[go: up one dir, main page]

JPS6236857B2 - - Google Patents

Info

Publication number
JPS6236857B2
JPS6236857B2 JP54000365A JP36579A JPS6236857B2 JP S6236857 B2 JPS6236857 B2 JP S6236857B2 JP 54000365 A JP54000365 A JP 54000365A JP 36579 A JP36579 A JP 36579A JP S6236857 B2 JPS6236857 B2 JP S6236857B2
Authority
JP
Japan
Prior art keywords
cylindrical mandrel
tubular film
film
stretching
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54000365A
Other languages
Japanese (ja)
Other versions
JPS5593425A (en
Inventor
Katsumi Okuyama
Hiroyasu Mizutani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP36579A priority Critical patent/JPS5593425A/en
Publication of JPS5593425A publication Critical patent/JPS5593425A/en
Publication of JPS6236857B2 publication Critical patent/JPS6236857B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】 本発明は、適性延伸温度に加熱された熱可塑性
樹脂の未延伸管状フイルムを、円筒状マンドレル
と高速ニツプロールとの間で管状に保持した状態
で縦方向に一軸延伸する熱可塑性樹脂管状一軸延
伸フイルムの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves uniaxially stretching an unstretched tubular film of thermoplastic resin heated to an appropriate stretching temperature in the longitudinal direction while holding it in a tubular shape between a cylindrical mandrel and a high-speed nip roll. The present invention relates to a method for producing a thermoplastic resin tubular uniaxially stretched film.

在来の熱可塑性樹脂管状一軸延伸フイルムの製
造方法としては、管状フイルムを切り開いた或い
は二つ折りにしたフラツトな状態で、低速ニツプ
ロールと高速ニツプロールの速度比により延伸す
る方法が提案されており、広く実用されている。
As a conventional method for manufacturing a thermoplastic resin tubular uniaxially stretched film, a method has been proposed in which a tubular film is cut open or folded in half and then stretched using a speed ratio of a low-speed nip roll and a high-speed nip roll. It is put into practical use.

しかしながら、フラツトな状態でロール間で延
伸すると、縦方向の延伸に伴い、縦方向に対し直
角方向である横方向に収縮が生じることにより縦
方向にのみ高度に分子の配向が進むため、縦方向
の強度は向上するが、横方向に対しては弱く、縦
に非常に裂け易いフイルムとなる。
However, when stretched between rolls in a flat state, contraction occurs in the transverse direction, which is perpendicular to the longitudinal direction, as the film is stretched in the longitudinal direction, resulting in highly oriented molecules only in the longitudinal direction. Although the strength of the film is improved, the film becomes weak in the transverse direction and is extremely easy to tear in the longitudinal direction.

この横方向の収縮に起因する裂け易い欠点を改
良する最も有効な方法として、未延伸管状フイル
ムの直径とほぼ等しい直径を有する円筒状のマン
ドレルを未延伸管状フイルム内に挿入、配設する
ことによつて円周方向(フラツトフイルムの横方
向に対応する。)の収縮を阻止しながら縦方向に
延伸する方法が提案されている。
The most effective method for improving the tendency to tear due to lateral shrinkage is to insert and arrange a cylindrical mandrel having a diameter approximately equal to the diameter of the unstretched tubular film into the unstretched tubular film. Therefore, a method has been proposed in which the film is stretched in the longitudinal direction while preventing shrinkage in the circumferential direction (corresponding to the lateral direction of the flat film).

