JPS6236014A - Production of hexachlorodisilane - Google Patents
Production of hexachlorodisilaneInfo
- Publication number
- JPS6236014A JPS6236014A JP17312385A JP17312385A JPS6236014A JP S6236014 A JPS6236014 A JP S6236014A JP 17312385 A JP17312385 A JP 17312385A JP 17312385 A JP17312385 A JP 17312385A JP S6236014 A JPS6236014 A JP S6236014A
- Authority
- JP
- Japan
- Prior art keywords
- chlorine
- liquid
- silicide
- reaction
- alkaline earth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- LXEXBJXDGVGRAR-UHFFFAOYSA-N trichloro(trichlorosilyl)silane Chemical compound Cl[Si](Cl)(Cl)[Si](Cl)(Cl)Cl LXEXBJXDGVGRAR-UHFFFAOYSA-N 0.000 title claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000000460 chlorine Substances 0.000 claims abstract description 16
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 16
- 229910021332 silicide Inorganic materials 0.000 claims abstract description 16
- FAPDDOBMIUGHIN-UHFFFAOYSA-K antimony trichloride Chemical compound Cl[Sb](Cl)Cl FAPDDOBMIUGHIN-UHFFFAOYSA-K 0.000 claims abstract description 13
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000007788 liquid Substances 0.000 claims abstract description 11
- VMPVEPPRYRXYNP-UHFFFAOYSA-I antimony(5+);pentachloride Chemical compound Cl[Sb](Cl)(Cl)(Cl)Cl VMPVEPPRYRXYNP-UHFFFAOYSA-I 0.000 claims abstract description 6
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 10
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 10
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 claims description 8
- 229910021346 calcium silicide Inorganic materials 0.000 claims description 7
- YTHCQFKNFVSQBC-UHFFFAOYSA-N magnesium silicide Chemical compound [Mg]=[Si]=[Mg] YTHCQFKNFVSQBC-UHFFFAOYSA-N 0.000 claims description 4
- 229910021338 magnesium silicide Inorganic materials 0.000 claims description 4
- 229910052712 strontium Inorganic materials 0.000 claims description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 2
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 claims 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 21
- 239000006227 byproduct Substances 0.000 abstract description 8
- 239000000047 product Substances 0.000 abstract description 5
- 229910007245 Si2Cl6 Inorganic materials 0.000 abstract description 4
- 238000005292 vacuum distillation Methods 0.000 abstract description 4
- 239000000428 dust Substances 0.000 abstract description 3
- 230000005587 bubbling Effects 0.000 abstract description 2
- 238000004821 distillation Methods 0.000 abstract description 2
- 238000001704 evaporation Methods 0.000 abstract description 2
- 230000008020 evaporation Effects 0.000 abstract description 2
- 238000003828 vacuum filtration Methods 0.000 abstract description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 abstract 1
- 229910021347 alkaline earth silicide Inorganic materials 0.000 abstract 1
- 238000010348 incorporation Methods 0.000 abstract 1
- 238000007670 refining Methods 0.000 abstract 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 10
- 239000012429 reaction media Substances 0.000 description 10
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 6
- DAMJCWMGELCIMI-UHFFFAOYSA-N benzyl n-(2-oxopyrrolidin-3-yl)carbamate Chemical compound C=1C=CC=CC=1COC(=O)NC1CCNC1=O DAMJCWMGELCIMI-UHFFFAOYSA-N 0.000 description 6
- 239000007791 liquid phase Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- -1 lithium aluminum hydride Chemical compound 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- 239000001110 calcium chloride Substances 0.000 description 4
- 229910001628 calcium chloride Inorganic materials 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000005660 chlorination reaction Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000005049 silicon tetrachloride Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- LJCFOYOSGPHIOO-UHFFFAOYSA-N antimony pentoxide Chemical compound O=[Sb](=O)O[Sb](=O)=O LJCFOYOSGPHIOO-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000012280 lithium aluminium hydride Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000005046 Chlorosilane Substances 0.000 description 1
- 229910000519 Ferrosilicon Inorganic materials 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910001617 alkaline earth metal chloride Inorganic materials 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical compound Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Landscapes
- Silicon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
く技術分野〉
本願発明は、ヘキサクロロジシラン(Si2 Cl6)
の新規な製造方法に関する。[Detailed Description of the Invention] Technical Field> The present invention provides hexachlorodisilane (Si2Cl6)
This invention relates to a new manufacturing method.
