[go: up one dir, main page]

JPS6236175B2 - - Google Patents

Info

Publication number
JPS6236175B2
JPS6236175B2 JP54013956A JP1395679A JPS6236175B2 JP S6236175 B2 JPS6236175 B2 JP S6236175B2 JP 54013956 A JP54013956 A JP 54013956A JP 1395679 A JP1395679 A JP 1395679A JP S6236175 B2 JPS6236175 B2 JP S6236175B2
Authority
JP
Japan
Prior art keywords
sensor
substrate
catalyst
exhaust gas
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54013956A
Other languages
Japanese (ja)
Other versions
JPS55106349A (en
Inventor
Yasuhiro Ootsuka
Hiroshi Shinohara
Shinichi Matsumoto
Hisanobu Furuya
Hiroshi Wakizaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1395679A priority Critical patent/JPS55106349A/en
Publication of JPS55106349A publication Critical patent/JPS55106349A/en
Publication of JPS6236175B2 publication Critical patent/JPS6236175B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 本発明は自動車のエンジン、特にデイーゼルエ
ンジンから排出される排気ガス中の一酸化炭素
(CO)の濃度を検出するためのガスセンサに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas sensor for detecting the concentration of carbon monoxide (CO) in exhaust gas discharged from an automobile engine, particularly a diesel engine.

自動車のエンジンからの排気ガス中に含まれる
有害成分、未燃焼炭化水素(HC)、一酸化炭素
(CO)及び窒素酸化物(NOx)を除去するため
に触媒コンバーター方式やEGR(Exhaust Gas
Recirculation)方式などが採られていることは
既に知られている。しかして、従来これらの除去
手段を有効に作動させるために、排気ガス中の酸
素濃度を酸素センサによつて検知し、この結果に
もとずいてエンジンへの燃料又は空気の供給量の
調整やEGR量の調整などを行つているが、排気
ガス中の酸素量を知つて間接的に有害成分量を求
めるよりは直接有害成分量を測定するほうが確実
であるし、またデイーゼルエンジンからの排気ガ
スのようにその温度が低く、酸素センサの応答性
も悪い時には排気ガス中の他の成分を測定するほ
うがより有利である。しかして、排気ガス中のス
モークの場合には、COの増加がスモークの増加
傾向とほぼ一致しているので、CO濃度を検知す
ればよいこととなる。
Catalytic converter systems and EGR (Exhaust Gas
It is already known that methods such as ``recirculation'' have been adopted. Conventionally, in order to effectively operate these removal means, the oxygen concentration in the exhaust gas is detected by an oxygen sensor, and based on this result, the amount of fuel or air supplied to the engine is adjusted. Although adjustments are made to the amount of EGR, it is more reliable to directly measure the amount of harmful components than to indirectly determine the amount of harmful components by knowing the amount of oxygen in the exhaust gas. When the temperature of the exhaust gas is low and the response of the oxygen sensor is poor, it is more advantageous to measure other components in the exhaust gas. In the case of smoke in exhaust gas, an increase in CO almost coincides with an increase in smoke, so it is sufficient to detect the CO concentration.

本発明者等は種々研究を重ねた結果、排気ガス
中のCO量を測定するために有効なガスセンサを
開発し、ここに提案するものである。
As a result of various studies, the inventors of the present invention have developed a gas sensor effective for measuring the amount of CO in exhaust gas, and hereby propose it.

即ち、本発明ガスセンサは併置した長方形の二
つの腕を基端部で連らねた凹字形状の耐熱性基板
内に発熱体を埋設し、該基板の両腕部表面に抵抗
線を配設し、そして一方の腕部に設けた抵抗線上
に触媒層を形成したことを特徴とするものであ
る。
That is, in the gas sensor of the present invention, a heating element is embedded in a concave-shaped heat-resistant substrate in which two rectangular arms placed side by side are connected at the base end, and resistance wires are arranged on the surface of both arms of the substrate. The device is characterized in that a catalyst layer is formed on the resistance wire provided on one arm.

