JPS6236203B2 - - Google Patents
Info
- Publication number
- JPS6236203B2 JPS6236203B2 JP54102943A JP10294379A JPS6236203B2 JP S6236203 B2 JPS6236203 B2 JP S6236203B2 JP 54102943 A JP54102943 A JP 54102943A JP 10294379 A JP10294379 A JP 10294379A JP S6236203 B2 JPS6236203 B2 JP S6236203B2
- Authority
- JP
- Japan
- Prior art keywords
- refractive index
- mode
- cladding
- core
- optical fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Description
本発明は、単一モード伝送用の光フアイバに関
し、特に通信用フアイバに応用して好適なもので
ある。
通信用光フアイバにおいて、基本モードである
HE11モードのみのいわゆる単一モードの伝送を
実現するためには、コア部の屈折率をn1、その半
径をa、クラツド部の屈折率をn2とし、更に伝送
される光の波長をλ、円周率をπとすると、
2.405>2a/λ・π√2 1−2 2
なる条件を満足する必要がある。このように、上
記不等式を満たすようにコア部の径を細く設計し
た光フアイバは、単一モードフアイバと呼称さ
れ、多モード分散が存在しないためにパルスの遅
れが発生せず、将来の大容量通信路として大いに
期待されている。
ところが、実際の単一モードフアイバと呼称さ
れるものには電界が垂直方向に沿つたHE11(v)モ
ードと磁界が水平方向に沿つたHE11(H)モードと
が存在し、しかもその屈折率分布が完全な同心円
状の軸対称形ではなく多かれ少なかれ楕円状等の
非軸対称形をなしているのが普通である。そのた
め、HE11(v)モードとHE11(H)モードとの間の群速
度の相違によつて多モード分散と同様の受信端で
のパルスの広がりを生じ、これが単一モードフア
イバの伝送容量に限界を与える主因の一つと考え
られている。そこで、送信端で例えばHE11(v)モ
ードのみを励振してこのHE11(v)モードがそのま
ま受信端まで伝搬し、この受信端でもHE11(v)モ
ードのみが検出されるのであれば、上記群速度の
差異は何ら問題とならなくなるのであるが、ごく
一般的なステツプ形の単一モードフアイバでは、
内部組織の不均質や或いは変形等によりHE11モ
ードの偏波面がくずれずにそのままの状態で受信
端まで達することは極めてまれである。
このような事から、光フアイバが通常受ける曲
げや捩り等のような変形によつても二つの光フア
イバの偏波面がくずれることなくそのままの状態
が維持されるような構造の単一モードフアイバが
従来から種々発表されて来た。例えば、光フアイ
バの屈折率分布が非軸対称形をなすような内部応
力をこの光フアイバに負荷し、光フアイバの長手
方向に沿う相互に直角な二つの平面内でのテンソ
ル的屈折率の微小な差を与え、これにより直交す
る二つの偏波成分の間に位相速度差を与えて直交
偏波成分の結合を減じるようにした方法や、或い
は更にこの考えを進めてコア部を極端な非軸対称
形、例えば楕円に成形することにより、その長軸
方向と短軸方向とにそれぞれ偏波する成分の位相
速度に差を与え、これら直交偏波成分の結合を減
じるようにした方法等が知られている。一般に、
光フアイバの単位伝送長当りの二つの直交する偏
波成分間の結合係数(光フアイバの変形に伴う曲
げや捩り或いは内部組織のむら等の大きさで決ま
る)をc、これらの間の位相速度(位相定数)の
差を△βとすると、両偏波成分間の結合の強さは
ほぼc/△βに比例する。
このような二つの従来例は、相互に直交する二
つの偏波成分に位相速度差を与えることにより可
及的に単一偏波伝送に近い状態を得ようとしたも
のであり、両偏波が伝送可能なモードを具えてい
る。従つて、前記結合係数cが大きい時、即ち光
フアイバの変形等が大きい場合や或いは光フアイ
バの長さが非常に長い時には、前記位相速度差△
βが比較的大きくても両偏波成分間の結合の強さ
が増加し、終には単一モード伝送の条件から外れ
