JPS6236395Y2 - - Google Patents
Info
- Publication number
- JPS6236395Y2 JPS6236395Y2 JP15414781U JP15414781U JPS6236395Y2 JP S6236395 Y2 JPS6236395 Y2 JP S6236395Y2 JP 15414781 U JP15414781 U JP 15414781U JP 15414781 U JP15414781 U JP 15414781U JP S6236395 Y2 JPS6236395 Y2 JP S6236395Y2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- frequency
- color
- wideband
- equal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Color Television Systems (AREA)
Description
【考案の詳細な説明】
本考案は、カラーテレビジヨン信号を時間軸圧
縮多重伝送方式すなわちいわゆるTCI伝送方式、
あるいは、コンポーネント分離伝送方式などによ
り、輝度信号と二つの色信号すなわち広帯域およ
び狭帯域の色信号とに分離して伝送する場合に用
いる色信号送受信装置に関し、特に、多重伝送す
る広狭両帯域色信号の特性の劣化を少なくし得る
ようにしたものである。[Detailed description of the invention] This invention transmits color television signals using a time-base compression multiplex transmission method, or the so-called TCI transmission method.
Alternatively, it relates to a color signal transmitting/receiving device used when transmitting a luminance signal and two color signals, i.e., wideband and narrowband color signals, separately by a component separation transmission method, in particular, multiplex transmission of both wideband and narrowband color signals. The deterioration of the characteristics can be reduced.
一般に、カラーテレビジヨン信号を構成する二
つの色差信号、あるいは、I信号およびQ信号な
ど二つの色信号を多重伝送する上述の各種伝送方
式においては、カラーテレビジヨン画像のライン
相関を利用してライン周期毎にそれら二つの色信
号を交互に伝送する多重伝送方式が従来用いられ
ているが、かかるライン交互の多重伝送において
は、二つの色信号すなわち広帯域色信号および狭
帯域色信号ともに、それぞれの色信号が伝送され
ていないライン周期には、前ライン周期に伝送し
た同一種類の色信号を1ライン期間遅延させて補
間する、という極めて簡単な信号補間を行なつて
いるがために、カラー画像の垂直方向にて色信号
が不連続となる補間ノイズが生ずるとともに、垂
直方向の解像度が低下して、再生カラー画像の画
質が著しく劣化する、という欠点があつた。 In general, in the above-mentioned various transmission methods that multiplex transmit two color difference signals constituting a color television signal or two color signals such as an I signal and a Q signal, the line correlation of color television images is used to A multiplex transmission system that alternately transmits these two color signals every cycle has been conventionally used, but in such line alternate multiplex transmission, both the two color signals, the wideband color signal and the narrowband color signal, are During a line period in which no color signal is transmitted, extremely simple signal interpolation is performed in which the same type of color signal transmitted in the previous line period is delayed by one line period and interpolated. This method has disadvantages in that interpolation noise occurs in which the color signal is discontinuous in the vertical direction, and the resolution in the vertical direction decreases, resulting in a significant deterioration in the quality of the reproduced color image.
本考案の目的は、上述した従来の欠点を除去
し、カラーテレビジヨン信号を構成する広狭両帯
域の色信号を互いに混淆することなく多重して伝
送し得るとともに、互いに干渉することなく、ま
た、特性の劣化を生ずることなく、容易に分離し
て再生し得るようにした色信号送受信装置を提供
することにある。 An object of the present invention is to eliminate the above-mentioned conventional drawbacks, to multiplex and transmit both wide and narrow band color signals constituting a color television signal without mixing them with each other, and without interfering with each other. It is an object of the present invention to provide a color signal transmitting/receiving device that can be easily separated and reproduced without causing deterioration of characteristics.