本発明のガスセンサを加熱温度下に置いたと
き、耐熱性センサ基板の両腕部のうち触媒が担持
された腕部は触媒反応が起き、埋設発熱体が発熱
し、よつてより高温となり、一方触媒が担持され
ない腕部は上記の加熱温度のままにあり、従つて
触媒担持腕部の抵抗線の抵抗値は、触媒非担持腕
部のそれに対し変動するようになる。したがつ
て、例えば両端部の抵抗線を用いてブリツジ回路
を構成し、触媒担持部の抵抗値変動を出力電圧の
変化として検知することにより、当該センサの置
かれた雰囲気のCO濃度を測定することができ
る。本発明のような抵抗式ガスセンサは、精度向
上のため、触媒反応により発熱する部位の熱が対
照とする部位にできるかぎり伝達しないようにす
ることが必要とされる。本発明のガスセンサは、
センサ基板を凹字形状としその一方の腕部のみに
触媒を担持させてなる。すなわち、触媒担持腕部
から触媒非担持腕部へきわめて熱伝導されにくい
形状となつている。従つて、本発明センサは、熱
伝導による悪影響が生じず、検出精度の大変高い
ものとなる。その上、本発明のガスセンサは、凹
字形状故、至極小型なものとなる。
When the gas sensor of the present invention is placed under heating temperature, a catalytic reaction occurs in the arms on which the catalyst is supported among both arms of the heat-resistant sensor substrate, and the embedded heating element generates heat, resulting in a higher temperature. The arm portion on which no catalyst is supported remains at the above-mentioned heating temperature, and therefore the resistance value of the resistance line of the catalyst-supported arm portion begins to vary with respect to that of the arm portion without catalyst support. Therefore, for example, by configuring a bridge circuit using resistance wires at both ends and detecting changes in the resistance value of the catalyst supporting part as changes in the output voltage, the CO concentration in the atmosphere in which the sensor is placed can be measured. be able to. In a resistive gas sensor such as the present invention, in order to improve accuracy, it is necessary to prevent the heat of a portion that generates heat due to a catalytic reaction from being transmitted to a target portion as much as possible. The gas sensor of the present invention includes:
The sensor substrate has a concave shape and a catalyst is supported only on one arm. That is, the shape is such that it is extremely difficult for heat to be conducted from the catalyst-supporting arm to the non-catalyst-supporting arm. Therefore, the sensor of the present invention does not have any adverse effects due to heat conduction and has very high detection accuracy. Furthermore, the gas sensor of the present invention is extremely compact due to its concave shape.

本発明ガスセンサを図面に従つて更に詳しく説
明する。第1図は本発明のセンサ素子Aの正面図
で、1は凹字形状に成形した耐熱性基板を示し、
2は抵抗線、3a,3b及び3cは抵抗線受感部
出力端子を示す。基板1の両腕部1a,1b上に
設ける抵抗線2a,2bは、Pt又はPt―Rhから
成り、感度を良くするために長い細線を多数回往
復させた形に配設する。そして一方の腕部1aに
設けた抵抗線2a上には触媒を担持させ、他方の
腕部1bの抵抗線2b上には触媒を担持させな
い。基板1内、すなわち厚さ方向の中間部に第2
図に示すように基板1の各腕部1a,1bに沿つ
て発熱体5を埋設し、基板1の下端には該発熱体
5の入力端子6a,6bを設ける。そして基板1
の表面には排気ガス中のカーボン析出による短絡
等のトラブルを防止するため、セラミツクコーテ
イング層7を設ける(第3図参照)。このときコ
ーテイング層7は、第4図に拡大断面図で示すよ
うに基板1上に形成した抵抗線2aの上にまず緻
密なセラミツク粒子から成るコート層7aを形成
し、更に該層の上に触媒の担持を容易にするため
の粗な粒子のコート層7bを形成し、その上部に
触媒4を担持させる。触媒を担持させない側の腕
部1bのコーテイング層7は上記のように二層構
造としてもよいが、所望により緻密なコーテイン
グ層のみを形成してもよい。
The gas sensor of the present invention will be explained in more detail with reference to the drawings. FIG. 1 is a front view of the sensor element A of the present invention, where 1 indicates a heat-resistant substrate formed into a concave shape.
Reference numeral 2 indicates a resistance wire, and 3a, 3b, and 3c indicate output terminals of the resistance wire sensing section. The resistance wires 2a and 2b provided on both arms 1a and 1b of the substrate 1 are made of Pt or Pt-Rh, and are arranged in the form of long thin wires that are reciprocated many times to improve sensitivity. A catalyst is supported on the resistance wire 2a provided on one arm 1a, and no catalyst is supported on the resistance wire 2b of the other arm 1b. A second
As shown in the figure, a heating element 5 is embedded along each arm portion 1a, 1b of the substrate 1, and input terminals 6a, 6b of the heating element 5 are provided at the lower end of the substrate 1. and board 1
A ceramic coating layer 7 is provided on the surface of the exhaust gas to prevent troubles such as short circuits caused by carbon precipitation in the exhaust gas (see FIG. 3). At this time, the coating layer 7 is formed by first forming a coating layer 7a made of dense ceramic particles on the resistance wire 2a formed on the substrate 1, as shown in an enlarged cross-sectional view in FIG. A coat layer 7b of coarse particles is formed to facilitate the support of the catalyst, and the catalyst 4 is supported on the coat layer 7b. The coating layer 7 of the arm portion 1b on the side on which the catalyst is not supported may have a two-layer structure as described above, but if desired, only a dense coating layer may be formed.