てしまう虞があつた。
本発明は、このように単一モードフアイバと従
来から呼称されていたものの欠点を解消し、新規
な着想に基づいて原理的に単一偏波単一モードし
か伝送できないようにした光フアイバを提供する
ことを目的とする。
この目的を達成する第一番目の本発明の単一モ
ード伝送用光フアイバにかかる構成は、光の伝送
方向に対して直角な方向の断面において長径と短
径とを有すると共に屈折率分布が一様な対称形状
のコア部と、このコア部の短径方向に当該コア部
を挾んで対向すると共に該コア部の屈折率よりも
低い屈折率の第二クラツド部と、この第二クラツ
ド部と前記コア部とを囲むように環状に形成され
且つ屈折率が当該第二クラツド部の屈折率よりも
高くしかも前記コア部の屈折率よりも低く設定さ
れたクラツド部とを具えたものである。
又、第二番目の本発明の単一モード伝送用光フ
アイバにかかる構成は、光の伝送方向に対して直
角な方向の断面において長径と短径とを有すると
共に中央から周縁側に向けて屈折率が漸次低下す
る対称形状のコア部と、このコア部の短径方向に
当該コア部を挾んで対向すると共に該コア部の周
縁の屈折率以下の屈折率を有する第二クラツド部
と、この第二クラツド部と前記コア部とを囲むよ
うに環状に形成され且つ屈折率が当該第二クラツ
ド部の屈折率よりも高くしかも前記コア部の中央
の屈折率よりも低く設定されたクラツド部とを具
えたものである。
以下、本発明による光フアイバの一実施例につ
いて第1図以下の図面を参照しながら詳細に説明
する。
第一番目の本発明は、その一実施例による光フ
アイバの断面構造を表わす第1図a及びそのB―
B矢視に沿つた屈折率分布を表わす第1図bに示
すように、長径(第1図a中、上下方向寸法)と
短径(第1図a中、左右方向寸法)とを有する非
軸対称形状のコア部1の径径方向両側端には、当
該コア部1をその短径方向に挾んで対向し且つ当
該コア部1を覆うクラツド部2の屈折率n2よりも
低い屈折率ndの第二クラツド部3が形成されて
おり、前記コア部1の屈折率n1はクラツド部2の
屈折率n2よりも高い値となつている。
又、第二番目の本発明は、その一実施例による
光フアイバの断面構造を表わす第2図a及びその
B―B矢視に沿う屈折率分布を表わす第2図bに
示すように、いわゆる二乗分布の屈折率を具えた
断面形状が楕円形のコア部1とこのコア部1を覆
い且つ当該コア部1の屈折率n1よりも低い屈折率
n2のクラツド部2との境界の一部に、コア部1の
短径方向(第2図中、左右方向)にこのコア部1
を挾んで対向し且つクラツド部2の屈折率n2より
も更に低い屈折率ndの第二クラツド部3が形成
されている。
これらの実施例から容易に推定されるように、
本発明はコア部1とクラツド部2とで形成される
屈折率分布中に第二クラツド部3という屈折率n
dの最も小さな溝(谷間)4を形成した技術であ
るが、前記した実施例のうち第二番目の本発明に
関するコア部1の断面形状が楕円である必要性は
なく、長径と短径とを有する対称形状、例えば第
1図aに示したような形状でもよい。
次に、このような構造の光フアイバが単一偏波
単一モードの信号を伝送し得るフアイバであるこ
とを示す。
コア部1の幅(直径)を2a、このコア部1の中
心を原点とする径方向座標をrとし、屈折率分布
をrの関数としてn(r)で表わすと、
r<aの場合
r>aの場合
となる。ここで、ρはコア部1とクラツド部2と
の間の第二クラツド部3の溝4の深さに係わす係
数であり、ρ=1の時は溝4がない従来の光フア
イバの場合、ρが1より大きい時は図面に示すよ
うな溝4がある場合を示す。又、αはコア部1の
屈折率分布の状態を表わすパラメータであり、α
=∞の時に第1図bに示すようにコア部1とクラ
ツド部2との屈折率変化がステツプ状をなし、α
=2の時には第2図bに示すように二乗分布とな
るが、一般にはα乗分布として表わされる。な
お、Δは正規化屈折率差と呼称されるもので、
The present invention relates to an optical fiber for single mode transmission, and is particularly suitable for application to a communication fiber. This is the basic mode of optical fiber for communications.