すなわち、本考案色信号送受信装置は、カラー
テレビジヨン信号を構成する二つの色信号を広帯
域色信号および狭帯域色信号として送受信する色
信号送受信装置において、前記広帯域色信号およ
び前記狭帯域色信号の最高周波数をそれぞれFW
およびFNとするとともに、それら最高周波数FW
とFNとの差にほぼ等しい前記カラーテレビジヨ
ン信号の水平走査周波数Hの1/2の奇数倍の周波
数をF0としたとき、前記狭帯域色信号により周
波数FNにほぼ等しい水平走査周波数Hの整数倍
の周波数F1を有する第1の搬送波を変調して第
1の下側残留側波帯フイルタを通過させた第1の
被変調搬送波信号により周波数F1と周波数F0と
の和の周波数を有する第2の搬送波を再度変調し
て第2の下側残留側波帯フイルタを通過させた第
2の被変調搬送波信号と前記広帯域色信号とを加
算して形成した和信号を送信し、受信した前記和
信号を、周波数F0までほぼ平坦な特性を呈する
とともに周波数F0から周波数FWまでは順次の通
過帯域の中心周波数が水平走査周波数Hの順次
の整数倍にそれぞれ等しい櫛型特性を呈する広帯
域フイルタに導いて前記広帯域色信号を再生する
とともに、受信した前記和信号を周波数F0から
FWまでの周波数領域において水平走査周波数H
の1/2の順次の奇数倍にそれぞれ等しい中心周波
数を有する順次の通過帯域を備えた櫛型特性を有
するフイルタに導いた後に前記第2の搬送波と等
しい周波数を有する搬送波信号および前記第1の
搬送波と等しい周波数を有する搬送波信号により
順次に復調して前記狭帯域信号を再生するように
したことを特徴とするものである。 That is, the color signal transmitting and receiving device of the present invention is a color signal transmitting and receiving device that transmits and receives two color signals constituting a color television signal as a wideband color signal and a narrowband color signal. The highest frequency is F W
and F N and their highest frequency F W
When F 0 is a frequency that is an odd multiple of 1/2 of the horizontal scanning frequency H of the color television signal, which is approximately equal to the difference between the horizontal scanning frequency H of the color television signal and F N , the horizontal scanning frequency is approximately equal to the frequency F N due to the narrow band color signal. A first modulated carrier signal that modulates a first carrier wave having a frequency F 1 that is an integer multiple of H and passes through a first lower vestigial sideband filter is used to generate the sum of frequencies F 1 and F 0 . transmitting a sum signal formed by adding a second modulated carrier signal obtained by re-modulating a second carrier wave having a frequency and passing through a second lower vestigial sideband filter and the broadband color signal; Then, the received sum signal is passed through a comb which exhibits almost flat characteristics up to frequency F 0 and whose center frequencies of successive passbands from frequency F 0 to frequency FW are equal to successive integer multiples of the horizontal scanning frequency H. At the same time, the received sum signal is passed through a wideband filter exhibiting type characteristics to reproduce the wideband color signal, and the received sum signal is converted to a horizontal scanning frequency H in the frequency range from frequency F0 to FW .
a carrier signal having a frequency equal to the second carrier wave and the first The present invention is characterized in that the narrowband signal is reproduced by sequential demodulation using a carrier wave signal having the same frequency as the carrier wave.
以下図面を参照して実施例につき本考案を詳細
に説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.
一般に、カラーテレビジヨン信号を構成する広
帯域色信号および狭帯域色信号は、第1図aおよ
びbにそれぞれ示すように、互いに格段に異なる
最高周波数FWおよびFNをそれぞれ有する周波数
成分分布特性をそれぞれ呈している。かかる広狭
両帯域の色信号は、水平および垂直の走査によつ
て画像を構成するテレビジヨン信号の性質に基づ
き、スペクトル分布の微細構造については、第2
図に示すように、水平走査周波数Hの順次の整
数倍に等しい水平周波数スペクトル成分の両側に
近接して、フイールド周波数Vに等しい周波数
間隔の垂直周波数スペクトル成分が漸次減衰しな
がら配列され、相隣る水平走査周波数Hの高調
波スペクトル成分にそれぞれ付随するフイールド
周波数Vの高調波スペクトル群は、フレーム周
波数Pに等しい周波数間隔をもつて互いに交差
している。 In general, a wideband color signal and a narrowband color signal that constitute a color television signal have frequency component distribution characteristics having maximum frequencies F W and F N that are significantly different from each other, as shown in FIGS. 1a and b, respectively. Each exhibits Such wide-band and narrow-band color signals are based on the properties of television signals that form images through horizontal and vertical scanning, and the fine structure of the spectral distribution is based on the second
As shown in the figure, vertical frequency spectral components with frequency intervals equal to the field frequency V are arranged with gradual attenuation in close proximity to both sides of the horizontal frequency spectral components equal to successive integer multiples of the horizontal scanning frequency H. The harmonic spectrum groups of the field frequency V that are associated with the harmonic spectrum components of the horizontal scanning frequency H intersect with each other at a frequency interval equal to the frame frequency P.
したがつて、かかるスペクトル分布をともに有
する広狭両帯域の色信号は、第3図aに示すよう
に、水平走査周波数Hの1/2の奇数倍だけスペク
トル成分の周波数位置を互いにずらし、また、横
縞のように水平方向の変化が緩かな画像の空間周
波数特性としては水平周波数スペクトルが低域成
分のみとなるので、広狭両帯域の色信号の最高周
波数FWとFNとをほぼ揃えた状態にして互いに周
波数間挿を施せば、それぞれのスペクトル成分が
交互に配置され、したがつて、第3図bに示すよ
うに、容易に周波数多重して伝送することがで
き、また、順次の通過帯域の中心周波数が水平走
査周波数Hの1/2だけずれた、中心周波数間隔が
ともに水平走査周波数Hに等しい2種類の櫛型
フイルタを用いれば、上述した態様にて周波数間
挿した広狭両帯域の色信号を互いに干渉すること
なく分離してそれぞれ再生することができ、かか
る垂直方向の櫛型フイルタは、ライン周期の遅延
素子を用いて容易に構成することができる。な
お、かかる櫛型炉波特性によつて垂直周波数スペ
クトルの高域成分が欠除しても、その欠除に基づ
く垂直方向の特性の劣化は軽微である。 Therefore, as shown in FIG. 3a, wide-band and narrow-band color signals having both such spectral distributions have the frequency positions of their spectral components shifted from each other by an odd multiple of 1/2 of the horizontal scanning frequency H , and As for the spatial frequency characteristics of images with gradual changes in the horizontal direction, such as horizontal stripes, the horizontal frequency spectrum has only low-frequency components, so the highest frequencies F W and F N of the color signals in both wide and narrow bands are almost the same. If the frequencies are interpolated with each other, the respective spectral components are arranged alternately, so that they can be easily frequency multiplexed and transmitted as shown in Figure 3b. By using two types of comb-shaped filters whose band center frequencies are shifted by 1/2 of the horizontal scanning frequency H and whose center frequency intervals are both equal to the horizontal scanning frequency H , both wide and narrow bands can be created with frequency interpolation in the manner described above. The vertical comb-type filter can be easily constructed using line-period delay elements. Note that even if the high-frequency components of the vertical frequency spectrum are deleted due to the comb-shaped furnace wave characteristics, the deterioration of the vertical characteristics due to the deletion is slight.