基板材料としては、熱膨張率の低い耐熱性のも
の、例えばアルミナ、スピネル、フオルステライ
ト、アルミナーシリカ、コージライトなどが用い
られる。また基板中に埋設する発熱体としては白
金(抵抗値1〜2Ω)の使用が好ましい。基板表
面に形成するコート層のうち緻密なコーテイング
層は粒度1μ以下のアルミナを厚さ5〜15μに塗
布することによつて、また粗なコーテイング層は
粒度300〜150メツシユのアルミナを厚さ10〜200
μに塗布することによつて形成する。その上部に
担持させる触媒としては、排気ガス中のCOと良
好に触媒反応を生じるPt又はPt/Rhから成るも
のを使用する。触媒層を形成するには、例えば所
望の触媒金属を担持量3〜10重量%の割合でγ―
アルミナに担持させたものを厚さ20〜300μに形
成させるのが好ましい。
As the substrate material, a heat-resistant material with a low coefficient of thermal expansion, such as alumina, spinel, forsterite, alumina-silica, cordierite, etc., is used. Further, it is preferable to use platinum (resistance value 1 to 2 Ω) as the heating element embedded in the substrate. Among the coating layers formed on the substrate surface, a dense coating layer is formed by coating alumina with a particle size of 1 μm or less to a thickness of 5 to 15 μm, and a coarse coating layer is formed by applying alumina with a particle size of 300 to 150 mesh to a thickness of 10 μm. ~200
It is formed by coating μ. The catalyst supported on the upper part is made of Pt or Pt/Rh, which causes a good catalytic reaction with CO in the exhaust gas. In order to form a catalyst layer, for example, a desired catalyst metal is supported in a proportion of 3 to 10% by weight.
It is preferable to form the material supported on alumina to a thickness of 20 to 300 microns.

上記センサ素子の製造例を簡単に述べると、ま
ずアルミナ(Al2O3)粉末に適当な熱可塑性樹脂
と10容量%程度の溶剤を加え可撓性物質とし、こ
れから前記形状のグリーンシートを作成し、この
シートの表裏面にそれぞれPt又はPt/Rhから成
る抵抗線及び発熱体を印刷、例えばスクリーン印
刷によつて形成した後、これと別な一枚の未印刷
グリーンシートを発熱体印刷面に重ね、加圧して
貼り合わせ、空気中1600℃×1時間焼成してガス
センサ素子を得る。
To briefly describe an example of manufacturing the above sensor element, first, a suitable thermoplastic resin and about 10% by volume of a solvent are added to alumina (Al 2 O 3 ) powder to make it a flexible material, and a green sheet with the above shape is created from this. After printing a resistance wire and a heating element made of Pt or Pt/Rh on the front and back sides of this sheet, for example, by screen printing, another unprinted green sheet is placed on the heating element printed side. They were stacked on top of each other, bonded together under pressure, and fired in air at 1600°C for 1 hour to obtain a gas sensor element.

得られるセンサ素子の寸法は、種々異なるが例
えば概略、巾(基端部)9mm、長さ24mm、厚ま
0.8mm程度の凹字形状板とするとよい。
The dimensions of the resulting sensor element vary, but approximately, for example, the width (base end) is 9 mm, the length is 24 mm, and the thickness is 9 mm.
It is best to use a concave plate with a diameter of about 0.8 mm.

