[go: up one dir, main page]

JPS6238362B2 - - Google Patents

Info

Publication number
JPS6238362B2
JPS6238362B2 JP44682A JP44682A JPS6238362B2 JP S6238362 B2 JPS6238362 B2 JP S6238362B2 JP 44682 A JP44682 A JP 44682A JP 44682 A JP44682 A JP 44682A JP S6238362 B2 JPS6238362 B2 JP S6238362B2
Authority
JP
Japan
Prior art keywords
formula
fluorosulfate
perfluoroallyl fluorosulfate
perfluoroallyl
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP44682A
Other languages
Japanese (ja)
Other versions
JPS57141411A (en
Inventor
Chaaruzu Ingurando Debitsudo
Jooji Kuresupan Kaaru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of JPS57141411A publication Critical patent/JPS57141411A/en
Publication of JPS6238362B2 publication Critical patent/JPS6238362B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/185Monomers containing fluorine not covered by the groups C08F14/20 - C08F14/28
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/12Fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0211Oxygen-containing compounds with a metal-oxygen link
    • B01J31/0212Alkoxylates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/08Ion-exchange resins
    • B01J31/10Ion-exchange resins sulfonated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C305/00Esters of sulfuric acids
    • C07C305/26Halogenosulfates, i.e. monoesters of halogenosulfuric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D327/00Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D327/02Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms one oxygen atom and one sulfur atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はパーフルオロアリルフルオロサルフエ
ートのホモポリマー又はコーポリマーの製法に関
する。 詳しくは、本発明によれば式 の繰り返し単位を有するホモポリマー又は式の
繰り返し単位と式 [ここで、R1〜R4は夫々独立して水素又は弗
素を示すが、ただしR1〜R4の中の少くとも1つ
は弗素を示す] の繰り返し単位を有するコーポリマーを製造する
に当たり、パーフルオロアリルフルオロサルフエ
ートを触媒と接触させるか又はパーフルオロアリ
フルオロサルフエートと式′ [ここでR1〜R4は、上記と同じ意味を有す
る] の単量体とを触媒の存在下で接触させる製造方法
が提供される。 以下に本発明の詳細を、単量体パーフルオロア
リルフルオロサルフエート及びそのスルトンの製
法等を含めて、説明する。 デイー・シー・イングランド(D.C.England)
の米国特許第2852554号においては、ヘキサフル
オロプロペンと新しく蒸溜した液体の無水三酸化
硫黄とを反応させ、式 の2−ヒドロキシ−1−トリフルオロメチル−
1,2,2−トリフルオロエタンスルフオン酸ス
ルトン(ヘキサフルオロプロペンスルトン)を製
造する方法が記載されている。 デイー・シー・イングランド、エム・エー・デ
イートリツヒ(M.A.Dietrich)及びアール・ヴ
イ・リンゼイ(R.V.Lindsey)のジヤーナル・オ
ヴ・ザ・アメリカン・ケミカル・ソサイアテイ
(J.Am.Chem.Soc.)誌82巻6181頁(1960年)所
載の「フルオロオレフインとSO3との反応」には
ヘキサフルオロプロペン(HFP)を新しく蒸溜
した三酸化硫黄と100℃で反応させると、HFPの
スルトン が得られることが記載されている。この文献の
6184頁にはまたヘキサフルオロプロペンを禁止剤
を含むSO3と60℃で反応させると沸点50〜65℃の
構造不明の混合物と、恐らくは式 の環式スルフオネート−サルフエート無水物であ
ると思われる高沸点生成物が得られることが報じ
られている。 エム・アー・ベラヴエンチエフ(M.A.
Belaventsev)、エル・エル・ミヘエーエフ(L.L.
Mikheev)、ヴエー・エム・パヴロフ(V.M.
Pavlov)、ゲー・アー・ソコリスキー(G.A.
Sokol′skii)及びイー・エル・クニユニヤンツ
(I.L.Knunyants)のイズヴエスチア・アカゼミ
ー・ナウーク・エス・エス・エス・エル・セーリ
ア・ヒーミイ(Izv.Akad.Nauk.SSSR.Ser.
Khim)誌1972年(11号)2510〜16頁(ロシア語
版)、2441〜2445頁(英訳版)には、(CF32C=
CF2とSO3とを150〜180℃で反応させると、 が得られることが述べられている。 ゲー・アー・ソコリスキー、エム・アー・ベラ
ヴエンチエフ及びイー・エル・クニユニヤンツの
上記イズヴエスチヤ誌1967年(9号)2020〜2024
頁(ロシア語版)、1935〜1938頁(英語版)には
HFPのスルトンをNOCIと反応させる反応 が記載されている。 パーフルオロアリルフルオロサルフエート
(CF2=CF−CF2OSO2F)及びそのスルトン は、これまでHFPとSO3との反応から分離された
り同定されたりしたことはない。 酸化硼素(B2O3);三塩化硼素(BCl3);三弗
化硼素(BF3);アルキル基の炭素数1〜6のト
リ(低級アルキル)ボレート(B(OR)3)、例え
ばトリメチルボレート及びトリエチルボレート;
トリオキシ塩化硼素((BOCl)3);及びトリオキ
シ弗化硼素((BOF)3)から成る群から選ばれた
価硼素化合物を、三酸化硫黄を基準にして約0.1
〜約0.5重量%存在させ、温度約0〜約150℃にお
いてパーフルオロアリルフルオロサルフエートを
生じるのに十分な時間無水条件下においてヘキサ
フルオロプロペン(CF3−CF=CF2)を三酸化硫
黄(SO3)と反応させることによりパーフルオロ
アリルフルオロサルフエート及びそのスルトンを
製造することができる。好適な触媒は効率及び入
手のし易すさからB2O3,BF3、及びB(OCH33
である。 三酸化硫黄は市販の液体三酸化硫黄か、又は新
しく蒸溜した重合禁止剤を含まない三酸化硫黄で
あることができる。市販の液体三酸化硫黄(融点
〜17℃)は密封ガラス・アンプルにして市販され
ており、固体の重合三酸化硫黄の生成を抑制する
「安定剤」を含んでいる。本発明の化合物の製造
に用いるためには、SO3は20℃で液体でなければ
ならない。 パーフルオロアリルフルオロサルフエートを製
造する一般的方法では三酸化硫黄を乾燥した厚い
壁をもつたガラス管又は腐蝕耐性を有するライナ
ー、例えばニツケル合金又はステンレス鋼のライ
ナーを有する金属管に加える。三酸化硫黄基準で
約0.1〜約5重量%(好ましくは約0.3〜約28重量
%)の量で触媒を加え、ヘキサフルオロプロペン
を圧入するか、凝縮させる。ヘキサフルオロプロ
ペン対三酸化硫黄のモル比は広く変えることがで
きるが、好ましくは、約1:1〜約5:1であ
る。反応容器を密封し、自生圧下において約1時
間ないし1週間約0〜約150℃(好ましくは約25
〜約75℃)の温度で反応を行なう。不活性稀釈剤
を用いることができるが、特別な利点はない。撹
拌することが好ましいが、必須ではない。水、塩
化水素、フルオロスルフオン酸、メタノール等の
含プロトン材料はこの反応に対して有害であり、
これを避けなければならない。 反応時間は温度と逆関係にある。最大収率を得
るためには低温の場合長時間が必要であるが、低