本考案により、第1図a,bに示した周波数成
分分布特性を有する広狭両帯域の色信号を、上述
のようにして周波数間挿することにより、第3図
a,bに示したような周波数多重信号に変換する
信号処理は、第4図a〜eに順次に示すような態
様によつて行なう。なお、以下には、色信号をア
ナログ信号として処理する場合について本考案を
説明するが、後述するようにデイジタル信号とし
て処理すれば、一層安定に処理することができ
る。 According to the present invention, by interpolating the frequencies of both wide and narrow band color signals having the frequency component distribution characteristics shown in FIGS. 1a and 1b, as shown in FIGS. 3a and 3b, as shown in FIGS. The signal processing for converting into a frequency multiplexed signal is carried out in the manner shown in sequence in FIGS. 4a to 4e. Although the present invention will be described below with reference to the case where the color signal is processed as an analog signal, it is possible to process the color signal more stably if it is processed as a digital signal as will be described later.
しかして、第4図a〜eに示す本考案装置によ
る色信号変換の動作原理においては、同図aに示
す周波数成分分布特性を有する狭帯域色信号によ
り、同図bに示すように、kを正の整数として、
水平走査周波数Hおよび狭帯域色信号の最高周
波数FNに対しF1=kH≒FNなる関係を有する
周波数F1を有する正弦波からなる搬送波信号を
振幅変調により変調して、同図cに実線にて示す
ように、周波数F1を中心にして周波数0から2F1
に到る両側帯波からなるスペクトル分布の被変調
信号を形成し、かかるスペクトル分布の被変調信
号を、同図cに点線にて示すように、搬送波周波
数F1の位置にてレスポンスが1/2となるようにし
て、周波数F1に関し点対称の直線状減衰特性を
呈し、周波数0を下限とする残留側波帯フイルタ
の形態をなす直線位相型の低域通過フイルタG1N
()に導いて、周波数0からほぼF1に到る下側
帯波成分を取出し、ついで、同図dに示すよう
に、広狭両帯域の色信号の最高周波数FWとFNと
の差にほぼ等しく、かつ、水平走査周波数Hの
1/2の奇数倍に等しい周波数F0と上述の搬送波周
波数F1との和に等しいF2=F0+F1なる周波数F2
を有する正弦波からなる搬送波信号を振幅変調に
より変調すると、同図eに実線にて示すように、
周波数F2を中心にして上下対称のスペクトル分
布をなす両側帯波からなる被変調信号を再度形成
する。このようにして、ほぼ、周波数F0から周
波数F2+F1に到るスペクトル分布をなす被変調
信号を、同図eに点線にて示すように、搬送波周
波数F2の位置にてレスポンスが1/2になるように
して、周波数F2に関し点対称の直線状減衰特性
を呈し、周波数0を下限とする残留側波帯フイル
タの形態をなす直線位相型の低域通過フイルタG
2N()に導いて、
周波数F0からほぼF2に到る下側帯波成分を取
出すと、第3図a,bに示したように、広帯域色
信号の最大周波数FWに最大周波数FNがほぼ一致
するようにして周波数域をずらし、しかも、水平
走査周波数Hの1/2の奇数倍の周波数位置に水平
周波数スペクトル成分を有するスペクトル分布の
狭帯域色信号が得られる。かかるスベクトル分布
の狭帯域色信号をもとのままのスペクトル分布を
有する広帯域色信号に加算すれば、第3図aに示
したように周波数間挿して多重した広狭両帯域の
色信号が得られる。 Therefore, in the operating principle of color signal conversion by the device of the present invention shown in FIGS. 4a to 4e, the narrowband color signal having the frequency component distribution characteristics shown in FIG. Let be a positive integer,
A carrier wave signal consisting of a sine wave having a frequency F 1 having the relationship F 1 =k H ≈F N with respect to the horizontal scanning frequency H and the highest frequency F N of the narrowband color signal is modulated by amplitude modulation, and the signal shown in FIG. As shown by the solid line, the frequency ranges from 0 to 2F 1 with the frequency F 1 as the center.