ヘキサクロロジシランは、集積回路のエピタキシャルシ
リコン層、太陽電池のアモルファスシリコン層、ゼログ
ラフ複写機のアモルファスシリコン感光層、あるいは各
種珪化物セラミックス、等の製造原料として注目されて
いるジシランの製造中間体である。Hexachlorodisilane is an intermediate in the production of disilane, which is attracting attention as a raw material for producing epitaxial silicon layers of integrated circuits, amorphous silicon layers of solar cells, amorphous silicon photosensitive layers of xerographic copying machines, and various silicide ceramics.
上記の各種シリコン層は現在主としてモノシラン(Si
Ha )を原料として用いる化学気相析出法(CVD法
)によって形成されているが、モノシランに代り、ジシ
ランを用いれば、シリコン被膜層の形成速度を飛躍的に
高めることができ、前記の各種装置の生産性を著しく向
上させることが明らかとなり、ジシラン供給の要望が高
まっている。The various silicon layers mentioned above are currently mainly made of monosilane (Si
Although it is formed by a chemical vapor deposition method (CVD method) using Ha ) as a raw material, if disilane is used instead of monosilane, the formation speed of the silicon coating layer can be dramatically increased, and the various devices described above can be used. It has become clear that disilane can significantly improve productivity, and demand for disilane supply is increasing.
〈従来技術とその問題点〉
ジシランの商用製造法としては次の2つが知られている
。<Prior art and its problems> The following two methods of commercially producing disilane are known.
1つは珪化マグネシウムと、塩酸、リン酸等の鉱酸を反
応させる方法である。この方法によればヘキサクロロジ
シランのような中間体を経由することなく、目的のジシ
ランが得られるものの、収率が低く、かつ多量のモノシ
ランが副生ずる難点がある。One method is to react magnesium silicide with a mineral acid such as hydrochloric acid or phosphoric acid. According to this method, the desired disilane can be obtained without passing through an intermediate such as hexachlorodisilane, but there are disadvantages in that the yield is low and a large amount of monosilane is produced as a by-product.
もう1つは、ヘキサクロロジシランを先ず製造し、これ
を水素化リチウムアルミニウム(LIAIH4)と反応
させて水素化してジシランに転化する方法である。この
方法は、モノシランの副生がほとんどなく、ジシラン収
率が比較的高いものの、中間体のへキサクロロジシラン
の有利な製造法がないことが隘路となっている。The other method is to first produce hexachlorodisilane and then react it with lithium aluminum hydride (LIAIH4) to hydrogenate it and convert it to disilane. Although this method produces almost no by-product of monosilane and has a relatively high yield of disilane, the drawback is that there is no advantageous method for producing the intermediate hexachlorodisilane.
ヘキサクロロジシランの製造法としては、珪化カルシウ
ム、珪化マグネシウム、またはフェロシリコンの破砕粒
を加熱して塩素ガスによって塩素化して得る方法が知ら
れているが、四塩化珪素(SiC14)が多量に副生じ
、目的のへキサクロロジシランの収率が低いことが難点
となっている0反応塩度が低いほど、ヘキサクロロジシ
ランの生成率が高いが、200℃以上の温度でないと反
応が進まず、ジシランの生成率はSi原子基準で30%
程度に止っているのが現状である。さらに、塩素化反応
が始まると、反応温度が急上昇し、その結果、四塩化珪
素の生成が増大し、ヘキサクロロジシランの生成量が低
下してしまうので、塩素を不活性ガスで稀釈したり、流
量を制御したりする等の操作が必要である。さらにまた
、副生ずる塩化カルシウムが未反応の原料を覆うために
反応系を機械的に攪拌することが必要となり、さらに塵
埃が発生して生成ガス排出系の閉塞を惹起することも製
造上の重大な問題となっている。A known method for producing hexachlorodisilane is to heat crushed particles of calcium silicide, magnesium silicide, or ferrosilicon and chlorinate them with chlorine gas, but a large amount of silicon tetrachloride (SiC14) is produced as a by-product. The problem is that the yield of the desired hexachlorodisilane is low.The lower the salinity of the reaction, the higher the production rate of hexachlorodisilane, but the reaction does not proceed unless the temperature is 200°C or higher, and the disilane is Generation rate is 30% based on Si atoms
The current situation is that it has stopped at a certain level. Furthermore, once the chlorination reaction begins, the reaction temperature rises rapidly, resulting in an increase in the production of silicon tetrachloride and a decrease in the amount of hexachlorodisilane produced. It is necessary to perform operations such as controlling the Furthermore, it is necessary to mechanically stir the reaction system in order to cover the unreacted raw materials with calcium chloride produced as a by-product, and furthermore, dust is generated and causes clogging of the produced gas exhaust system, which is an important issue in production. This has become a serious problem.