例えば、特公昭50−38666号で提案されている
方法がその例である。この方法は、未延伸管状フ
イルム内に、その管状フイルムの直径と等しい
か、或いは直径より小さい円筒状マンドレルを挿
入、配設し、前記管状フイルムの円周方向の収縮
を阻止し、同時に外部からの加熱条件により縦方
向の延伸開始点を前記円筒状マンドレル上か、或
いは、その直後の一定位置に固定し、縦方向に一
軸延伸する方法である。ところが、この方法で
は、縦方向の延伸に伴う管状フイルムの円周方向
の収縮により円筒状マンドレルに発生する摩擦力
と、未だ延伸適性温度に加熱されていない管状フ
イルム部分の材料強度と延伸適性温度に加熱され
ている管状フイルム部分の材料強度との差とによ
り、縦方向の延伸により発生する延伸力をを未だ
延伸適性温度に加熱されていない管状フイルム部
分に伝達させないようにして、縦方向の延伸開始
点を固定しているため、管状フイルムの僅かな肉
厚の変動や、加熱条件の変動により、前記延伸開
始点が変動し、従つて延伸された管状フイルムは
縦方向の肉厚が変化する。更に、円筒状マンドレ
ルの円周側壁面上で縦方向の延伸開始点が変動す
ると、いわゆるネツキングが不均一に生じ、不均
一な割れが局部的に管状フイルムの円周上に、
ほゞ縦方向の延伸開始点と一致して多数発生し、
円周方向の肉厚が不均一となる。
For example, the method proposed in Japanese Patent Publication No. 50-38666 is an example. In this method, a cylindrical mandrel having a diameter equal to or smaller than the diameter of the unstretched tubular film is inserted and disposed in the unstretched tubular film to prevent contraction of the tubular film in the circumferential direction, and at the same time to prevent the tubular film from shrinking in the circumferential direction. In this method, the stretching start point in the longitudinal direction is fixed at a certain position on or immediately after the cylindrical mandrel under heating conditions, and uniaxial stretching is carried out in the longitudinal direction. However, in this method, the frictional force generated on the cylindrical mandrel due to contraction in the circumferential direction of the tubular film accompanying longitudinal stretching, and the material strength and stretching temperature of the portion of the tubular film that has not yet been heated to the appropriate stretching temperature. Due to the difference in material strength between the material strength of the tubular film portion that has been heated to Since the stretching start point is fixed, the stretching start point changes due to slight variations in the thickness of the tubular film or changes in heating conditions, and therefore the thickness of the stretched tubular film in the longitudinal direction changes. do. Furthermore, if the stretching start point in the longitudinal direction fluctuates on the circumferential side wall surface of the cylindrical mandrel, so-called netting occurs unevenly, causing uneven cracks to occur locally on the circumference of the tubular film.
A large number of them occur almost coincident with the starting point of stretching in the longitudinal direction,
The wall thickness in the circumferential direction becomes uneven.

本発明は、これらの諸問題に着目してなされた
もので、その目的とするところは、適性延伸温度
に加熱された熱可塑性樹脂未延伸管状フイルム
を、円筒状マンドレルと高速ニツプロールとの間
で管状に保持した状態で縦方向に一軸延伸するに
際し、縦方向の延伸開始点を一定安置に固定し
て、前記未延伸管状フイルムの円周方向の不均一
なネツキングの発生を防止し、縦方向、円周方向
ともに均一な肉厚を有する熱可塑性樹脂管状一軸
延伸フイルムを得ることのできる同フイルムの製
造方法を提供するにある。
The present invention was made with attention to these problems, and its purpose is to transfer an unstretched tubular film of thermoplastic resin heated to an appropriate stretching temperature between a cylindrical mandrel and a high-speed nip roll. When uniaxially stretching the unstretched tubular film in the longitudinal direction, the stretching start point in the longitudinal direction is fixed at a constant position to prevent uneven netting in the circumferential direction of the unstretched tubular film. Another object of the present invention is to provide a method for producing a thermoplastic resin tubular uniaxially stretched film having a uniform wall thickness in both circumferential directions.