温の場合の方が生成物としてヘキサフルオロプロ
パンスルトンよりもパーフルオロアリルフルオロ
サルフエートが生成し易い。高温にするとパーフ
ルオロアリルフルオロサルフエートの収率が減少
し、ヘキサフルオロプロパンスルトンの含量が増
加する傾向がある。 パーフルオロアリルフルオロサルフエート及び
そのスルトンは3価の硼素化合物を加えることな
く未蒸溜の市販の三酸化硫黄を用いて製造し得る
ことが見出された。このような結果が得られる三
酸化硫黄のバツチはこの反応の触媒となるような
重合禁止剤を含んでいるものと考えられる。米国
特許第2458718号によれば硼素化合物は三酸化硫
黄の重合禁止剤として用いられることが示唆され
ている。 パーフルオロアリルフルオロサルフエートはホ
モ重合(homopolymerization)させ得るか、又
は種々のフルオロエチレン、例えば弗化ビニリデ
ン、弗化ビニル、トリフルオロエチレン、クロロ
トリフルオロエチレン、及びテトラフルオロエチ
レンと共重合させることができる。特に好適な共
重合体(コーポリマー、copolymer)は弗化ビニ
リデン及びパーフルオロアリルフルオロサルフエ
ートとの共重合体である。一般に共重合体は約1
〜約80、好ましくは約5〜約50重量%のパーフル
オロアリルフルオロサルフエートを含み、残りが
フルオロエチレンである。この重合体はイオン交
換樹脂又は酸触媒として使用できる。本発明の重
合体は硫酸基の他は温度に対して非常に安定であ
り、化学的に不活性であつて、触媒反応の防害に
ならない。そのため腐蝕性又は反応性の試薬を使
用することができ、また高温で酸触媒反応に用い
ることができる。パーフルオロアリルフルオロサ
ルフエート重合体を加水分解すると、カルボン酸
基が生じる。従つてこの重合体は構造式 の反覆単位を含んでいる。この樹脂が鉱酸よりも
優れている点は反応生成物を触媒から容易に分離
できること、触媒が再生できること、鉱酸の廃液
が生じないこと、及び触媒に腐蝕性がないことで
ある。 本発明の製造方法を以下の実施例及び参考例に
よつて説明する。 参考例 1 パーフルオロアリルフルオロサルフエート及び
パーフルオロアリルフルオロサルフエートのス
ルトンの製造法。 市販液体SO3で未知の重合禁止剤を含むもの10
mlと45gのHFPを液体窒素温度でカリウス
(Carius)管に封入し、室温で十分混合し、4時
間150℃に加熱する。このような2個の管から蒸
溜により沸点45゜の2−ヒドロキシ−1−トリフ
ルオロメチル−1,2,2−トリフルオロエタン
スルフオン酸スルトン26.5g(23%);沸点59゜
のパーフルオロアリルフルオロサルフエート18.5
g(16%);及び沸点104°の後者のスルトン
16.4g(21%)を得た。 分 析 パーフルオロアリルサルフエートについて; CF=CF−CF2OSO2FIR:5.55μ(C=C)、
6.75μ(SO2)。 FMR:46.1ppm(三重線、J=8.5Hz、二重
線、J=1.8Hz、1F)、−74.0ppm(二重線、J=
28.2Hz、二重線、J=13.9Hz、二重線、J=9.5
Hz、二重線、J=7.8Hz、2F)、−91.2ppm(二重
線、J=50.0Hz、二重線、J=40.5Hz、三重線、
J=7.8Hz、1F)、−104.7ppm(二重線、J=
119.4Hz、二重線、J=50.0Hz、二重線、J=28.2
Hz)、−192.4ppm(二重線、J=119.4Hz、二重
線、J=40.5Hz、三重線、J=13.9Hz、二重線、
J=1.8Hz、1F)。 パーフルオロアリルフルオロサルフエートのス
ルトンについて; IR:6.70μ、6.93μ FMR:50.1ppm(多重線、1F)、−78.0ppm
(多重線、2F)、−81.9ppm、−83.9ppm、−
88.6ppm、−90.6ppm(ABパターン、2F)、−
152.4ppm(多重線、1F)。 C3F6S2O6計算値C,11.62;F、36.77 検出値C,12.04;F、37.81 参考例 2 4個のカリウス管(容積150ml)の各々に10ml
(19g)のSO3(ジメチルフタレートで安定化)
と12滴(0.12g)のトリメチルボレートを入れ、
液体窒素で冷却し、コツクを閉じ真空に引く。各
室にヘキサフルオロプロペン(45g)を凝縮さ
せ、これを密封し、加温して熔融させ、内容物を
混合する。これを水浴中で55〜60゜で14時間加熱
する。ガスクロマトグラフ(GC)で分析した結
果、主生成物はパーフルオロアリルフルオロサル
フエート(FAFS)であることがわかつた。4個
の管の生成物を一緒にし、分別蒸溜して、GCに
よる分析の結果2−ヒドロキシ−1−トリフルオ
ロメチル−1,2,2−トリフルオロエタンスル
フオン酸スルトン(HFPS)75%、及び25%の
FAFSである主沸点が45゜の生成物45g;GCに
よる分析値がFAFS95%である主沸点62゜の生成
物80g;及び同定できない高沸点成分44gを得
た。使用したSO3に関するHFPSの全収率は14.8
%、FAFSのそれは39.6%であつた。 対照のため、トリメチルボレート触媒を使用せ
ずに上記実験を繰返した。GCによる生成物の分
析の結果、主生成物はHFPSであつて、FAFSは
検出されなかつた。 参考例 3 蒸溜したSO3を用い1200mlのハスタロイ
(Hastalloy)でライニングした金属管中において
次の反応を行つた。こゝに示した収率は通常の蒸
溜法により分離した生成物に対するものである。
結果を下記表にまとめる。
The present invention relates to a method for making perfluoroallyl fluorosulfate homopolymers or copolymers. Specifically, according to the invention, the formula A homopolymer having repeating units of or repeating units of formula and formula [Here, R 1 to R 4 each independently represent hydrogen or fluorine, provided that at least one of R 1 to R 4 represents fluorine] In producing a copolymer having a repeating unit of , perfluoroallylfluorosulfate is contacted with a catalyst, or perfluoroarylfluorosulfate and perfluoroarylfluorosulfate of the formula ' [Here, R 1 to R 4 have the same meanings as above] A production method is provided in which the following monomers are brought into contact in the presence of a catalyst. The details of the present invention will be explained below, including the method for producing the monomer perfluoroallyl fluorosulfate and its sultone. DCEngland
No. 2,852,554, hexafluoropropene is reacted with freshly distilled liquid anhydrous sulfur trioxide to form the formula 2-hydroxy-1-trifluoromethyl-
A method for producing 1,2,2-trifluoroethanesulfonic acid sultone (hexafluoropropene sultone) is described. Journal of the American Chemical Society (J.Am.Chem.Soc.), Vol. 82, p. 6181, by DC England, MADietrich, and RVLindsey. (1960), "Reaction of fluoroolefins with SO 3 ", states that when hexafluoropropene (HFP) is reacted with freshly distilled sulfur trioxide at 100°C, the sultone of HFP is formed. It is stated that this can be obtained. of this literature