A modulated signal with a spectral distribution consisting of both sideband waves reaching up to 2, a linear phase low-pass filter G 1N exhibits point-symmetric linear attenuation characteristics with respect to frequency F 1 and takes the form of a vestigial sideband filter with frequency 0 as the lower limit.
(), extract the lower sideband component from frequency 0 to approximately F1 , and then calculate the difference between the highest frequencies F W and F N of the wide and narrow color signals as shown in d of the same figure. Almost equal and horizontal scanning frequency H
Frequency F 2 equals the sum of frequency F 0 equal to an odd multiple of 1/2 and carrier frequency F 1 mentioned above, F 2 = F 0 + F 1
When a carrier wave signal consisting of a sine wave with , is modulated by amplitude modulation, as shown by the solid line in Figure e,
A modulated signal consisting of both sideband waves having a vertically symmetrical spectral distribution centered on frequency F 2 is again formed. In this way, a modulated signal with a spectral distribution approximately ranging from frequency F 0 to frequency F 2 +F 1 is converted into a modulated signal with a response of 1 at the carrier frequency F 2 as shown by the dotted line in the figure e. /2, a linear phase low-pass filter G exhibiting point-symmetric linear attenuation characteristics with respect to frequency F 2 and forming a vestigial sideband filter with frequency 0 as the lower limit.
2N () and extract the lower sideband component from frequency F 0 to approximately F 2 , as shown in Figure 3a and b, the maximum frequency F W of the wideband color signal has the maximum frequency F N The frequency ranges are shifted so that they almost match, and a narrowband color signal with a spectral distribution having horizontal frequency spectral components at frequency positions that are odd multiples of 1/2 of the horizontal scanning frequency H can be obtained. By adding the narrowband color signal with such a spectral distribution to the wideband color signal with the original spectral distribution, a wideband and narrowband color signal multiplexed with frequency interpolation is obtained as shown in Figure 3a. It will be done.
つぎに、上述のような動作原理に従つて広狭両
帯域の色信号の周波数間挿による多重変換を行な
うとともに、かかる多重色信号を受信して逆の変
換過程により互いに分離して広狭両帯域の色信号
をそれぞれ再生するようにした本考案色信号送受
信装置の構成例を第5図に示す。図示の回路構成
においては、アナログ信号の形態の広狭両帯域の
色信号について上述した動作原理をデイジタル信
号の形態にて安定確実に実施するために、まず、
入力端子1および2に供給した広帯域アナログ色
信号W(t)および狭帯域アナログ色信号N
(t)をアナログ・デイジタル変換器3および4
にそれぞれ導いてデイジタル信号に変換したうえ
で、広帯域フイルタ5および狭帯域フイルタ6に
それぞれ導いて、ともに第2図に示したスペクト
ル分布を有する広狭両帯域の色信号を取出す。 Next, in accordance with the operating principle described above, multiplex conversion is performed by frequency interpolation of both wide and narrow band color signals, and the multiplexed color signals are received and separated from each other through the reverse conversion process to convert both wide and narrow band color signals. FIG. 5 shows an example of the configuration of the color signal transmitting/receiving device of the present invention, which reproduces each color signal. In the illustrated circuit configuration, in order to stably and reliably implement the above-mentioned operating principle for both wide and narrow band color signals in the form of analog signals in the form of digital signals, first,
Wideband analog color signal W (t) and narrowband analog color signal N supplied to input terminals 1 and 2
(t) to analog-to-digital converters 3 and 4
After converting the signals into digital signals, the signals are respectively guided to a wide band filter 5 and a narrow band filter 6 to extract both wide and narrow band color signals having the spectral distributions shown in FIG.
上述の広帯域フイルタ5および狭帯域フイルタ
6は、第6図aおよびbにそれぞれ示すような周
波数特性を有するものであり、そのうち、同図a
に示す広帯域フイルタ5は、周波数0から、広狭
両帯域色信号の最高周波数FW,FNの差にほぼ等
しい周波数F0まではほぼ平坦な特性を呈し、そ
の周波数F0から広帯域色信号の最高周波数FWま
では、水平走査周波数Hの順次の整数倍に等し
い周波数位置に中心周波数を有する順次の通過帯
域を備えた櫛型フイルタの特性を呈する広帯域の
低減通過フイルタGW()をなし、また、同図
bに示す狭帯域フイルタ6は、周波数0から狭帯
域色信号の最高周波数FNまで、水平走査周波数
Hの順次の整数倍に等しい周波数位置に中心周
波数を有する順次の通過帯域を備えた櫛型フイル
タの特性を呈する狭帯域の低域通過フイルタGN
()をなすものである。 The above-mentioned wideband filter 5 and narrowband filter 6 have frequency characteristics as shown in FIGS. 6a and 6b, respectively.