く問題解決に関わる知見〉
前述の従来技術における種々の問題点を回避してヘキサ
クロロジシランを高収率で製造すべく試験研究を重ねた
結果、塩素に不活性な液体中で、三塩化アンチモン、五
塩化アンチモン等の塩化アンチモンの共存化では、アル
カリ土類金属珪化物は塩素ガスと比較的低温で反応し、
高いジシラン生成率を達成できることを見出した。Knowledge related to problem solving〉 As a result of repeated experimental research in order to produce hexachlorodisilane in high yield while avoiding the various problems in the conventional technology mentioned above, we found that antimony trichloride, antimony trichloride, When coexisting with antimony chloride such as antimony pentachloride, the alkaline earth metal silicide reacts with chlorine gas at a relatively low temperature.
It has been found that a high disilane production rate can be achieved.
〈発明の構成〉
本発明は、塩素に対して不活性の液体中で、塩化アンチ
モン化合物の共存下で、アルカリ土類金属珪化物と塩素
を接触させることからなるヘキサクロロジシランの製造
方法を提供する。<Configuration of the Invention> The present invention provides a method for producing hexachlorodisilane, which comprises contacting an alkaline earth metal silicide with chlorine in the presence of an antimony chloride compound in a liquid inert to chlorine. .
本発明方法における出発物質であるアルカリ土類金属珪
化物は、珪化カルシウム、珪化マグネシウム、珪化スト
ロンチウム、珪化バリウム等である。鉄鋼製錬用の珪化
カルシウムが有利に使用できる0反応速度を高めるため
に0.5■履程度、ないしそれ以下の粒度にしておくこ
とが好ましい。The alkaline earth metal silicides which are the starting materials in the method of the present invention include calcium silicide, magnesium silicide, strontium silicide, barium silicide, and the like. Calcium silicide for iron and steel smelting can be advantageously used.In order to increase the reaction rate, the particle size is preferably about 0.5 mm or less.
本発明方法において反応媒体中に共存させる塩化アンチ
モン化合物とは三塩化アンチモンと五塩化アンチモンを
意味する。In the method of the present invention, the antimony chloride compound coexisting in the reaction medium means antimony trichloride and antimony pentachloride.
反応媒体としての塩素に不活性の液体は、沸点が低すぎ
るものでは、反応熱による蒸発が起り、操作が面倒にな
るので、50℃以上の沸点を有するものが好ましく、S
i2016 、 Si3 CIB等のクロロシラン、S
i20160 等のクロロシロキサン、四塩化炭素、さ
らにSnC!4等の液状金属塩化物が使用できる。目的
生成物であるヘキサクロロジシランを使用すれば、別の
物質を使用せず、不純物混入の危険の減少、など有利で
あろう0例えばCCl4を使用すると、ヘキサクロロジ
シラン中に残留するCCl4は水素添加後Si2 H6
との分散が困難である。A liquid that is inert to chlorine as a reaction medium is preferably one with a boiling point of 50°C or higher, since if the boiling point is too low, evaporation will occur due to the reaction heat, making the operation troublesome.
Chlorosilane such as i2016, Si3 CIB, S
Chlorosiloxane such as i20160, carbon tetrachloride, and even SnC! Liquid metal chlorides such as No. 4 can be used. Using hexachlorodisilane, the target product, would have advantages such as not using another substance and reducing the risk of contamination.For example, if CCl4 is used, the CCl4 remaining in hexachlorodisilane will be removed after hydrogenation. Si2 H6
and is difficult to disperse.