即ち本発明は、図面に示す実施例に基いて説明
すると、環状ダイ1の環状オリフイスより押し出
された熱可塑性樹脂溶融フイルムF1が空気配管a1
よりの空気圧により膨らまされながらエアーリン
グ2により冷却された後、冷却マンドレル3上で
急冷されて未延伸管状フイルムF2となり、更に
低速ニツプロール4に引き取られた後、引続き予
熱マンドレル5上を移送されて適性延伸温度に加
熱された未延伸管状フイルムF3を、円筒状マン
ドレル6と高速ニツプロール9との間で管状に保
持して縦方向に一軸延伸する方法において、縦方
向の延伸力によつて前記円筒状マンドレル6の周
壁面6a上で生ずる未延伸管状フイルムF3の縦
方向の延伸を前記円筒状マンドレルの周壁の真空
スリツトV1,V2の真空度を調節して制御するこ
とによつて、円筒状マンドレル6の周壁面6a上
での円周方向の収縮力の発生を低減化し、かつ縦
方向の延伸開始点を前記円筒状マンドレル6の真
空スリツトV1,V2の位置をその端部の一定位置
に固定することによつて設定し、高速ニツプロー
ル9による延伸中の延伸管状フイルムF4の直径
をその内圧を制御して前記円筒状マンドレル6の
直径と同径またはそれより若干小さく制御するこ
とを特徴とする熱可塑性樹脂管状一軸延伸フイル
ムの製造方法を提供するものである。
That is, the present invention will be explained based on the embodiment shown in the drawings. A thermoplastic resin molten film F1 extruded from an annular orifice of an annular die 1 is connected to an air pipe a1.
After being cooled by the air ring 2 while inflated by the air pressure of In this method, an unstretched tubular film F 3 heated to an appropriate stretching temperature is held in a tubular shape between a cylindrical mandrel 6 and a high-speed nip roll 9 and uniaxially stretched in the longitudinal direction. The longitudinal stretching of the unstretched tubular film F 3 that occurs on the peripheral wall surface 6a of the cylindrical mandrel 6 is controlled by adjusting the vacuum degree of the vacuum slits V 1 and V 2 on the peripheral wall of the cylindrical mandrel. In this way, the generation of contraction force in the circumferential direction on the peripheral wall surface 6a of the cylindrical mandrel 6 is reduced, and the stretching start point in the longitudinal direction is set at the position of the vacuum slits V 1 and V 2 of the cylindrical mandrel 6. The diameter of the stretched tubular film F 4 during stretching by the high-speed nip roll 9 is set by fixing the end portion at a certain position, and the diameter of the stretched tubular film F 4 is set to be the same as or slightly larger than the diameter of the cylindrical mandrel 6 by controlling its internal pressure. The present invention provides a method for manufacturing a thermoplastic resin tubular uniaxially stretched film, which is characterized in that it can be controlled to be small.

ここで、円筒状マンドレル6は、未延伸管状フ
イルムF3の直径と同径以上で、かつ内部には熱
媒体循環腔11を、周壁には真空スリツトV1
V2をそれぞれ有し、その端面には、延伸中の延
伸管状フイルムF4内に空気を供給してその内圧
を制御する空気供給管a3が配設されたて成り、前
記円筒状マンドレル6の周壁面6a上で生ずる前
記未延伸管状フイルムF3の縦方向の延伸を、前
記真空スリツトV1,V2の真空度を調節して制御
することによつて、円筒状マンドレル6の周壁面
6a上での円周方向の収縮力の発生を低減化し、
かつ縦方向の延伸開始点を前記真空スリツト
V1,V2を前記円筒状マンドレル6の端部の一定
位置に固定することによつて設定し、延伸中の延
伸管状フイルムF4の直径をその内圧を前記供給
管3aによる空気供給量を制御することによつて
調節するものである。
Here, the cylindrical mandrel 6 has a diameter equal to or larger than the diameter of the unstretched tubular film F3 , and has a heat medium circulation cavity 11 inside and a vacuum slit V1 on the peripheral wall.
V 2 , and an air supply pipe a 3 for supplying air into the stretched tubular film F 4 during stretching to control its internal pressure is disposed on the end face of the cylindrical mandrel 6 . By controlling the longitudinal stretching of the unstretched tubular film F 3 that occurs on the peripheral wall surface 6a of the cylindrical mandrel 6 by adjusting the degree of vacuum of the vacuum slits V1 and V2 , Reduces the generation of contractile force in the circumferential direction on 6a,
And the stretching start point in the longitudinal direction is set to the vacuum slit.
V 1 and V 2 are set by fixing them at fixed positions at the end of the cylindrical mandrel 6, and the diameter of the stretched tubular film F 4 during stretching is determined by the internal pressure and the amount of air supplied by the supply pipe 3a. It is regulated by controlling.

こゝで、前記熱可塑性樹脂の例としては、低密
度ポリエチレン、高密度ポリエチレン、ポリプロ
ピレン、ポリブテン−1等の単独重合体、エチレ
ン−プロピレン等の共重合体等のポリオレフイ
ン、或いはポリアミド、ポリエステル等の結晶性
プラスチツクが挙げられ、重合体を単独、或いは
混合状態で用いることができる。また、適性延伸
温度とは、いわゆる延伸により配向が起る温度で
あつて、公知のごとく、通常は比較的広範囲の温
度幅を有する。ポリオレフインの場合には一般的
には、融点より僅かに低い温度である。
Here, examples of the thermoplastic resin include polyolefins such as low density polyethylene, high density polyethylene, polypropylene, homopolymers such as polybutene-1, copolymers such as ethylene-propylene, or polyamides, polyesters, etc. Examples include crystalline plastics, and polymers can be used alone or in a mixed state. Further, the appropriate stretching temperature is the temperature at which orientation occurs due to so-called stretching, and as is well known, it usually has a relatively wide temperature range. In the case of polyolefins, this is generally just below the melting point.