In order to realize so-called single mode transmission of only the HE 11 mode, the refractive index of the core is n1 , its radius is a, the refractive index of the cladding is n2 , and the wavelength of the transmitted light is When λ and pi are π, it is necessary to satisfy the following condition: 2.405>2a/λ·π√ 2 1 − 2 2 . In this way, optical fibers whose core diameter is designed to be thin to satisfy the above inequality are called single-mode fibers, and because there is no multimode dispersion, pulse delays do not occur, making them ideal for future high-capacity fibers. It is highly anticipated as a communication channel. However, in what is actually called a single mode fiber, there are HE 11 (v) mode in which the electric field is along the vertical direction and HE 11 (H) mode in which the magnetic field is in the horizontal direction. It is common for the rate distribution to have a more or less non-axisymmetric shape such as an ellipse, rather than a perfectly concentric axisymmetric shape. Therefore, the difference in group velocity between the HE 11 (v) mode and the HE 11 (H) mode causes a pulse broadening at the receiving end similar to multimode dispersion, which reduces the transmission capacity of a single mode fiber. This is considered to be one of the main reasons for the limitations on Therefore, if only the HE 11 (v) mode is excited at the transmitting end, and this HE 11 (v) mode propagates as it is to the receiving end, and only the HE 11 (v) mode is detected at the receiving end. , the above-mentioned difference in group velocity is no longer a problem, but in a very common step-type single mode fiber,
It is extremely rare for the HE 11 mode to reach the receiving end without its plane of polarization being distorted due to inhomogeneity or deformation of the internal structure. For this reason, a single mode fiber has a structure in which the planes of polarization of the two optical fibers remain unchanged even under deformation such as bending and twisting that optical fibers normally undergo. Various publications have been published so far. For example, by applying internal stress to an optical fiber so that its refractive index distribution is non-axisymmetric, the tensor-like refractive index in two mutually perpendicular planes along the longitudinal direction of the optical fiber becomes small. A method that reduces the coupling of the orthogonal polarization components by giving a phase velocity difference between the two orthogonal polarization components, or a method that further advances this idea and makes the core part extremely polarized. There is a method that reduces the coupling of these orthogonally polarized components by shaping it into an axially symmetric shape, for example an ellipse, to give a difference in the phase velocity of the polarized components in the major axis direction and the minor axis direction. Are known. in general,
The coupling coefficient between two orthogonal polarization components per unit transmission length of the optical fiber (determined by the degree of bending or twisting due to deformation of the optical fiber, or unevenness of the internal structure, etc.) is c, and the phase velocity between them ( If the difference in phase constant) is Δβ, the strength of the coupling between both polarization components is approximately proportional to c/Δβ. These two conventional examples attempt to obtain a state as close to single polarization transmission as possible by giving a phase velocity difference to two polarization components that are orthogonal to each other. has a mode in which it can be transmitted. Therefore, when the coupling coefficient c is large, that is, when the deformation of the optical fiber is large, or when the length of the optical fiber is very long, the phase velocity difference Δ