反応媒質に添加される塩化アンチモン化合物の量には特
に制限はないが、少ないと反応速度が低く、多いと反応
速度は高くなるが、ヘキサクロロジシランの生成が進行
するとともに、副生ずるアルカリ金属塩化物との相互作
用と考えられるが。There is no particular limit to the amount of antimony chloride compound added to the reaction medium, but if it is small, the reaction rate will be low, and if it is large, the reaction rate will be high. This is thought to be an interaction with
反応媒体の粘性が高まり、塩素ガスの導入や生成物の回
収が困難になるので原料珪化物の5〜40%が適当であ
る。Since the viscosity of the reaction medium increases, making introduction of chlorine gas and recovery of the product difficult, 5 to 40% of the raw material silicide is suitable.
反応操作は次の通りである0反応媒体にアルカリ土類金
属珪化物を加え、好ましくは均一に反応が進行するよう
に、懸濁状態にしておく0反応媒体に対するアルカリ土
類金属珪化物の量比は副生ずる沈澱状の塩化カルシウム
の量を考慮して、体積比で、10:4以上が好ましい、
多すぎると反応系が泥状となり、塩素の導入が困難にな
る。The reaction operation is as follows: Add the alkaline earth metal silicide to the reaction medium and keep it in a suspended state so that the reaction preferably proceeds uniformly.The amount of alkaline earth metal silicide relative to the reaction medium. The ratio is preferably 10:4 or more by volume, taking into account the amount of precipitated calcium chloride produced as a by-product.
If the amount is too large, the reaction system becomes muddy, making it difficult to introduce chlorine.
アルカリ土類金属を加えた反応媒体にバブリング等によ
り塩素を導入する。導入速度は排ガス系に塩素がほとん
ど検出されないような速度が好ましく、経験的に決定す
ることができる6反応所要時間は原料の量、原料の粒度
、塩化アンチモン化合物の添加量、温度、塩素の導入速
度等によって変動し、後述の実施例を参考に、あるいは
経験的に決定することはできる。Chlorine is introduced into the reaction medium to which alkaline earth metal has been added by bubbling or the like. The introduction rate is preferably such that almost no chlorine is detected in the exhaust gas system, and can be determined empirically.6 The reaction time required depends on the amount of raw materials, the particle size of the raw materials, the amount of antimony chloride compound added, the temperature, and the introduction of chlorine. It varies depending on the speed, etc., and can be determined with reference to the examples described later or empirically.
ヘキサクロロジシランを含む生成ハロシランは常圧蒸留
、減圧蒸留ないし濾過によって、アルカリ土類金属塩化
物等の副生物および塩化アンチモンから分離され、ざら
に精留によって高純度製品として回収される。The produced halosilane, including hexachlorodisilane, is separated from by-products such as alkaline earth metal chlorides and antimony chloride by atmospheric distillation, vacuum distillation, or filtration, and recovered as a high-purity product by rough rectification.
以上の操作手順中1反応媒体中に塩化アンチモン化合物
を加える操作とアルカリ土類金属珪化物を加える操作は
順序を逆にしてもよい。In the above operating procedure, the order of adding the antimony chloride compound and adding the alkaline earth metal silicide to the reaction medium may be reversed.
本発明方法の反応の機構は、いまだ明らかではなく、ま
た、本発明は特定の理論によって拘束されるものではな
いが、次のように推定される。The reaction mechanism of the method of the present invention is not yet clear, and although the present invention is not bound by any particular theory, it is presumed as follows.
珪化カルシウムと五塩化アンチモンについては。As for calcium silicide and antimony pentachloride.
まず、
2SiCa +!1isbc+5−+5i2c16+2
CaC12−? 5SbC13なる反応によって、アル
カリ土類金属珪化物の塩素化に寄与し、生成する三塩化
アンチモンが5bC13+ Cl2−→sbc+5
の反応によって五酸化アンチモンに再生され、三塩化ア
ンチモンについては、上記の塩素化反応によって5bC
I3が5bC15となり、Si2 C16の生成反応に
寄与するものと考えられる。First, 2SiCa+! 1isbc+5-+5i2c16+2
CaC12-? The reaction 5SbC13 contributes to the chlorination of alkaline earth metal silicides, and the generated antimony trichloride is regenerated into antimony pentoxide by the reaction 5bC13+ Cl2-→sbc+5. Antimony trichloride undergoes the chlorination reaction described above. by 5bC
It is thought that I3 becomes 5bC15 and contributes to the Si2 C16 production reaction.