第5図に示すように上記の如く形成した本発明
センサ素子Aは、外周にネジ部を設けた中空円筒
形ハウジング8に挿入し、無機質系接着剤15を
用いて固定する。抵抗線受感部出力端子3に接続
した出力ワイヤー9a,9b,9c及び発熱体入
力端子6に接続した入力ワイヤー10a,10b
をそれぞれセラミツク製碍子管11,12,13
を介してハウジング8から外部へ引き出すが、こ
のとき第6図に示すように、発熱体入力ワイヤー
10a,10b、抵抗線出力ワイヤー9a,9
b,9cはそれぞれ別個に集められ、そしてハウ
ジング8にはセンサ素子Aを保護するために多数
の通気孔14a,14a,…を穿設したセンサカ
バー14を設ける。
As shown in FIG. 5, the sensor element A of the present invention formed as described above is inserted into a hollow cylindrical housing 8 having a threaded portion on the outer periphery and fixed using an inorganic adhesive 15. Output wires 9a, 9b, 9c connected to the resistance wire sensing section output terminal 3 and input wires 10a, 10b connected to the heating element input terminal 6
Ceramic insulator tubes 11, 12, and 13, respectively.
At this time, as shown in FIG. 6, the heating element input wires 10a, 10b, the resistance wire output wires 9a, 9
b, 9c are collected separately, and the housing 8 is provided with a sensor cover 14 having a large number of ventilation holes 14a, 14a, . . . to protect the sensor element A.

使用に際しては、本発明ガスセンサを排気系に
取付け、センサ基板1内に埋設した発熱体5に入
力して触媒反応が容易に生じる温度にまで基板温
度を予じめ上昇させる。発熱体に入力する電力
(W)と基板温度(℃)の関係は、例えば第7図
に示すようである。このとき基板温度はHC及び
COが自燃しない程度の温度としなければならな
い。このようにして、エンジンからの排気ガスを
基板1の両腕部1a,1bに接触させる。このと
きセンサはその基板面が排気ガスの流れに対して
直角方向になるように排気管内に取り付け、両腕
部1a,1bともガスとの接触が同様に行われる
ようにする。排気ガスがセンサ素子と接触する
と、一方の腕部1aには触媒4が担持してあるた
め触媒反応により発熱するが、他方の腕部1bで
は反応は生じないので基準温度のままである。従
つて触媒を有する方の抵抗線2aはもう一方の抵
抗線2bよりも高温となり抵抗値が変化する。こ
のときの基板温度(℃)による抵抗値の変化の一
例を第8図に示す。横軸は50℃における抵抗値
(R50)に対するT度における抵抗値(RTの比で
ある。図からわかるように例えば基板温度が500
℃まで上昇すると低抗値RTも50℃のときの抵抗
値より約2倍に上昇する。
In use, the gas sensor of the present invention is attached to an exhaust system, and the temperature of the substrate is preliminarily raised to a temperature at which a catalytic reaction easily occurs by inputting input to the heating element 5 embedded in the sensor substrate 1. The relationship between the electric power (W) input to the heating element and the substrate temperature (° C.) is as shown in FIG. 7, for example. At this time, the substrate temperature is HC and
The temperature must be such that CO does not self-combust. In this way, the exhaust gas from the engine is brought into contact with both arm portions 1a and 1b of the substrate 1. At this time, the sensor is installed in the exhaust pipe so that its substrate surface is perpendicular to the flow of exhaust gas, so that both arms 1a and 1b come into contact with the gas in the same way. When the exhaust gas comes into contact with the sensor element, heat is generated due to a catalytic reaction since the catalyst 4 is supported on one arm 1a, but no reaction occurs in the other arm 1b, so the temperature remains at the reference temperature. Therefore, the resistance wire 2a having the catalyst becomes hotter than the other resistance wire 2b, and its resistance value changes. An example of a change in resistance value depending on the substrate temperature (° C.) at this time is shown in FIG. The horizontal axis is the ratio of the resistance value (RT) at T degree to the resistance value (R50) at 50°C.As can be seen from the figure, for example, when the substrate temperature is 500°C
When the temperature rises to ℃, the low resistance value RT also increases to about twice the resistance value at 50℃.