Even if β is relatively large, the strength of coupling between both polarization components increases, and there is a risk that the conditions for single mode transmission will eventually be lost. The present invention eliminates the drawbacks of what was conventionally called a single-mode fiber, and provides an optical fiber that, based on a novel idea, can in principle transmit only a single mode of single polarization. The purpose is to The configuration of the first single mode transmission optical fiber of the present invention that achieves this object has a major axis and a minor axis in a cross section perpendicular to the light transmission direction, and has a uniform refractive index distribution. a core portion having a symmetrical shape, a second clad portion that faces the core portion in the minor axis direction of the core portion, and has a refractive index lower than that of the core portion; and a cladding part formed in an annular shape surrounding the core part and having a refractive index higher than the refractive index of the second cladding part and lower than the refractive index of the core part. Further, the configuration of the optical fiber for single mode transmission according to the second aspect of the present invention has a major axis and a minor axis in a cross section perpendicular to the light transmission direction, and is refracted from the center toward the peripheral edge. a symmetrical core portion whose refractive index gradually decreases; a second clad portion that faces the core portion in the minor axis direction thereof and has a refractive index lower than the refractive index of the periphery of the core portion; a cladding portion formed in an annular shape to surround a second cladding portion and the core portion, and having a refractive index higher than that of the second cladding portion and lower than a refractive index at the center of the core portion; It is equipped with the following. Hereinafter, an embodiment of the optical fiber according to the present invention will be described in detail with reference to FIG. 1 and the subsequent drawings. The first aspect of the present invention is shown in FIG. 1A and FIG.
As shown in Fig. 1b, which shows the refractive index distribution along the B arrow direction, a non-containing material having a major axis (vertical dimension in Fig. 1a) and a minor axis (horizontal dimension in Fig. 1a) is shown. A refractive index lower than the refractive index n 2 of the cladding part 2 that faces the core part 1 in its minor axis direction and covers the core part 1 is provided at both ends of the axially symmetrical core part 1 in the radial direction. A second cladding portion 3 of n d is formed, and the refractive index n 1 of the core portion 1 is higher than the refractive index n 2 of the cladding portion 2 . In addition, the second aspect of the present invention is as shown in FIG. 2a showing the cross-sectional structure of an optical fiber according to an embodiment thereof, and FIG. A core portion 1 having an elliptical cross-sectional shape and having a refractive index with a square distribution, and a refractive index that covers this core portion 1 and has a refractive index lower than the refractive index n 1 of the core portion 1.
At a part of the boundary with the cladding part 2 of n 2 , this core part 1
A second cladding part 3 is formed opposite to the second cladding part 3 with a refractive index n d lower than the refractive index n 2 of the cladding part 2 . As can be easily deduced from these examples,
In the present invention, in the refractive index distribution formed by the core portion 1 and the cladding portion 2, a second cladding portion 3 having a refractive index n