〈実施例〉
以下実施例によって本発明方法を具体的に例示するが0
本発明はこれら実施例にのみ限定されるものではない。<Example> The method of the present invention will be specifically illustrated by the following example.
The present invention is not limited only to these examples.
実施例1
容量2fLの、塩化カルシウム管つき水冷還流冷却器と
攪拌装置を備えた三ロフラスコ(10は閉鎖)にヘキサ
クロロシロキサンIJIと、五塩化アンチモン30gを
入れ、さらに珪化カルシウム粗粉(粒径0.1−0.5
mm)100gを加え、後者を懸濁状に保つために、攪
拌を続け、液中に塩素ガスを300 +*l/ sin
の速度で導入した。Example 1 Hexachlorosiloxane IJI and 30 g of antimony pentachloride were placed in a 2 fl flask (10 was closed) equipped with a water-cooled reflux condenser with a calcium chloride tube and a stirring device, and calcium silicide coarse powder (particle size 0 .1-0.5
100 g of mm) was added, and in order to keep the latter in suspension, stirring was continued and chlorine gas was added to the liquid at a rate of 300 + * l/sin.
It was introduced at a speed of
液温は塩素導入前には22℃であったが、反応の開始と
ともに上昇し、最高41℃になった。6時間後に暗灰色
の珪化カルシウム粉末がほとんど目視されなくなったが
、さらに30分間塩素ガスの導入を続けた後、減圧蒸留
により、副生塩化カルシウムと液相を分離し、液相をガ
スクロマトグラフで分析した。液相には5iCIa :
120 g 。The liquid temperature was 22°C before the introduction of chlorine, but rose with the start of the reaction and reached a maximum of 41°C. After 6 hours, the dark gray calcium silicide powder was almost no longer visible, but after continuing to introduce chlorine gas for another 30 minutes, the by-product calcium chloride and the liquid phase were separated by vacuum distillation, and the liquid phase was analyzed using a gas chromatograph. analyzed. 5iCIa in the liquid phase:
120g.
Si2 Cl6 : 77 g、 Si3 CIB :
1B gが含まれることが分った。Si2 Cl6: 77 g, Si3 CIB:
It was found that it contained 1Bg.
このように、本発明方法によれば、従来5iCaと塩素
の乾式反応で問題であった反応帯域の温度調節、粉塵の
処理等にわずられされることなく、Siの利用率9B%
、S+2016の生成率38%を達成できた。さらに、
生成物を含む液相を精留して、純度89.7%のへキサ
クロロジシラン87g(Si基準で実収率30)を得た
。As described above, according to the method of the present invention, the Si utilization rate is 9B% without having to worry about temperature control in the reaction zone, dust treatment, etc., which were problems in the conventional dry reaction of 5iCa and chlorine.
, we were able to achieve a production rate of 38% for S+2016. moreover,
The liquid phase containing the product was rectified to obtain 87 g of hexachlorodisilane with a purity of 89.7% (actual yield 30 based on Si).
実施例2〜4
容量11の、実施例1で使用したものと同様のフラスコ
で、添加物として種々の量の三塩化アンチモンと種々の
反応媒体800gを用い、種々の珪化物50gを加え、
塩素ガスを30+17w1nの速度で導入し、珪化物の
粒子が目視できなくなってから、なお30分間導入を続
けた後、減圧蒸留によって液相を分離し、該液相の精留
によりヘキサクロロジシランを得た。結果は次の表にま
とめである。ただし、実施例2においては、はじめに反
応媒体として加えたヘキサクロロジシランの量を差し引
いて生成へキサクロロジシランの量とした。Examples 2-4 In a flask similar to that used in Example 1, with a capacity of 11, with various amounts of antimony trichloride as additives and 800 g of various reaction media, 50 g of various silicides were added,
Chlorine gas was introduced at a rate of 30 + 17w1n, and after the silicide particles were no longer visible, the introduction was continued for 30 minutes, the liquid phase was separated by vacuum distillation, and hexachlorodisilane was obtained by rectification of the liquid phase. Ta. The results are summarized in the table below. However, in Example 2, the amount of hexachlorodisilane produced was obtained by subtracting the amount of hexachlorodisilane initially added as a reaction medium.