本発明ガスセンサの抵抗線は、第9図に示すよ
うなブリツジ回路を形成するように接続され、適
宜可変抵抗を調整して回路の平衡を保つようにし
ておく。そして前記のように排気ガスと接するこ
とによつて触媒反応が起り、その熱を受けて一方
の抵抗値が変化するとブリツジ回路の平衡が破ら
れて出力電圧が変化する。この出力電圧は受感部
出力端子3に接続した出力ワイヤー9を介して引
き出され、センサ出力として検知される。
The resistance wires of the gas sensor of the present invention are connected to form a bridge circuit as shown in FIG. 9, and the variable resistance is appropriately adjusted to maintain the balance of the circuit. Then, as described above, a catalytic reaction occurs upon contact with exhaust gas, and when the resistance value of one side changes due to the heat, the balance of the bridge circuit is broken and the output voltage changes. This output voltage is drawn out via an output wire 9 connected to the sensing section output terminal 3 and detected as a sensor output.

本発明ガスセンサは、例えば排気ガスの一部を
吸気側に戻すEGR方式に利用することができ
る。第10図にその模式図を示すが、デイーゼル
エンジン20の下流の排気管21の途中にバルブ
24を介して別経路22を設け、該経路22の一
端は吸気管23に接続する。エンジン20と別経
路22の開口部との間に本発明ガスセンサAを設
け、該センサAとバルブ24とを別に設けたコン
ピユーター25に接続する。そしてコンピユータ
ー25を介してガスセンサAとバルブ24とを連
動するようにし、排気ガス中のCO量増加をガス
センサAが検知すると、バルブ24が閉じて排気
ガスの再循環する量を減少する。また排気ガス中
のCO濃度低下が検知されればバルブ24は開い
て、排気ガスの一部を吸気管23に再循環する。
CO濃度はスモークの濃度レベルと同一の傾向で
増減するため、本発明ガスセンサを用いてCO濃
度を測定すれば排気ガス中のスモーク低減に役立
つ。それと同時にEGR方式を併用することによ
り排気ガス中のNOxの低減を計ることもでき
る。
The gas sensor of the present invention can be used, for example, in an EGR system in which a portion of exhaust gas is returned to the intake side. As shown in a schematic diagram in FIG. 10, a separate path 22 is provided in the middle of the exhaust pipe 21 downstream of the diesel engine 20 via a valve 24, and one end of the path 22 is connected to the intake pipe 23. The gas sensor A of the present invention is provided between the engine 20 and the opening of the separate path 22, and the sensor A and the valve 24 are connected to a separately provided computer 25. Gas sensor A and valve 24 are linked via computer 25, and when gas sensor A detects an increase in the amount of CO in the exhaust gas, valve 24 closes to reduce the amount of exhaust gas recirculated. Further, if a decrease in the CO concentration in the exhaust gas is detected, the valve 24 opens to recirculate a portion of the exhaust gas to the intake pipe 23.
Since the CO concentration increases and decreases with the same tendency as the smoke concentration level, measuring the CO concentration using the gas sensor of the present invention is useful for reducing smoke in exhaust gas. At the same time, it is also possible to reduce NOx in the exhaust gas by using the EGR method.

上記のように本発明抵抗式ガスセンサは排気ガ
ス中の有害成分減少に非常に有利である。
As described above, the resistance type gas sensor of the present invention is very advantageous in reducing harmful components in exhaust gas.