Although this is the technique of forming the smallest groove (valley) 4 of d , it is not necessary that the cross-sectional shape of the core part 1 according to the second invention among the above-mentioned embodiments is an ellipse; It may also have a symmetrical shape, for example the shape shown in FIG. 1a. Next, it will be shown that an optical fiber having such a structure is a fiber capable of transmitting a single-polarized single-mode signal. If the width (diameter) of the core part 1 is 2a, the radial coordinate with the center of this core part 1 as the origin is r, and the refractive index distribution is expressed as a function of r by n(r), when r<a If r>a becomes. Here, ρ is a coefficient related to the depth of the groove 4 in the second cladding part 3 between the core part 1 and the cladding part 2, and when ρ=1, it is the case of a conventional optical fiber without the groove 4. , ρ is larger than 1, it means that there is a groove 4 as shown in the drawing. Further, α is a parameter representing the state of the refractive index distribution of the core portion 1, and α
=∞, the refractive index change between the core part 1 and the cladding part 2 takes a step shape as shown in FIG. 1b, and α
When =2, it becomes a square distribution as shown in FIG. 2b, but it is generally expressed as an α-th power distribution. Note that Δ is called the normalized refractive index difference,
【式】に等しい値である。
このような屈折率分布の光フアイバにおいて、
基本モードであるHE11モードに遮断周波数が現
われる条件は、第1図b、第2図bに示すように
溝4に幅がある場合、溝4の幅をtとすると、
ρ>α+2/2・g(t)
で与えられるが、g(t)はt=0の時にg
(0)=1、t=∞の時にg(∞)=∞となるほぼ
単調増加の関数である。従つて、ρの値が一定値
ρ0であつても溝4の幅tによつて遮断周波数が
異なつて来るから、HE11モードに遮断周波数が
現われる条件は、
g(t)=2ρ0/α+2
と書き改められる。
以上のことから、第1図及び第2図に示すよう
に上下方向には第二クラツド部3の溝4を形成せ
ずにこれと直角な左右方向に第二クラツド部3の
溝4を形成することによつて、周波数軸上で単一
偏波単一モード領域が現われる。第3図はこれを
説明するグラフであり、正規化周波数vの関数と
して正規化遅延時間をHE11,TE01,TM01モード
についてそれぞれ表わしたものである。第3図は
第1図及び第2図に示した実施例に対応するが、
第1図a及び第2図a中、左右方向に電界を有す
るHE11モードは第3図中の曲線pに相当し、第
1図a及び第2図a中、上下方向に電界を有する
HE11モードは第3図中の曲線qに相当するか
ら、単一偏波単一モード領域sが実現される。
つまり、このようにして得られる単一偏波単一
モード領域sの範囲内に動作正規化周波数が入る
ように光フアイバを設計することにより、単一偏
波単一モードの光フアイバを得ることができる。
以上、実施例を挙げて詳細に説明したように、
本発明の光フアイバは原理的に単一偏波のHE11
モードしか伝送しないため、極めて安定した単一
偏波単一モード伝送が可能である。従来公知の直
交両偏波モード伝送の疑似単一偏波単一モード光
フアイバにおいては、大きな変形を受けた時に偏
波面がくずれて直交モード成分が発生してしまう
のに対し、本発明による光フアイバはこのような
変形を受けても一方向の偏波成分のHE11モード
のみしか伝送し得ないため、変形によつて発生し
た直交モード成分は直ちに消散し、安定な導波特
性を実現できる。The value is equal to [Formula]. In an optical fiber with such a refractive index distribution,
The condition for the cutoff frequency to appear in the HE 11 mode, which is the basic mode, is that if the groove 4 has a width as shown in Figures 1b and 2b, and the width of the groove 4 is t, then ρ>α+2/2・G(t) is given by g(t), but g(t) is g when t=0.
When (0)=1 and t=∞, g(∞)=∞, which is an almost monotonically increasing function. Therefore, even if the value of ρ is a constant value ρ 0 , the cutoff frequency varies depending on the width t of the groove 4, so the condition for the cutoff frequency to appear in the HE 11 mode is g(t)=2ρ 0 / It can be rewritten as α+2. From the above, as shown in Figs. 1 and 2, the grooves 4 of the second cladding part 3 are not formed in the vertical direction, but the grooves 4 of the second cladding part 3 are formed in the left-right direction at right angles thereto. By doing this, a single polarization single mode region appears on the frequency axis. FIG. 3 is a graph for explaining this, showing the normalized delay time as a function of the normalized frequency v for the HE 11 , TE 01 , and TM 01 modes, respectively. FIG. 3 corresponds to the embodiment shown in FIGS. 1 and 2, but
In Figures 1a and 2a, the HE 11 mode which has an electric field in the horizontal direction corresponds to the curve p in Figure 3, and in Figures 1a and 2a, it has an electric field in the vertical direction.