Claims (1)
合物の共存下で、アルカリ土類金属珪化物と塩素を接触
させることからなるヘキサクロロジシランの製造方法。 2、特許請求の範囲第1項記載の方法であって、アルカ
リ土類金属として、珪化カルシウム、珪化マグネシウム
、または珪化ストロンチウムを使用する方法。 3、特許請求の範囲第1項記載の方法であって、塩化ア
ンチモンとして五塩化アンチモンを使用する方法。 4、特許請求の範囲第1項記載の方法であって、塩素に
対して不活性の液体として、ヘキサクロロシロキサン、
ヘキサクロロジシラン、四塩化錫または四塩化炭素を使
用する方法。[Claims] 1. A method for producing hexachlorodisilane, which comprises bringing an alkaline earth metal silicide into contact with chlorine in the presence of an antimony chloride compound in a liquid inert to chlorine. 2. The method according to claim 1, wherein calcium silicide, magnesium silicide, or strontium silicide is used as the alkaline earth metal. 3. The method according to claim 1, wherein antimony pentachloride is used as antimony chloride. 4. The method according to claim 1, wherein the liquid inert to chlorine is hexachlorosiloxane,
Method using hexachlorodisilane, tin tetrachloride or carbon tetrachloride.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17312385A JPS6236014A (en) | 1985-08-08 | 1985-08-08 | Production of hexachlorodisilane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17312385A JPS6236014A (en) | 1985-08-08 | 1985-08-08 | Production of hexachlorodisilane |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6236014A true JPS6236014A (en) | 1987-02-17 |
Family
ID=15954559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17312385A Pending JPS6236014A (en) | 1985-08-08 | 1985-08-08 | Production of hexachlorodisilane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6236014A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017007908A (en) * | 2015-06-24 | 2017-01-12 | 株式会社豊田自動織機 | Silicon material and manufacturing method thereof, and secondary battery possessing silicon material |
-
1985
- 1985-08-08 JP JP17312385A patent/JPS6236014A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017007908A (en) * | 2015-06-24 | 2017-01-12 | 株式会社豊田自動織機 | Silicon material and manufacturing method thereof, and secondary battery possessing silicon material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4276424A (en) | Methods for the production of organic polysilanes | |
US2488487A (en) | Production of alkyl silicon halides | |
US2406605A (en) | Hydrogenation of halogenosilanes | |
CA1228220A (en) | Process for the production of silicon | |
US3057686A (en) | Process for preparing silanes | |
JPH0264006A (en) | Production of solar silicon | |
JP2005514312A (en) | Method for producing amorphous silicon and / or organohalogensilane obtained therefrom | |
JPH0222004B2 (en) | ||
JPH07315829A (en) | Recovering method for chloride in vent gas stram | |
JPS6236014A (en) | Production of hexachlorodisilane | |
US2877254A (en) | Process for preparing organohalosilanes | |
JPS6053093B2 (en) | How to recover titanium from slag | |
JPS63233007A (en) | Manufacturing method of chloropolysilane | |
US5239102A (en) | Method for making organohalosilanes | |
JPH0463803B2 (en) | ||
US2753256A (en) | Method of producing titanium | |
JPH0643244B2 (en) | Method for producing silicon tetrachloride | |
CN102808091A (en) | Method for preparing high-purity titanium | |
KR20070087595A (en) | Process for producing elemental halides | |
JP2004359979A (en) | Reduction refining method of high purity metal from vaporizable metallic compound by magnetron capacitive coupling type plasma, and device therefor | |
Newnham | The Separation of Zirconium and Hafnium by Differential Reduction of their Tetrachlorides | |
JPS61500661A (en) | Aluminum chloride purification method | |
US4704264A (en) | Process for production of silane | |
JP2535525B2 (en) | Production method of silane | |
JPH03218917A (en) | Production of boron trichloride |