The wideband filter 5 shown in FIG. 1 exhibits a substantially flat characteristic from frequency 0 to a frequency F 0 that is almost equal to the difference between the highest frequencies F W and F N of both wide and narrow band color signals, and from that frequency F 0 to Up to the highest frequency F W , there is no broadband reduced pass filter G W ( ) exhibiting the characteristics of a comb filter with successive pass bands with center frequencies at frequency positions equal to successive integer multiples of the horizontal scanning frequency H. , and the narrowband filter 6 shown in FIG .
Narrowband low-pass filter G N exhibiting the characteristics of a comb filter with successive passbands with center frequencies at frequency positions equal to successive integer multiples of H
().
なお、広狭両帯域色信号の多重伝送における相
互混淆を極力少なくするためには、前述したよう
に、広狭両帯域色信号をそれぞれ広帯域フイルタ
5および狭帯域フイルタ6を介して送出するのが
好適であるが、広狭両帯域色信号の忠実度、精細
度等を重視する場合には、かかる波作用による
信号成分の欠除を避けるために、上述のフイルタ
5,6を省略するのが望ましい。 In order to minimize mutual mixing in the multiplex transmission of wide and narrow band color signals, it is preferable to send the wide and narrow band color signals through the wideband filter 5 and the narrowband filter 6, respectively, as described above. However, when emphasis is placed on the fidelity, definition, etc. of both wide and narrow band color signals, it is desirable to omit the above-mentioned filters 5 and 6 in order to avoid deletion of signal components due to such wave effects.
また、前述したように、横縞など水平方向の変
化が緩かな画像においては、広狭両帯域色信号と
もに、水平周波数スペクトルが低域成分のみとな
るので、狭帯域フイルタ6についても、第6図c
に点線にて示すように、広帯域フイルタ5におけ
ると同じく、周波数0から周波数F0までをほぼ
平坦な特性とすることもできる。 In addition, as mentioned above, in an image with gradual changes in the horizontal direction such as horizontal stripes, the horizontal frequency spectrum of both the wide and narrow band color signals consists of only low frequency components, so the narrow band filter 6 is also
As shown by the dotted line in , it is also possible to have a substantially flat characteristic from frequency 0 to frequency F 0 as in the broadband filter 5 .
ついで、広帯域フイルタ5から取出した広帯域
色信号のスペクトル成分はそのまま加算器11に
導くが、狭帯域フイルタ6から取出した狭帯域色
信号のスペクトル成分は、掛算器7に導いて、第
4図bにつき前述した周波数F1を有する搬送波
信号1(n)に掛算による振幅変調を施し、そ
の被変調出力信号を第4図cにつき前述した低域
通過フイルタG1N()と同等の第5図dに示す
ような特性を有する低域通過フイルタ8に導いて
下側帯波成分のみを取出して掛算器9に導き、第
4図dにつき前述した周波数F2を有する搬送波
信号2(n)に掛算による振幅変調を施し、そ
の被変調出力信号を第4図eにつき前述した低域
通過フイルタG2N()と同等の第6図eに示す
ような特性を有する低域通過フイルタ10に導い
て下側帯波成分のみを取出すと、第3図aに示し
たスペクトル成分よりなる狭帯域色信号が得られ
るので、狭帯域色信号のかかるスペクトル成分を
加算器11に導いて、互いに周波数間挿した広狭
両帯域色信号の周波数多重信号を取出し、デイジ
タル・アナログ変換器12を介し、アナログ信号
の形態に戻して伝送路に送出する。なお、この周
波数多重信号をデイジタル信号の形態のままにて
伝送することもできる。 Next, the spectral components of the wideband color signal taken out from the wideband filter 5 are directly led to the adder 11, while the spectral components of the narrowband color signal taken out from the narrowband filter 6 are led to the multiplier 7, and are shown in FIG. 4b. The carrier signal 1 (n) having the frequency F 1 described above is subjected to amplitude modulation by multiplication, and the modulated output signal is converted into the modulated output signal shown in FIG. 5 d, which is equivalent to the low-pass filter G 1N ( A low-pass filter 8 having the characteristics shown in FIG . Amplitude modulation is applied, and the modulated output signal is guided to a low-pass filter 10 having characteristics as shown in FIG. 6e, which is equivalent to the low-pass filter G 2N () described above with respect to FIG. If only the wave components are extracted, a narrowband color signal consisting of the spectral components shown in FIG. The frequency multiplexed signal of the band chrominance signal is taken out and returned to the form of an analog signal via the digital-to-analog converter 12, and sent to the transmission line. Note that this frequency multiplexed signal can also be transmitted in the form of a digital signal.