Page 6184 also states that when hexafluoropropene is reacted with SO 3 containing an inhibitor at 60°C, a mixture of unknown structure with a boiling point of 50-65°C and possibly a compound of the formula It has been reported that a high boiling product, believed to be a cyclic sulfonate-sulfate anhydride, is obtained. M.A. Belaventiev (MA
Belaventsev), El El Mikheyev (LL
Mikheev), V.M. Pavlov (VM
Pavlov), G.A.
Sokol′skii) and ILKnunyants (Izv.Akad.Nauk.SSSR.Ser.
(CF 3 ) 2 C=
When CF 2 and SO 3 are reacted at 150-180℃, It is stated that this can be obtained. G. A. Sokolisky, M. A. Beraventiev and E. L. Kuniyants, above-mentioned Izveestia Magazine 1967 (No. 9) 2020-2024
pages (Russian version), pages 1935-1938 (English version)
Reaction of reacting HFP sultone with NOCI is listed. Perfluoroallyl fluorosulfate (CF 2 = CF−CF 2 OSO 2 F) and its sultone has never been isolated or identified from the reaction between HFP and SO3 . Boron oxide (B 2 O 3 ); boron trichloride (BCl 3 ); boron trifluoride (BF 3 ); tri(lower alkyl)borate (B(OR) 3 ) whose alkyl group has 1 to 6 carbon atoms, e.g. Trimethylborate and triethylborate;
A boron compound selected from the group consisting of boron trioxychloride ((BOCl) 3 ) ;
Hexafluoropropene ( CF3 -CF= CF2 ) is treated with sulfur trioxide (CF3-CF=CF2) under anhydrous conditions in the presence of ~0.5% by weight and at a temperature of about 0 to about 150<0>C for a sufficient time to form perfluoroallyl fluorosulfate. Perfluoroallyl fluorosulfate and its sultone can be produced by reacting with SO 3 ). Preferred catalysts are B 2 O 3 , BF 3 , and B(OCH 3 ) 3 due to their efficiency and availability.
It is. The sulfur trioxide can be commercially available liquid sulfur trioxide or freshly distilled inhibitor-free sulfur trioxide. Commercially available liquid sulfur trioxide (melting point ~17°C) is available in sealed glass ampoules and contains ``stabilizers'' that inhibit the formation of solid, polymerized sulfur trioxide. For use in preparing compounds of the invention, SO3 must be liquid at 20°C. A common method for making perfluoroallyl fluorosulfate is to add sulfur trioxide to a dry, thick-walled glass tube or metal tube with a corrosion-resistant liner, such as a nickel alloy or stainless steel liner. Catalyst is added in an amount of about 0.1 to about 5 weight percent (preferably about 0.3 to about 28 weight percent) based on sulfur trioxide, and the hexafluoropropene is injected or condensed. The molar ratio of hexafluoropropene to sulfur trioxide can vary widely, but is preferably from about 1:1 to about 5:1. The reaction vessel is sealed and kept at about 0°C to about 150°C (preferably about 25°C) for about 1 hour to about 1 week under autogenous pressure.
The reaction is carried out at a temperature of ~75°C). Inert diluents can be used but have no particular advantage. Stirring is preferred, but not essential. Proton-containing materials such as water, hydrogen chloride, fluorosulfonic acid, and methanol are harmful to this reaction;
This must be avoided. Reaction time is inversely related to temperature. Although a long time is required at low temperatures to obtain the maximum yield, perfluoroallyl fluorosulfate is more likely to form as a product than hexafluoropropane sultone at low temperatures. Higher temperatures tend to decrease the yield of perfluoroallyl fluorosulfate and increase the content of hexafluoropropane sultone. It has been found that perfluoroallyl fluorosulfate and its sultones can be prepared using undistilled commercially available sulfur trioxide without the addition of trivalent boron compounds. It is believed that the batches of sulfur trioxide that give these results contain a polymerization inhibitor that catalyzes this reaction. US Pat. No. 2,458,718 suggests that boron compounds are used as polymerization inhibitors for sulfur trioxide. Perfluoroallyl fluorosulfate can be homopolymerized or copolymerized with various fluoroethylenes, such as vinylidene fluoride, vinyl fluoride, trifluoroethylene, chlorotrifluoroethylene, and tetrafluoroethylene. can. A particularly preferred copolymer is a copolymer with vinylidene fluoride and perfluoroallyl fluorosulfate. Generally, the copolymer is about 1
