylic polymer composition | |
JPH0154444B2 (en) |