一方、受信側においては、受信した周波数多重
色信号をアナログ・デイジタル変換器13を介し
て低域通過フイルタ14および15に導く。しか
して、低域通過フイルタ14は、送信側の広帯域
フイルタ5と同様に、第6図aに示した広帯域の
低域通過フイルタGW()と同等の特性を有し
ており、その波出力として抽出した広帯域色信
号W(t)を、デイジタル・アナログ変換器1
6を介して出力端子17から取出す。また、低域
通過フイルタ15は、第6図cに示すように、周
波数F0から周波数FWまでに亘り、水平走査周波
数Hの1/2の順次の奇数倍の周波数位置に中心周
波数を有する順次の通過帯域を備えた櫛型フイル
ムG3N()と同等の特性を有しており、したが
つて、その波出力として、第3図a,bに示し
たスペクトル分布の狭帯域色信号を抽出すること
ができる。かかるスペクトル分布の狭帯域色信号
に、第4図a〜eにつき前述した送信側の二重振
幅変調とは逆の二重復調を施すために、掛算器1
8および19に順次に導いて、第4図dおよびb
につき前述した周波数F2およびF1をそれぞれ有
する搬送波信号2(n)および1(n)によ
り、掛算による同期検波の復調を繰返して行なつ
た後に、デイジタル・アナログ変換器20を介し
て、出力端子21から、原型のスペクトル分布を
有する狭帯域色信号N(t)を取出す。 On the other hand, on the receiving side, the received frequency-multiplexed color signal is guided to low-pass filters 14 and 15 via an analog-to-digital converter 13. Therefore, the low-pass filter 14, like the wide-band filter 5 on the transmitting side, has the same characteristics as the wide-band low-pass filter G W () shown in FIG. 6a, and its wave output The broadband color signal W (t) extracted as
6 from the output terminal 17. Furthermore, as shown in FIG. 6c, the low-pass filter 15 ranges from frequency F0 to frequency FW , and has center frequencies at frequency positions that are sequentially odd multiples of 1/2 of the horizontal scanning frequency H. It has the same characteristics as a comb-shaped film G 3N () with sequential passbands, and therefore, its wave output is a narrowband color signal with the spectral distribution shown in Figure 3a and b. can be extracted. In order to perform double demodulation on the narrowband color signal having such a spectral distribution, which is opposite to the double amplitude modulation on the transmitting side described above with reference to FIGS.
8 and 19 in sequence, FIGS. 4d and b
After repeated demodulation of synchronous detection by multiplication using the carrier signals 2 (n) and 1 (n) having the aforementioned frequencies F 2 and F 1 , respectively, the output signal is output via the digital-to-analog converter 20. A narrowband color signal N (t) having the original spectral distribution is taken out from the terminal 21 .
なお、第4図a〜eにつき前述した二重変調に
よるスペクトル分布の変換をデイジタル色信号に
施す場合には、色信号をデイジタル信号に変換す
る際に行なうサンプリングにより、第4図a〜e
にそれぞれ対応させて第7図a〜eに示すよう
に、周波数0に関する第4図示の周波数配置に対
して、サンプリング周波数FSに関して鏡像の関
係を有する周波数配置の折返し成分が生ずるの
で、かかる折返し成分との混淆を避けるために、
サンプリング周波数sは、少なくとも、第4図
dにつき前述した周波数のほぼ3倍、したがつ
て、広帯域色信号の最高周波数FWのほぼ3倍の
周波数に選定する必要がある。 In addition, when applying the spectral distribution conversion by double modulation described above with reference to FIGS. 4 a to e to the digital color signal, the sampling performed when converting the color signal to a digital signal results in the conversion of the spectral distribution shown in FIGS.
As shown in FIGS. 7a to 7e, respectively, aliasing components of the frequency arrangement that have a mirror image relationship with respect to the sampling frequency F S occur with respect to the frequency arrangement shown in FIG. 4 regarding the frequency 0. To avoid mixing with ingredients,
The sampling frequency s should be selected to be at least approximately three times the frequency mentioned above with respect to FIG. 4d, and therefore approximately three times the highest frequency F W of the broadband color signal.
なお、第6図cに示したフイルタ特性における
櫛型特性については、水平周波数スペクトル成分
の両側に付随する垂直周波数スペクトル成分をな
るべく減衰させないように、順次の通過帯域を広
帯域にする必要がある。 Regarding the comb-shaped filter characteristic shown in FIG. 6c, it is necessary to make the successive passbands wide so that the vertical frequency spectral components attached on both sides of the horizontal frequency spectral component are not attenuated as much as possible.