to about 80%, preferably about 5 to about 50% by weight perfluoroallyl fluorosulfate, with the balance being fluoroethylene. This polymer can be used as an ion exchange resin or an acid catalyst. Other than the sulfate groups, the polymers of the present invention are very temperature stable, chemically inert, and do not interfere with catalytic reactions. Therefore, corrosive or reactive reagents can be used and acid-catalyzed reactions can be performed at elevated temperatures. Hydrolysis of perfluoroallyl fluorosulfate polymers produces carboxylic acid groups. Therefore, this polymer has the structural formula contains repeating units. The advantages of this resin over mineral acids are that the reaction products can be easily separated from the catalyst, the catalyst can be regenerated, no mineral acid waste is produced, and the catalyst is not corrosive. The manufacturing method of the present invention will be explained using the following examples and reference examples. Reference Example 1 Method for producing perfluoroallyl fluorosulfate and perfluoroallyl fluorosulfate sultone. Commercial liquid SO 3 containing unknown polymerization inhibitor 10
ml and 45 g of HFP are sealed in a Carius tube at liquid nitrogen temperature, mixed thoroughly at room temperature, and heated to 150° C. for 4 hours. From these two tubes, 26.5 g (23%) of 2-hydroxy-1-trifluoromethyl-1,2,2-trifluoroethanesulfonic acid sultone with a boiling point of 45°; perfluorinated with a boiling point of 59° Allyl fluorosulfate 18.5
g (16%); and the latter sultone with a boiling point of 104°
16.4g (21%) was obtained. Analysis Regarding perfluoroallyl sulfate; CF=CF− CF2OSO2FIR :5.55μ( C =C),
6.75μ( SO2 ). FMR: 46.1ppm (triple line, J=8.5Hz, double line, J=1.8Hz, 1F), -74.0ppm (double line, J=
28.2Hz, double line, J=13.9Hz, double line, J=9.5
Hz, double line, J=7.8Hz, 2F), -91.2ppm (double line, J=50.0Hz, double line, J=40.5Hz, triple line,
J=7.8Hz, 1F), -104.7ppm (double line, J=
119.4Hz, double line, J=50.0Hz, double line, J=28.2
Hz), -192.4ppm (double line, J=119.4Hz, double line, J=40.5Hz, triple line, J=13.9Hz, double line,
J = 1.8Hz, 1F). Regarding perfluoroallyl fluorosulfate sultone; IR: 6.70μ, 6.93μ FMR: 50.1ppm (multiplet, 1F), −78.0ppm
(Multiplet, 2F), −81.9ppm, −83.9ppm, −
88.6ppm, −90.6ppm (AB pattern, 2F), −
152.4ppm (multiplet, 1F). C 3 F 6 S 2 O 6 Calculated value C, 11.62; F, 36.77 Detected value C, 12.04; F, 37.81 Reference example 2 10 ml in each of 4 Carius tubes (volume 150 ml)
(19 g) of SO 3 (stabilized with dimethyl phthalate)
and 12 drops (0.12g) of trimethylborate,
Cool with liquid nitrogen, close the pot and draw a vacuum. Condensate hexafluoropropene (45 g) into each chamber, seal it, heat to melt, and mix the contents. Heat this in a water bath at 55-60° for 14 hours. Gas chromatography (GC) analysis revealed that the main product was perfluoroallyl fluorosulfate (FAFS). The products of the four tubes were combined and fractionally distilled to yield 75% 2-hydroxy-1-trifluoromethyl-1,2,2-trifluoroethanesulfonic acid sultone (HFPS) as analyzed by GC. and 25%
There were obtained 45 g of a product with a main boiling point of 45°, which is FAFS; 80 g of a product with a main boiling point of 62°, which was analyzed by GC as 95% FAFS; and 44 g of unidentified high-boiling components. The overall yield of HFPS with respect to the SO 3 used was 14.8
%, and that of FAFS was 39.6%. As a control, the above experiment was repeated without the trimethylborate catalyst. As a result of product analysis by GC, the main product was HFPS, and FAFS was not detected. Reference Example 3 The following reaction was carried out using distilled SO 3 in a 1200 ml metal tube lined with Hastalloy. The yields shown are based on product isolated by conventional distillation methods.
The results are summarized in the table below.