円筒状マンドレル6は、断面形状が円形であつ
て、その周壁面6aの真空スリツトV1,V2はそ
れぞれ真空配管v1,v2により真空源(図示せず)
に接続されている。内部には熱媒循環腔11が設
けられており、これに接続された熱媒配管h3,h4
を通して熱媒源(図示せず)から熱媒が送られる
ことによつて円筒状マンドレル6が加熱されるよ
うになつている。円筒状マンドレル6の直径は未
延伸管状フイルムF3と同径か、或いはそれより
大きくする必要がある。即ち、円筒状マンドレル
6の直径は、そのマンドレル6上で未延伸管状フ
イルムF3のネツキングが発生しない範囲であれ
ば、いくら大きくてもよいが、大きくなり過ぎる
と、円筒状マンドレル6と未延伸管状フイルム
F3との中心軸が偏芯し易くなるため好ましくな
い。望ましい円筒状マンドレル6の直径は、未延
伸管状フイルムF3のそれの1〜1.5倍であり、好
適には1.05〜1.4倍である。円筒状マンドレル6
の直径が、未延伸管状フイルムF3のそれより小
さくなり過ぎると、円筒状マンドレル6の周壁上
に未延伸管状フイルムF3が均一に沿わなくな
り、従つて均一に加熱できなくなるばかりか、後
述する縦方向の延伸開始点を一定位置に固定する
真空スリツトV1,V2によつて円筒状マンドレル
6と未延伸管状フイルムF3との間の接触摩擦力
を効果的に付与できなくなる。このため、未延伸
管状フイルムF3の肉厚の僅かな変動、或いは加
熱条件の変動により、縦方向の延伸開始点を固定
することができなくなる。
The cylindrical mandrel 6 has a circular cross-sectional shape, and the vacuum slits V 1 and V 2 on the peripheral wall surface 6a are connected to a vacuum source (not shown) by vacuum piping v 1 and v 2 , respectively.
It is connected to the. A heat medium circulation cavity 11 is provided inside, and heat medium pipes h 3 and h 4 connected to this are provided.
The cylindrical mandrel 6 is heated by sending a heating medium from a heating medium source (not shown) through the cylindrical mandrel. The diameter of the cylindrical mandrel 6 must be the same as or larger than the unstretched tubular film F3 . That is, the diameter of the cylindrical mandrel 6 may be any large as long as the unstretched tubular film F 3 does not cause netting on the mandrel 6, but if it becomes too large, the diameter of the cylindrical mandrel 6 and the unstretched film F3 may be large. tubular film
This is not preferable because the central axis with F 3 tends to become eccentric. The diameter of the cylindrical mandrel 6 is preferably 1 to 1.5 times that of the unstretched tubular film F3 , preferably 1.05 to 1.4 times. Cylindrical mandrel 6
If the diameter of the unstretched tubular film F 3 becomes too small than that of the unstretched tubular film F 3 , the unstretched tubular film F 3 will not lie uniformly on the peripheral wall of the cylindrical mandrel 6, and therefore not only will it not be possible to heat it uniformly, but as will be described later. The vacuum slits V 1 and V 2 that fix the stretching start point in the longitudinal direction at a fixed position make it impossible to effectively apply a contact friction force between the cylindrical mandrel 6 and the unstretched tubular film F 3 . Therefore, due to slight variations in the thickness of the unstretched tubular film F3 or variations in heating conditions, it becomes impossible to fix the stretching start point in the longitudinal direction.