Since the HE 11 mode corresponds to the curve q in FIG. 3, a single polarization single mode region s is realized. In other words, by designing the optical fiber so that the operating normalized frequency falls within the single-polarization single-mode region s obtained in this way, a single-polarization single-mode optical fiber can be obtained. I can do it. As described above in detail with examples,
In principle, the optical fiber of the present invention has a single polarized HE 11
Because only one mode is transmitted, extremely stable single-polarization single-mode transmission is possible. In the conventionally known quasi-single-polarized single-mode optical fiber that transmits orthogonal dual-polarization modes, the plane of polarization collapses and orthogonal mode components occur when subjected to large deformation, whereas the optical fiber according to the present invention Even if the fiber undergoes such deformation, it can only transmit the HE 11 mode, which is a polarized wave component in one direction, so the orthogonal mode component generated by the deformation immediately dissipates, achieving stable waveguide characteristics. can.
第1図aは第一番目の本発明による単一モード
伝送用光フアイバの一実施例の断面図、第1図b
はそのB―B矢視に沿つた屈折率分布を表わすグ
ラフ、第2図aは第二番目の本発明による単一モ
ード伝送用光フアイバの一実施例の断面図、第2
図bはそのB―B矢視に沿つた屈折率分布を表わ
すグラフであり、第3図は第1図及び第2図に示
した実施例において正規化周波数の関数として正
規化遅延時間をHE11モード、TE01モード、TM01
モードについて表わしたグラフである。
図面中、1はコア部、2はクラツド部、3は第
二クラツド部である。
FIG. 1a is a sectional view of an embodiment of the first optical fiber for single mode transmission according to the present invention, and FIG. 1b
2 is a graph showing the refractive index distribution along the BB arrow direction, FIG.
Figure b is a graph showing the refractive index distribution along the BB arrow direction, and Figure 3 is a graph showing the normalized delay time HE as a function of the normalized frequency in the embodiments shown in Figures 1 and 2. 11 mode, TE 01 mode, TM 01
This is a graph showing modes. In the drawings, 1 is a core portion, 2 is a cladding portion, and 3 is a second cladding portion.
Claims (1)
いて長径と短径とを有すると共に屈折率分布が一
様な対称形状のコア部と、このコア部の短径方向
に当該コア部を挾んで対向すると共に該コア部の
屈折率よりも低い屈折率の第二クラツド部と、こ
の第二クラツド部と前記コア部とを囲むように環
状に形成され且つ屈折率が当該第二クラツド部の
屈折率よりも高くしかも前記コア部の屈折率より
も低く設定されたクラツド部とを具えた単一モー
ド伝送用光フアイバ。 2 光の伝送方向に対して直角な方向の断面にお
いて長径と短径とを有すると共に中央から周縁側
に向けて屈折率が漸次低下する対称形状のコア部
と、このコア部の短径方向に当該コア部を挾んで
対向すると共に該コア部の周縁の屈折率以下の屈
折率を有する第二クラツド部と、この第二クラツ
ド部と前記コア部とを囲むように環状に形成され
且つ屈折率が当該第二クラツド部の屈折率よりも
高くしかも前記コア部の中央の屈折率よりも低く
設定されたクラツド部とを具えた単一モード伝送
用光フアイバ。[Claims] 1. A symmetrical core portion having a major axis and a minor axis in a cross section perpendicular to the light transmission direction and having a uniform refractive index distribution; a second cladding part that faces the core part and has a refractive index lower than that of the core part; An optical fiber for single mode transmission, comprising a cladding portion having a refractive index higher than the refractive index of the second cladding portion and lower than the refractive index of the core portion. 2. A symmetrical core portion having a major axis and a minor axis in a cross section perpendicular to the light transmission direction, and a refractive index gradually decreasing from the center toward the peripheral edge, and a core portion having a symmetrical shape in the minor axis direction of the core portion. a second cladding part that faces the core part and has a refractive index less than or equal to the refractive index of the periphery of the core part; an optical fiber for single mode transmission, comprising a cladding portion having a refractive index higher than that of the second cladding portion and lower than a refractive index at the center of the core portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10294379A JPS5627104A (en) | 1979-08-13 | 1979-08-13 | Construction of optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10294379A JPS5627104A (en) | 1979-08-13 | 1979-08-13 | Construction of optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5627104A JPS5627104A (en) | 1981-03-16 |