【表】 参考例 4 1200mlのハスタロイでライニングした管に240
g(3.0モル)のSO3、3gのBF3、及び525g
(3.5モル)のヘキサフルオロプロペンを入れ、短
時間撹拌し、次いで25℃に3日間放置する。100
℃に8時間加熱した後、管を0℃に冷却し、この
間ガス抜きをする。液体生成物を捕集し、回転バ
ンド蒸溜塔で分溜し、沸点46〜60℃の粗製スルト
ン61.3g(9%);沸点60゜(1気圧)、−44゜
(350mm)のパーフルオロアリルフルオロサルフエ
ート146.9g(21%);及び沸点49〜56゜(50
mm)の高沸点混合物155.4gを得た。この混合物
19FNMRで分析した結果、これは三成分の混合
物であり、テトラフルオロプロペニル−1,3−
ビス(フルオロサルフエート)82.9g(18%)、
2:1スルトン
[Table] Reference example 4 240ml in a 1200ml Hastaloy lined tube
g (3.0 mol) SO 3 , 3 g BF 3 , and 525 g
(3.5 mol) of hexafluoropropene is stirred briefly and then left at 25° C. for 3 days. 100
After heating for 8 hours at 0.degree. C., the tube is cooled to 0.degree. C. while degassing. The liquid product was collected and fractionated in a rotating band distillation column to produce 61.3 g (9%) of crude sultone with a boiling point of 46-60°C; perfluoroallyl with a boiling point of 60° (1 atm) and -44° (350 mm). Fluorosulfate 146.9g (21%); and boiling point 49-56° (50
155.4 g of a high boiling point mixture of 1 mm) was obtained. Analysis of this mixture by 19 FNMR revealed that it was a ternary mixture, with tetrafluoropropenyl-1,3-
Bis(fluorosulfate) 82.9g (18%),
2:1 sulton