円筒状マンドレル6の周壁に設ける真空スリツ
トV1,V2の本数は、少くとも1本あればよい
が、通常2本以上あるのが好ましい。(本発明の
実施例では2本設けた場合を示してある。)真空
スリツト1本の場合には、上述の円筒状マンドレ
ル6の周壁6aと未延伸管状フイルムF3の接触
摩擦力の制御範囲が非常に狭くなり、未延伸管状
フイルム6の肉厚の僅かな変動によつて影響を受
け易くなる。真空スリツト2本以上の場合には、
前記接触摩擦力をより効果的に付与できるから、
未延伸フイルム6の肉厚の変動を受け難くなり、
後述する縦方向の延伸開始点の固定、制御が非常
に容易となる。この意味からも、特に縦方向に4
倍以上延伸する場合には、真空スリツトを2本以
上にすることが望ましい。
The number of vacuum slits V 1 and V 2 provided on the peripheral wall of the cylindrical mandrel 6 should be at least one, but it is usually preferable to have two or more. (The example of the present invention shows the case where two vacuum slits are provided.) In the case of one vacuum slit, the control range of the contact friction force between the peripheral wall 6a of the cylindrical mandrel 6 and the unstretched tubular film F3 described above becomes very narrow and susceptible to slight variations in the thickness of the unstretched tubular film 6. In case of two or more vacuum slits,
Because the contact friction force can be applied more effectively,
It becomes less susceptible to fluctuations in the thickness of the unstretched film 6,
It becomes very easy to fix and control the stretching start point in the longitudinal direction, which will be described later. From this point of view, especially in the vertical direction,
When stretching the film by more than 2 times, it is desirable to use two or more vacuum slits.

真空スリツトV1,V2の幅は特に規制されるも
のではないが、望ましい真空スリツト幅は未延伸
管状フイルムF3の肉厚と同等以上その肉厚の100
倍以下である。真空スリツト幅が大きくなると、
真空スリツトV1,V2に未延伸管状フイルムF3
吸いこまれ、そのフイルムF3内面に傷をつける
原因となる。真空スリツト幅が極端に狭くなる
と、真空スリツトV1,V2にゴミ或いは未延伸管
状フイルムF3中の添加剤が附着し、真空効果が
円周方向で不均一となるため、望ましくない。特
に長時間連続運転する場合に問題となる。
The width of the vacuum slits V 1 and V 2 is not particularly restricted, but the desirable width of the vacuum slits is equal to or greater than the thickness of the unstretched tubular film F 3 and 100% of that thickness.
It is less than twice that. As the vacuum slit width increases,
The unstretched tubular film F3 is sucked into the vacuum slits V1 and V2 , causing damage to the inner surface of the film F3 . If the vacuum slit width becomes extremely narrow, dust or additives in the unstretched tubular film F3 will adhere to the vacuum slits V1 and V2 , making the vacuum effect non-uniform in the circumferential direction, which is not desirable. This becomes a problem especially when continuous operation is performed for a long period of time.

真空スリツトV1,V2が実施例のごとく、2本
の場合、或いはそれ以上の本数の場合のスリツト
間隔は、スリツト幅の2倍以上1000倍以下が望ま
しい。真空スリツトV1,V2のうち少なくとも1
本の真空スリツトV2は円筒状マンドレル6の周
壁6aの高速ニツプロール9に最も近い位置に設
置することが重要である。これは、円筒状マンド
レル6と高速ニツプロール9との間で未延伸管状
フイルムF3を延伸するに際し、真空スリツトV2
を円筒状マンドレル6周壁6aの最端部同一円周
上に設置すると、縦方向の延伸開始点をその設置
位置に効果的に固定できるからである。
When there are two vacuum slits V 1 and V 2 as in the embodiment, or when there are more than two vacuum slits, the slit interval is preferably at least twice the slit width and no more than 1000 times the slit width. At least one of vacuum slits V 1 and V 2
It is important that the main vacuum slit V 2 be placed on the peripheral wall 6 a of the cylindrical mandrel 6 at a position closest to the high speed nip roll 9 . When stretching the unstretched tubular film F 3 between the cylindrical mandrel 6 and the high-speed nip roll 9, the vacuum slit V 2
This is because if the cylindrical mandrel 6 is installed on the same circumference at the outermost end of the peripheral wall 6a of the cylindrical mandrel 6, the longitudinal stretching start point can be effectively fixed at the installation position.

延伸開始点の固定は次の要領で行なう。即ち、
円筒状マンドレル6と高速ニツプロール9との間
で、未延伸管状フイルムF3を管状に保持して縦
方向に延伸するに際し、未延伸管状フイルムF3
が低速ニツプロール4により円筒状マンドレル6
方向に送り出される速度と等しい速度で円筒状マ
ンドレル6上を移動するように、その管状フイル
ムF3を真空スリツトV1,V2で真空度を制御しな
がら吸引して、高速ニツプロール9による延伸力
の伝播を制御し、同時に円筒状マンドレル6の円
周上で管状フイルムF3の円周上に不均一なネツ
キングが発生しないようにすることによつて、前
記延伸開始点を円筒状マンドレル6周壁6aの最
端部同一円周上に設置固定する。
The stretching start point is fixed in the following manner. That is,
When holding the unstretched tubular film F 3 in a tubular shape between the cylindrical mandrel 6 and the high-speed nip roll 9 and stretching it in the longitudinal direction, the unstretched tubular film F 3
cylindrical mandrel 6 by low speed nip roll 4
The tubular film F 3 is sucked by the vacuum slits V 1 and V 2 while controlling the degree of vacuum so as to move on the cylindrical mandrel 6 at a speed equal to the speed at which it is sent out in the direction, and the stretching force by the high-speed nip roll 9 is applied. By controlling the propagation of the stretching and at the same time preventing uneven netting from occurring on the circumference of the tubular film F 3 on the circumference of the cylindrical mandrel 6, the stretching start point is set to the circumferential wall of the cylindrical mandrel 6. The end portion of 6a is installed and fixed on the same circumference.