以上の説明から明らかなように、本考案によれ
ば、再生カラー画像の水平、垂直両方向の解像度
を劣化させることなく、広狭両帯域の2種類の色
信号を多重して伝送することができ、自然界には
精細な斜線によつて構成された画像成分はあまり
存在しないこと、および、かかる斜線の画像成分
に対しては視覚があまり鋭敏ではないこと、を巧
みに利用して、色信号の多重伝送による再生カラ
ー画質の劣化を最小限度に留め得るようにしてい
る。また、第3図aにつき前述したように、広帯
域色信号の低域には、周波数位置をずらした狭帯
域色信号が重畳されてはいないので、その低域成
分の特性の劣化は全く生じない。一方、狭帯域色
信号の低域成分については、広帯域色信号と重畳
している領域において、低域部にて垂直方向に広
帯域の櫛型フイルタ特性により前処理を施すこと
により、混淆による劣化を小さく抑えることがで
き、しかも、横縞成分の劣化を小さくすることが
できるが、広狭両帯域色信号の高域成分を櫛型フ
イルタ特性により前処理しておけば、従来のTCI
伝送やコンポネント分離伝送などに適用すること
もでき、多重化した色信号のエネルギーが低域に
集中しているので、衛星放送などのFM伝送にも
適用することができる。また、本考案による多重
変換の信号処理はデイジタル系によつて行なえる
ので、安定確実な動作を期待することができる。 As is clear from the above description, according to the present invention, two types of color signals in both wide and narrow bands can be multiplexed and transmitted without deteriorating the resolution of the reproduced color image in both the horizontal and vertical directions. By skillfully taking advantage of the fact that there are not many image components composed of fine diagonal lines in nature, and that the visual sense is not very sensitive to image components with such diagonal lines, multiplexing of color signals is possible. Deterioration in reproduced color image quality due to transmission can be kept to a minimum. In addition, as described above with reference to FIG. 3a, since the narrowband color signal whose frequency position is shifted is not superimposed on the low range of the wideband color signal, the characteristics of the low range component do not deteriorate at all. . On the other hand, for the low frequency components of the narrowband color signal, in the area where they overlap with the wideband color signal, preprocessing is performed in the low frequency section using a wideband comb filter characteristic in the vertical direction to prevent deterioration due to mixing. It is possible to suppress the deterioration of horizontal stripe components, but if the high frequency components of both wide and narrow band color signals are pre-processed using comb filter characteristics, conventional TCI
It can also be applied to transmission and component separation transmission, and since the energy of the multiplexed color signal is concentrated in the low range, it can also be applied to FM transmission such as satellite broadcasting. Further, since the multiplex conversion signal processing according to the present invention can be performed by a digital system, stable and reliable operation can be expected.
第1図aおよびbは広狭両帯域色信号の周波数
分布特性をそれぞれ示す特性曲線図、第2図は同
じくそのスペクトル分布の例を示す線図、第3図
a,bは本考案色信号送受信装置における広狭両
帯域色信号スペクトル成分の周波数多重の態様の
例をそれぞれ示す線図、第4図a〜eは同じくそ
のアナログ系による動作原理を順次に示す線図、
第5図は同じくその回路構成の例を示すブロツク
線図、第6図a〜eは同じくその回路構成に用い
る各種フイルタの特性例をそれぞれ示す特性曲線
図、第7図a〜eは同じくそのデイジタル系によ
る動作原理を順次に示す線図である。
1,2……入力端子、3,4,13……アナロ
グ・デイジタル変換器、5,14……広帯域フイ
ルタ、6……狭帯域フイルタ、7,9,18,1
9……掛算器、8,10,14,15……低域通
過フイルタ、11……加算器、12,16,20
……デイジタル・アナログ変換器、17,21…
…出力端子。
Figures 1a and b are characteristic curve diagrams showing the frequency distribution characteristics of both wide and narrow band color signals, Figure 2 is a diagram showing an example of the spectrum distribution, and Figures 3a and b are color signal transmission and reception according to the present invention. Diagrams showing examples of frequency multiplexing of both wide and narrow band color signal spectral components in the apparatus, FIGS.
FIG. 5 is a block diagram showing an example of the circuit configuration, FIGS. 6 a to 6 e are characteristic curve diagrams showing characteristic examples of various filters used in the circuit configuration, and FIGS. FIG. 3 is a diagram sequentially showing the operating principle of a digital system. 1, 2... Input terminal, 3, 4, 13... Analog-digital converter, 5, 14... Broadband filter, 6... Narrowband filter, 7, 9, 18, 1
9... Multiplier, 8, 10, 14, 15... Low pass filter, 11... Adder, 12, 16, 20
...Digital to analog converter, 17, 21...
...Output terminal.