【式】56.8g (12%)、及びFSO2OSO2OSO2F15.7gであるこ
とがわかつた。 上記高沸点溜分の中央溜分(64.6g)を5゜で
150mlのジエチルエーテルに加え、この混合物を
一晩室温で撹拌した。分溜の結果、純
FSO2OCF2CF=CFOSO2F〔沸点54〜55゜(50
mm)〕36.0gを得た。IR(CCl4):5.67μ(C=
C)、6.72μ(OSO2F)。19FNMR:
FSO2OCF2CF2=CFOSO2Fのシス/トランス異
性体1:1.3混合物に一致。 分析値 C3F6O6S2:計算値 F、36.76 検出値 F、36.74 参考例 5 1200mlのハスタロイ管に167g(2.09モル)の
蒸溜SO3、2gのBF3、及び525g(3.5モル)の
ヘキサフルオロプロペンを入れ、25゜で5日間撹
拌した後、60゜で8時間、次いで100゜で2時間
撹拌する。この管を0゜で冷却し、ガス抜きし、
反応混合物を分溜して、沸点30〜61゜の粗製ヘキ
サフルオロプロペンスルトン21.9g(5%)、及
び沸点61〜63゜のパーフルオロアリルフルオロサ
ルフエート288.0g(60%)を得た。パーフルオ
ロアリルフルオロサルフエートは実施例1の対応
する生成物のIRスペクトルと比較して同定し
た。 実施例 1 パーフルオロアリルフルオロサルフエートと弗
化ビニリデンとの共重合。 11gのパーフルオロアリルフルオロサルフエー
ト、6.5gの弗化ビニリデン、及び約6%のパー
フルオロプロピオニルパーオキサイドを1,1,
2−トリクロロ−1,2,2−トリフルオロエタ
ン中に含む触媒溶液50μの混合物をガラス管中
に封じ、室温で5日間回転する。冷却し、開封
し、低沸点成分を除去して、アセトン及びジメチ
ルフオルムアミドに可溶なエラストマー9.8gを
回収した。アセトン溶液から注形するか、固体重
合体をプレスして透明なフイルムを得ることがで
きた。その赤外吸収によりフルオロサルフエート
基(−SO2F)の存在が示された。 実施例 2 パーフルオロアリルフルオロサルフエートと弗
化ビニリデンの共重合。 5.5gのパーフルオロアリルフルオロサルフエ
ート、5.5gの弗化ビニリデン及び50μの触媒
溶液を用いて上記と同様な実験を行ない60時間で
10.5gの重合体を得た。 実施例 3 パーフルオロアリルフルオロサルフエートとテ
トラフルオロエチレンとの共重合。 11gのパーフルオロアリルフルオロサルフエー
ト、9gのテトラフルオロエチレン及び50μの
触媒溶液を室温でガラス管中に16時間封じ、テト
ラフルオロエチレンとパーフルオロアリルフルオ
ロサルフエートとの共重合体4gと揮発成分13.5
gを得た。 実施例 4 パーフルオロアリルフルオロサルフエートと弗
化ビニルとの共重合。 11gのパーフルオロアリルフルオロサルフエー
ト、4.5gの弗化ビニル、及び50μの触媒溶液
を室温でガラス管中に封じ、パーフルオロアリル
フルオロサルフエートと弗化ビニルとの暗色共重
合体5.2g及び揮発成分4gを得た。
[Formula] 56.8g (12%), and FSO 2 OSO 2 OSO 2 F15.7g. The middle distillate (64.6 g) of the above high boiling point fraction was heated at 5°.
150ml of diethyl ether was added and the mixture was stirred overnight at room temperature. As a result of fractionation, pure
FSO 2 OCF 2 CF=CFOSO 2 F [boiling point 54~55゜(50
mm)] 36.0 g was obtained. IR ( CCl4 ): 5.67μ (C=
C), 6.72μ ( OSO2F ). 19 FNMR:
FSO 2 OCF 2 CF 2 = corresponds to a 1:1.3 mixture of cis/trans isomers of CFOSO 2 F. Analytical value C 3 F 6 O 6 S 2 : Calculated value F, 36.76 Detected value F, 36.74 Reference example 5 167 g (2.09 moles) of distilled SO 3 , 2 g of BF 3 , and 525 g (3.5 moles) in a 1200 ml Hastaloy tube. of hexafluoropropene and stirred at 25° for 5 days, then at 60° for 8 hours, then at 100° for 2 hours. This tube was cooled to 0°, degassed,
The reaction mixture was fractionated to yield 21.9 g (5%) of crude hexafluoropropene sultone with a boiling point of 30-61° and 288.0 g (60%) of perfluoroallyl fluorosulfate with a boiling point of 61-63°. Perfluoroallyl fluorosulfate was identified by comparison with the IR spectrum of the corresponding product of Example 1. Example 1 Copolymerization of perfluoroallyl fluorosulfate and vinylidene fluoride. 11 g perfluoroallyl fluorosulfate, 6.5 g vinylidene fluoride, and about 6% perfluoropropionyl peroxide in 1,1,
A mixture of 50 μ of the catalyst solution in 2-trichloro-1,2,2-trifluoroethane is sealed in a glass tube and rotated for 5 days at room temperature. After cooling, opening, and removing low-boiling components, 9.8 g of elastomer soluble in acetone and dimethylformamide was recovered. Transparent films could be obtained by casting from an acetone solution or by pressing the solid polymer. Its infrared absorption showed the presence of fluorosulfate groups ( -SO2F ). Example 2 Copolymerization of perfluoroallyl fluorosulfate and vinylidene fluoride. An experiment similar to the above was carried out using 5.5 g of perfluoroallyl fluorosulfate, 5.5 g of vinylidene fluoride and 50μ of the catalyst solution.
10.5 g of polymer was obtained. Example 3 Copolymerization of perfluoroallyl fluorosulfate and tetrafluoroethylene. 11 g of perfluoroallyl fluorosulfate, 9 g of tetrafluoroethylene and 50μ of catalyst solution were sealed in a glass tube at room temperature for 16 hours, and 4 g of copolymer of tetrafluoroethylene and perfluoroallyl fluorosulfate and 13.5 volatile components were added.
I got g. Example 4 Copolymerization of perfluoroallyl fluorosulfate and vinyl fluoride. 11 g of perfluoroallyl fluorosulfate, 4.5 g of vinyl fluoride, and 50μ of the catalyst solution were sealed in a glass tube at room temperature, 5.2 g of the dark copolymer of perfluoroallyl fluorosulfate and vinyl fluoride, and evaporated. 4 g of ingredient was obtained.