真空スリツトV1,V2の真空度の制御は、真空
スリツトV1とV2が、真空源(図示せず)に接続
されている真空配管v1とv2の中間にそれぞれ設け
られた真空圧力制御弁(図示せず)によつてなさ
れる。真空スリツトが2本以上の場合において
は、1本の真空スリツトの真空度を自動制御方式
とし、他の真空スリツトの真空度を一定圧に固定
する方式を採用することができる。
The degree of vacuum of the vacuum slits V 1 and V 2 is controlled by vacuum slits V 1 and V 2 provided between vacuum pipes V 1 and V 2 , respectively, which are connected to a vacuum source (not shown). This is done by a pressure control valve (not shown). When there are two or more vacuum slits, it is possible to adopt a system in which the vacuum degree of one vacuum slit is automatically controlled and the vacuum degree of the other vacuum slits is fixed at a constant pressure.

延伸管状フイルムF4の直径を円筒状マンドレ
ル6の直径と同径またはそれ以下とする理由は、
真空スリツトV1,V2の気密性を高め、延伸開始
点の固定、制御を容易にすると共に、未延伸管状
フイルムF3の僅かな変動や加熱条件の変動に起
因する不均一なネツキングの発生を阻止できるか
らである。延伸管状フイルムF4を円筒状マンド
レル6より若干小さくすることのできる範囲は、
未延伸管状フイルムF3の直径の10%以内が望ま
しい。10%以上収縮させるとフラツトフイルムの
ロールによる方法と同様縦方向に裂け易いフイル
ムとなる。
The reason why the diameter of the stretched tubular film F 4 is the same as or smaller than the diameter of the cylindrical mandrel 6 is as follows.
It improves the airtightness of the vacuum slits V 1 and V 2 to facilitate fixation and control of the stretching start point, and also prevents uneven netting caused by slight fluctuations in the unstretched tubular film F 3 or fluctuations in heating conditions. This is because it can prevent The range in which the stretched tubular film F 4 can be made slightly smaller than the cylindrical mandrel 6 is as follows:
Desirably, it is within 10% of the diameter of the unstretched tubular film F3 . If it is shrunk by more than 10%, the film will be easily torn in the longitudinal direction, similar to the method using flat film rolls.

また、円筒状マンドレル6と高速ニツプロール
9との間に水冷リング7を設置すれば、縦方向の
延伸間距離を容易に変更することができる。更
に、円筒状マンドレル6と高速ニツプロール9と
の間に、水冷リング7が設置されている場合に
は、その水冷リング7と高速ニツプロールとの間
に、ガイド板8を設置することにより、延伸管状
フイルムF4にシワが発生することがなく、延伸
管状フイルムF4を高速ニツプロール9に導くこ
とができる。
Further, by installing a water cooling ring 7 between the cylindrical mandrel 6 and the high-speed nip roll 9, the distance between the stretches in the longitudinal direction can be easily changed. Furthermore, when a water-cooled ring 7 is installed between the cylindrical mandrel 6 and the high-speed nip roll 9, a guide plate 8 is installed between the water-cooled ring 7 and the high-speed nip roll, so that the stretched tubular The stretched tubular film F 4 can be guided to the high-speed nip roll 9 without wrinkles occurring in the film F 4 .

なお、10はマンドレル支持固定パイプ、c1
c2は冷却マンドレル3に冷媒を供給する冷媒配
管、a2は冷却マンドレル3と円筒状マンドレル6
との間の空気圧を制御する空気圧制御配管、h1
h2は予熱マンドレル5に熱媒を供給する熱媒配管
である。
In addition, 10 is a mandrel support fixed pipe, c 1 ,
c 2 is a refrigerant pipe that supplies refrigerant to the cooling mandrel 3, a 2 is the cooling mandrel 3 and the cylindrical mandrel 6
Pneumatic control piping that controls the air pressure between h 1 ,
h2 is a heat medium pipe that supplies a heat medium to the preheating mandrel 5.