Claims (1)
号を広帯域色信号および狭帯域色信号として送受
信する色信号送受信装置において、前記広帯域色
信号および前記狭帯域色信号の最高周波数をそれ
ぞれFWおよびFNとするとともに、それら最高周
波数FWとFNとの差にほぼ等しい前記カラーテレ
ビジヨン信号の水平走査周波数Hの1/2の奇数倍
の周波数をFOとしたとき、前記狭帯域色信号に
より周波数FNにほぼ等しい水平走査周波数Hの
整数倍の周波数F1を有する第1の搬送波を変調
して第1の下側残留側波帯フイルタを通過させた
第1の被変調搬送波信号により周波数F1と周波
数F0との和の周波数を有する第2の搬送波を再
度変調して第2の下側残留側波帯フイルタを通過
させた第2の被変調搬送波信号と前記広帯域色信
号とを加算して形成した和信号を送信し、受信し
た前記和信号を、周波数F0までほぼ平坦な特性
を呈するとともに周波数F0から周波数FWまでは
順次の通過帯域の中心周波数が水平走査周波数
Hの順次の整数倍にそれぞれ等しい櫛型特性を呈
する広帯域フイルタに導いて前記広帯域色信号を
再生するとともに、受信した前記和信号を周波数
F0からFWまでの周波数領域において水平走査周
波数Hの1/2の順次の奇数倍にそれぞれ等しい中
心周波数を有する順次の通過帯域を備えた櫛型特
性を有するフイルタに導いた後に前記第2の搬送
波と等しい周波数を有する搬送波信号および前記
第1の搬送波と等しい周波数を有する搬送波信号
により順次に復調して前記狭帯域色信号を再生す
るようにしたことを特徴とする色信号送受信装
置。 In a color signal transmitting and receiving apparatus for transmitting and receiving two color signals constituting a color television signal as a wideband color signal and a narrowband color signal, the maximum frequencies of the wideband color signal and the narrowband color signal are F W and F N , respectively, and F O is an odd-numbered multiple of 1/2 the horizontal scanning frequency H of the color television signal which is approximately equal to the difference between the maximum frequencies F W and F N , the apparatus transmits a sum signal formed by adding together a second modulated carrier signal which is obtained by modulating a first carrier wave having a frequency F 1 which is an integer multiple of the horizontal scanning frequency H which is approximately equal to frequency F N with the narrowband color signal and passing the first modulated carrier signal through a first lower vestigial sideband filter, and then modulating a second carrier wave having a frequency which is the sum of frequencies F 1 and F 0 with the first modulated carrier signal and passing the second modulated carrier signal through a second lower vestigial sideband filter, the second modulated carrier signal being modulated again with the second modulated carrier signal and passing the second modulated carrier signal through a second lower vestigial sideband filter, the sum signal received being a signal which has an approximately flat characteristic up to frequency F 0 and has successive passband center frequencies from frequency F 0 to frequency F W which are equal to the horizontal scanning frequency
The wideband chrominance signal is regenerated by passing the sum signal through a wideband filter having a comb characteristic equal to successive integer multiples of H , and the wideband chrominance signal is regenerated by passing the sum signal through a wideband filter having a comb characteristic equal to successive integer multiples of H, and
a color signal transmitting and receiving device, characterized in that the narrowband color signal is reproduced by introducing the signal into a filter having a comb-shaped characteristic with successive passbands having center frequencies equal to successive odd - numbered multiples of 1/2 the horizontal scanning frequency H in the frequency range from F0 to Fw, and then demodulating the signal sequentially with a carrier signal having a frequency equal to the second carrier signal and a carrier signal having a frequency equal to the first carrier signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15414781U JPS5861584U (en) | 1981-10-20 | 1981-10-20 | Color signal transmitter/receiver |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15414781U JPS5861584U (en) | 1981-10-20 | 1981-10-20 | Color signal transmitter/receiver |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5861584U JPS5861584U (en) | 1983-04-25 |
JPS6236395Y2 true JPS6236395Y2 (en) | 1987-09-16 |
Family
ID=29946746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15414781U Granted JPS5861584U (en) | 1981-10-20 | 1981-10-20 | Color signal transmitter/receiver |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5861584U (en) |
-
1981
- 1981-10-20 JP JP15414781U patent/JPS5861584U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5861584U (en) | 1983-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0082489B1 (en) | Picture signal processing system including spatio-temporal filter | |
US3700793A (en) | Frequency interleaved video multiplex system | |
FR2593988A1 (en) | PROGRESSIVE SCAN TELEVISION SYSTEM WITH SUM AND DIFFERENCE COMPONENTS, AND SIGNAL CODING METHOD | |
US4713688A (en) | Method for increasing resolution in a compatible television system | |
JPH033997B2 (en) | ||
GB2040640A (en) | Digitising an ntsc television signal | |
US2729698A (en) | Electrical filters | |
CA1189957A (en) | Television signal filtering system | |
US4594607A (en) | Demodulator for sampled chrominance signals including a Nyquist filter for recovering wideband I color difference signals | |
AU628271B2 (en) | Method and arrangements for coding and decoding colour television signals using a separate series arrangement of a low-pass filter and a vertical temporal filter for each color difference signal | |
US2855573A (en) | Electrical filter | |
JPH0824380B2 (en) | Method for encoding and transmitting color television signal | |
JPS6236395Y2 (en) | ||
US4849808A (en) | System for filtering color television signals utilizing comb filtering of liminance with variable combing level at low frequencies and filtering of chrominance by comb filtering time multiplexed color difference signals | |
EP0382151B1 (en) | Sampling frequency down-converting apparatus | |
EP0406420B1 (en) | Television system | |
US2811577A (en) | Color television system | |
US2972013A (en) | Color television receiver system | |
JP3459415B2 (en) | Extended composite television system | |
JPS5831795B2 (en) | Color television program | |
JPS59219083A (en) | Television image signal transmission system | |
JPS63102591A (en) | Comb-line filter circuit | |
JPH02114790A (en) | Video chrominance signal transmission reception system and transmitter-receiver | |
RU2016494C1 (en) | Television system | |
JPH06502972A (en) | television system |