JPS6236203B2 true JPS6236203B2 (en) | 1987-08-06 |
Family
ID=14340905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10294379A Granted JPS5627104A (en) | 1979-08-13 | 1979-08-13 | Construction of optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5627104A (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58152606U (en) * | 1982-04-07 | 1983-10-13 | 古河電気工業株式会社 | single polarization optical fiber |
JPS597905A (en) * | 1982-07-06 | 1984-01-17 | Sumitomo Electric Ind Ltd | Structure of optical fiber |
JPS5956239A (en) * | 1982-09-22 | 1984-03-31 | Canon Inc | Optical head |
JPS6019110A (en) * | 1983-07-13 | 1985-01-31 | Nippon Telegr & Teleph Corp <Ntt> | Optical fiber for absolutely single polarization |
JPH0644088B2 (en) * | 1985-05-22 | 1994-06-08 | 株式会社日立製作所 | Polarization-maintaining optical fiber |
JP3088828B2 (en) * | 1992-03-16 | 2000-09-18 | 古河電気工業株式会社 | Optical fiber for connecting waveguide type optical devices |
JP5930316B2 (en) * | 2011-03-31 | 2016-06-08 | 国立大学法人大阪大学 | Optical fiber, fiber laser, and optical fiber manufacturing method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL193330C (en) * | 1978-01-13 | 1999-06-02 | Western Electric Co | Optical waveguide and method for its manufacture. |
-
1979
- 1979-08-13 JP JP10294379A patent/JPS5627104A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5627104A (en) | 1981-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0319319B1 (en) | Single-polarization optical fiber | |
EP0118192B1 (en) | Single-mode single-polarization optical fiber | |
EP0783117B1 (en) | Optical fibers for optical attenuation | |
US6788865B2 (en) | Polarization maintaining optical fiber with improved polarization maintaining property | |
JPH11223734A (en) | Cladding excitation fiber | |
JP2003515781A (en) | Optical waveguides, gratings and lasers with enlarged diameter | |
US6614961B2 (en) | Method of fabricating a fused-type mode-selective directional coupler | |
EP1058137B1 (en) | Method of manufacturing polarization-maintaining optical fiber coupler | |
US5066087A (en) | Optical fiber coupler | |
JPS6236203B2 (en) | ||
US4603943A (en) | Structure of an optical fiber | |
EP0021712B1 (en) | Dielectric waveguides and method of propagating polarized electromagnetic waves and communication apparatus and system using such waveguides and method | |
EP4381332A1 (en) | Photonic lanterns comprising optical fibers having up-down doped claddings | |
JPH0293611A (en) | mode conversion code | |
US4904040A (en) | Optical waveguide coupler for monitoring | |
KR100586226B1 (en) | Optical Fiber Variable Polarization Filter, Polarization-dependent Loss Device and Optical Fiber Polarizer Using Polarization Maintaining Optical Fiber with Elliptical Stress Distribution | |
Hinata et al. | A single-polarization optical fiber of hollow pit type with zero total dispersion at wavelength of 1.55/spl mu/m | |
WO1998034138A2 (en) | Optical device | |
JPH0830774B2 (en) | Elliptical jacket type polarization-maintaining optical fiber | |
JPH0293606A (en) | Structure of mode converter | |
JPH0223306A (en) | polarization maintaining optical fiber | |
JPH0140321B2 (en) | ||
Gambling et al. | A Comparison of Single-Mode and Multimode Fibres for Long-Distance Telecommunications | |
JPH01178904A (en) | Single mode optical fiber directional coupler | |
JPH0644088B2 (en) | Polarization-maintaining optical fiber |