上述のごとく、本発明によれば、適性延伸温度
に加熱された未延伸管状フイルムF3を、円筒状
マンドレル6と高速ニツプロール9との間で、管
状に保持した状態で縦方向に一軸延伸するに際
し、縦方向の延伸に伴う縦方向の延伸力の伝達を
円筒状マンドレル6の真空スリツトV1,V2の真
空圧により吸引して制御することによつて、円筒
状マンドレル6の周壁面上での円周方向の収縮力
を低減化すると共に、延伸開始点を円筒状マンド
レル6周壁最端部の一定位置に固定して整一に
し、更に円筒状マンドレル6と高速ニツプロール
との間における延伸管状フイルムの内圧を制御す
るので、未延伸管状フイルムの円周方向の不均一
なネツキングの発生を完全に防止することがで
き、縦方向、円周方向ともに均一な肉厚を有する
熱可塑性樹脂管状一軸延伸フイルムを得ることが
できる。
As described above, according to the present invention, the unstretched tubular film F 3 heated to an appropriate stretching temperature is uniaxially stretched in the longitudinal direction between the cylindrical mandrel 6 and the high-speed nip roll 9 while being held in a tubular shape. At this time, by controlling the transmission of the stretching force in the longitudinal direction due to the longitudinal stretching by suctioning and controlling the transmission of the stretching force in the longitudinal direction by the vacuum pressure of the vacuum slits V 1 and V 2 of the cylindrical mandrel 6, it is possible to In addition to reducing the shrinkage force in the circumferential direction at By controlling the internal pressure of the tubular film, it is possible to completely prevent the occurrence of uneven netting in the circumferential direction of the unstretched tubular film. A uniaxially stretched film can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明を実施するための製造装置を
示す縦断側面図、第2図は第1図のA−A断面図
である。 1……環状ダイ、2……エアーリング、3……
冷却マンドレル、4……低速ニツプロール、5…
…予熱マンドレル、6……円筒状マンドレル、7
……水冷リング、8……ガイド板、9……高速ニ
ツプロール、10……マンドレル支持固定パイ
プ、11……熱媒循環腔、F1……熱可塑性樹脂
溶融フイルム、F2……未延伸管状フイルム、F3
……適性延伸温度に加熱された未延伸管状フイル
ム、F4……延伸管状フイルム、V1,V2……真空
スリツト、a1,a2,a3……空気配管、v1,v2……
真空配管、h1,h2,h3,h4……熱媒配管。
FIG. 1 is a longitudinal sectional side view showing a manufacturing apparatus for carrying out the present invention, and FIG. 2 is a sectional view taken along the line AA in FIG. 1... Annular die, 2... Air ring, 3...
Cooling mandrel, 4...Low speed nip roll, 5...
... Preheating mandrel, 6 ... Cylindrical mandrel, 7
... Water cooling ring, 8 ... Guide plate, 9 ... High-speed nip roll, 10 ... Mandrel support fixed pipe, 11 ... Heat medium circulation cavity, F 1 ... Thermoplastic resin molten film, F 2 ... Unstretched tubular shape Film, F 3
... unstretched tubular film heated to a suitable stretching temperature, F 4 ... stretched tubular film, V 1 , V 2 ... vacuum slit, a 1 , a 2 , a 3 ... air piping, v 1 , v 2 ……
Vacuum piping, h 1 , h 2 , h 3 , h 4 ... heat medium piping.

Claims (1)