その上、本発明のガスセンサは、触媒の担持さ
れた腕部の発熱による悪影響が生じず、検出精度
の著しく高いものとなり、しかも小型軽量のセン
サになる。
Furthermore, the gas sensor of the present invention does not have any adverse effects due to the heat generated by the arms carrying the catalyst, has extremely high detection accuracy, and is small and lightweight.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明抵抗式ガスセンサの正面図、第
2図は上記ガスセンサの発熱体部の概形図、第3
図は上記ガスセンサの側面図、第4図は第3図の
付近を示す拡大断面図、第5図は本発明ガスセ
ンサを取付けたところを示す断面図、第6図は上
記第5図の―線断面図、第7図は基板温度と
発熱体電力との関係を示すグラフ、第8図は基板
温度と各温度における抵抗値比の関係を示すグラ
フ、第9図は本発明ガスセンサの抵抗線で形成さ
れるブリツジ回路、第10図は本発明ガスセンサ
を利用したEGR方式の模式図を表わす。 図中、1……基板、2……抵抗線、3……受感
部出力端子、4……触媒、5…発熱体、6……入
力端子、7……コーテイング層、8……ハウジン
グ、9……出力ワイヤー、10……入力ワイヤ
ー、11,12,13……碍子管を表わす。
FIG. 1 is a front view of the resistance type gas sensor of the present invention, FIG. 2 is a schematic diagram of the heating element of the gas sensor, and FIG.
The figure is a side view of the gas sensor, FIG. 4 is an enlarged sectional view showing the vicinity of FIG. 3, FIG. 5 is a sectional view showing the gas sensor of the present invention installed, and FIG. 7 is a graph showing the relationship between substrate temperature and heating element power, FIG. 8 is a graph showing the relationship between substrate temperature and resistance value ratio at each temperature, and FIG. 9 is a resistance line of the gas sensor of the present invention. The bridge circuit formed is shown in FIG. 10, which is a schematic diagram of an EGR system using the gas sensor of the present invention. In the figure, 1... Board, 2... Resistance wire, 3... Sensor output terminal, 4... Catalyst, 5... Heat generating element, 6... Input terminal, 7... Coating layer, 8... Housing, 9... Output wire, 10... Input wire, 11, 12, 13... Insulator tube.

Claims (1)

【特許請求の範囲】[Claims] 1 併置した長方形の二つの腕を基端部で連らね
た凹字形状の耐熱性基板内に発熱体を埋設し、該
基板の両腕部表面に抵抗線を配設し、そして一方
の腕部に設けた抵抗線上に触媒層を形成したこと
を特徴とする抵抗式ガスセンサ。
1. A heating element is embedded in a concave-shaped heat-resistant substrate with two rectangular arms placed side by side connected at the base end, resistance wires are arranged on the surface of both arms of the substrate, and one A resistance type gas sensor characterized in that a catalyst layer is formed on a resistance wire provided on an arm.
JP1395679A 1979-02-09 1979-02-09 Resistance-type gas sensor Granted JPS55106349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1395679A JPS55106349A (en) 1979-02-09 1979-02-09 Resistance-type gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1395679A JPS55106349A (en) 1979-02-09 1979-02-09 Resistance-type gas sensor

Publications (2)

Publication Number Publication Date
JPS55106349A JPS55106349A (en) 1980-08-15
JPS6236175B2 true JPS6236175B2 (en) 1987-08-05

Family

ID=11847654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1395679A Granted JPS55106349A (en) 1979-02-09 1979-02-09 Resistance-type gas sensor

Country Status (1)

Country Link
JP (1) JPS55106349A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334599A (en) * 1976-09-13 1978-03-31 Tokyo Gas Co Ltd Detecting element for co gas

Also Published As

Publication number Publication date
JPS55106349A (en) 1980-08-15

Similar Documents

Publication Publication Date Title
US8182665B2 (en) Sensor element for gas sensors and method for operating same
US5922287A (en) Combustible gas sensor and method for detecting deterioration of catalyst
US7770432B2 (en) Sensor element for particle sensors and method for operating same
US7886578B2 (en) Sensor element for particle sensors and method for operating the sensor element
US5823680A (en) Temperature sensor
US8402813B2 (en) Sensor element of a gas sensor
US7677097B2 (en) Heating resistor-type gas flowmeter
JP4820528B2 (en) Catalyst sensor
EP0001510A1 (en) Gas sensor
JP5606356B2 (en) Particulate matter detector
JP2006266961A (en) Soot sensor
JPH05507988A (en) A method for protecting an exhaust gas purification catalyst and a calorific value sensor for carrying out the method
JP3889568B2 (en) Gas component measuring device
CN1938588B (en) Isolated gas sensor configuration
WO2007114267A1 (en) Catalytic combustion type gas sensor, detection device and compensating device
JP2002116172A (en) Humidity sensor
Bartscherer et al. Improvement of the sensitivity of a conductometric soot sensor by adding a conductive cover layer
JPH11153571A (en) Oxygen sensor element
US4421720A (en) Detector for carbon monoxide concentration of a gas
JPH10502428A (en) Automotive catalyst performance monitoring system
JPS6236175B2 (en)
JPH0248055B2 (en)
JPS6366448A (en) Gas detector
JP3400511B2 (en) Sensor for measuring components of air-fuel mixture and method of manufacturing the same
JP2004325218A (en) Temperature control device, temperature control method, and gas detection device using them