Claims (1)

【特許請求の範囲】 1 式 の繰り返し単位を有するホモポリマー又は式の
繰り返し単位と式 [ここで、R1〜R4は夫々独立して水素又は弗
素を示すが、ただしR1〜R4の中の少くとも1つ
は弗素を示す] の繰り返し単位を有するコーポリマーを製造する
に当たり、パーフルオロアリルフルオロサルフエ
ートを触媒と接触させるか又はパーフルオロアリ
ルフルオロサルフエートと式′ [ここでR1〜R4は、上記と同じ意味を有す
る] の単量体とを触媒の存在下で接触させる製造方
法。 2 (イ)コーポリマーが製造され(ロ)式′の単量体
はテトラフルオロエチレン、ビニルフルオライド
及びビニリデンフルオライドから選択され、(ハ)触
媒がパーフルオロプロピオニルパーオキサイドで
あり且つ(ニ)コーポリマーが式の繰り返し単位を
1〜80重量%を有する特許請求の範囲第1項に記
載の製造方法。
[Claims] 1 formula A homopolymer having repeating units of or repeating units of formula and formula [Here, R 1 to R 4 each independently represent hydrogen or fluorine, provided that at least one of R 1 to R 4 represents fluorine] In producing a copolymer having a repeating unit of , perfluoroallyl fluorosulfate is contacted with a catalyst or perfluoroallyl fluorosulfate and the formula ' [Here, R 1 to R 4 have the same meanings as above] A production method comprising contacting the monomer of [Here, R 1 to R 4 have the same meanings as above] in the presence of a catalyst. 2. (a) a copolymer is produced, (b) the monomer of formula ' is selected from tetrafluoroethylene, vinyl fluoride and vinylidene fluoride, (c) the catalyst is perfluoropropionyl peroxide, and (d) A method according to claim 1, wherein the copolymer has from 1 to 80% by weight of repeating units of the formula.
JP44682A 1978-08-08 1982-01-06 Manufacture of homogeneous polymer or copolymer of perfluoroarylfluorosulfate Granted JPS57141411A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US93190478A 1978-08-08 1978-08-08