【特許請求の範囲】[Claims] 1 適正延伸温度に加熱された熱可塑性樹脂未延
伸管状フイルムを円筒状マンドレルと高速ニツプ
ロールとの間で管状に保持した状態で縦方向に一
軸延伸する方法において、縦方向の延伸力によつ
て前記円筒状マンドレルの周壁面上で生ずる未延
伸管状フイルムの縦方向の延伸を前記円筒状マン
ドレルの周壁の真空スリツトの真空度を調節して
制御することによつて、円筒状マンドレルの周壁
面上での円周方向の収縮力の発生を低減化し、か
つ縦方向の延伸開始点を、前記円筒状マンドレル
の真空スリツトの位置をその端部の一定位置に固
定することによつて設定し、延伸中の延伸管状フ
イルムの直径を前記円筒状マンドレルと前記高速
ニツプロールの間の延伸管状フイルムの内圧を制
御して円筒状マンドレルの直径と同径またはそれ
より若干小さく制御することを特徴とする熱可塑
性樹脂管状一軸延伸フイルムの製造方法。
1. In a method in which an unstretched tubular thermoplastic resin film heated to an appropriate stretching temperature is uniaxially stretched in the longitudinal direction while being held in a tubular shape between a cylindrical mandrel and a high-speed nip roll, the above-mentioned By controlling the longitudinal stretching of the unstretched tubular film that occurs on the peripheral wall of the cylindrical mandrel by adjusting the vacuum degree of the vacuum slit in the peripheral wall of the cylindrical mandrel, During stretching, the generation of shrinkage force in the circumferential direction of the mandrel is reduced, and the stretching start point in the longitudinal direction is set by fixing the position of the vacuum slit of the cylindrical mandrel at a fixed position at the end thereof. The diameter of the stretched tubular film is controlled to be the same as or slightly smaller than the diameter of the cylindrical mandrel by controlling the internal pressure of the stretched tubular film between the cylindrical mandrel and the high-speed nip roll. A method for producing a tubular uniaxially stretched film.
JP36579A 1979-01-09 1979-01-09 Method and device for manufacturing thermo plastic, tubular film, elongated in one axis Granted JPS5593425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36579A JPS5593425A (en) 1979-01-09 1979-01-09 Method and device for manufacturing thermo plastic, tubular film, elongated in one axis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36579A JPS5593425A (en) 1979-01-09 1979-01-09 Method and device for manufacturing thermo plastic, tubular film, elongated in one axis

Publications (2)

Publication Number Publication Date
JPS5593425A JPS5593425A (en) 1980-07-15
JPS6236857B2 true JPS6236857B2 (en) 1987-08-10

Family

ID=11471760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36579A Granted JPS5593425A (en) 1979-01-09 1979-01-09 Method and device for manufacturing thermo plastic, tubular film, elongated in one axis

Country Status (1)

Country Link
JP (1) JPS5593425A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7731801A (en) * 2000-10-03 2002-04-11 Viskase Corporation Method and apparatus for use in manufacture of cellulose casing

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5415892B2 (en) * 1975-01-06 1979-06-18
JPS5318072A (en) * 1976-08-03 1978-02-18 Fujikoshi Kk Tool for cutting rapping plate
JPS6047649B2 (en) * 1976-09-20 1985-10-23 日立マクセル株式会社 magnetic recording medium

Also Published As

Publication number Publication date
JPS5593425A (en) 1980-07-15

Similar Documents

Publication Publication Date Title
US4828770A (en) Extrusion system
US4698196A (en) Method and apparatus for extruding creaseless thin walled tubes
US4663107A (en) Method for the production of thermoplastic tubes
US3170011A (en) Method and apparatus for making film
CA1253423A (en) Apparatus for producing sheet having many hollow bodies from thermoplastic material
EP0823873B1 (en) Method for treating an extruded plastic section and extrusion installation therefor
IL29315A (en) Production of blown tubular foils
JP3836882B2 (en) Biaxial stretching of plastic tube
AU6134386A (en) Apparatus and method for the production of ribbed pipes
KR880003732A (en) Manufacturing method and apparatus for manufacturing thermoplastic pipe member
JPS6236857B2 (en)
JPH01295828A (en) Construction method for inserting lining hard plastic pipe into pipeline
JPH10128829A (en) Method for producing synthetic resin pipe and cooling water tank thereof
US3716320A (en) Apparatus for producing flat film from thermoplastic material
JPS62270314A (en) Method and device for molding thermoplastic resin
GB986003A (en) Orientating tubular thermoplastic materials
JP2606262Y2 (en) Thin tube forming equipment
JPS592892Y2 (en) Cooling device for rotating wheel continuous metal extrusion equipment
JPH0636906Y2 (en) Continuous molding equipment for heat shrinkable tubes
JPH09117967A (en) Production of squeezed hollow foam
CA2002721A1 (en) Process and apparatus for the production of foamed polyolefin sheets
JPS6248568B2 (en)
US4880590A (en) Process for producing rollers equipped with a rubber layer
SU874382A1 (en) Unit for producing bidirectionally oriented sleeve-type polymeric films
KR950004435B1 (en) Pipe expander of heat plastic tube