Publications (2)

Publication Number Publication Date
JPS57141411A JPS57141411A (en) 1982-09-01
JPS6238362B2 true JPS6238362B2 (en) 1987-08-18

Family

ID=25461506

Family Applications (2)

Application Number Title Priority Date Filing Date
JP9952579A Expired JPS585908B2 (en) 1978-08-08 1979-08-06 Process for producing perfluoroallyl fluorosulfate
JP44682A Granted JPS57141411A (en) 1978-08-08 1982-01-06 Manufacture of homogeneous polymer or copolymer of perfluoroarylfluorosulfate

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP9952579A Expired JPS585908B2 (en) 1978-08-08 1979-08-06 Process for producing perfluoroallyl fluorosulfate

Country Status (2)

Country Link
JP (2) JPS585908B2 (en)
BE (1) BE878131A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009298700A (en) * 2006-10-04 2009-12-24 Asahi Glass Co Ltd Method of preparing compound comprising fluorosulfonyl group

Also Published As

Publication number Publication date
JPS57141411A (en) 1982-09-01
JPS585908B2 (en) 1983-02-02
BE878131A (en) 1980-02-07
JPS5527185A (en) 1980-02-27

Similar Documents

Publication Publication Date Title
US4131740A (en) Alkyl perfluoro-ω-fluoroformyl esters and their preparation
US4360645A (en) Perfluoroglycidyl ethers
US3242218A (en) Process for preparing fluorocarbon polyethers
US4526948A (en) Fluorinated vinyl ethers, copolymers thereof, and precursors thereto
US4273728A (en) Polyfluoroallyloxy compounds, their preparation and copolymers therefrom
JPS58103385A (en) Perfluorodioxole and polymers thereof
US4515989A (en) Preparation decarboxylation and polymerization of novel acid flourides and resulting monomers
GB1571356A (en) Polyfluoroallyloxy compounds their preparation and copolymers therefrom
US4292449A (en) Polyfluoroallyloxy compounds, their preparation and copolymers therefrom
JP4472519B2 (en) Fluorosulfates of hexafluoroisobutylene and its higher homologues and their derivatives
US4687821A (en) Preparation, decarboxylation and polymerization of novel acid fluorides and resulting monomers
US4384128A (en) Perfluoroglycidyl ethers
US4235804A (en) Preparation of perfluoroallyl fluorosulfate
US3821297A (en) Purification of perfluorosulfonyl fluoride perfluorovinyl ethers by thermal decomposition of unstable isomers
US2806865A (en) New fluorine-containing compounds and method of preparation thereof
JPS6238362B2 (en)
US4206138A (en) Perfluoroallyl fluorosulfate and its sultone and polymers
Krespan Synthesis and pyrolysis of fluorosulfates
US4474899A (en) Process for preparing ester fluorinated ion exchange polymer precursor by acid treatment of ether
US4675453A (en) Process and intermediates for fluorinated vinyl ether monomer
US4556747A (en) Fluorinated vinyl ethers, copolymers thereof, and precursors thereto
US4304927A (en) Carboxylic acids, esters and salts of polyfluoroacetone
GB2027709A (en) Perfluorallyl Fluorosulfate and its Sultone and Processes for their Preparation
US4594458A (en) Vinyl ether monomers derived from alkyl perfluoro-ω-(2-iodoethoxy) compounds
US4247713A (en) Alkyl perfluoro-ω-fluoroformyl esters and their preparation