JPS6235995B2 - - Google Patents
Info
- Publication number
- JPS6235995B2 JPS6235995B2 JP58063079A JP6307983A JPS6235995B2 JP S6235995 B2 JPS6235995 B2 JP S6235995B2 JP 58063079 A JP58063079 A JP 58063079A JP 6307983 A JP6307983 A JP 6307983A JP S6235995 B2 JPS6235995 B2 JP S6235995B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- powder
- nitrogen
- reaction
- metal silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000843 powder Substances 0.000 claims description 16
- 239000000919 ceramic Substances 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 8
- 238000010304 firing Methods 0.000 claims description 7
- 239000012298 atmosphere Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 3
- 230000035699 permeability Effects 0.000 claims 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 238000000465 moulding Methods 0.000 description 6
- 239000011856 silicon-based particle Substances 0.000 description 6
- 238000005245 sintering Methods 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000005121 nitriding Methods 0.000 description 4
- 229910052582 BN Inorganic materials 0.000 description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000011863 silicon-based powder Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- UMVBXBACMIOFDO-UHFFFAOYSA-N [N].[Si] Chemical compound [N].[Si] UMVBXBACMIOFDO-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000003541 multi-stage reaction Methods 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
Landscapes
- Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
Description
本発明は、反応焼結を利用したセラミツクスの
製造方法に関するものである。
反応焼結法は、たとえば金属ケイ素粒を含む成
形体を窒素気流中で焼成し、金属ケイ素が窒化ケ
イ素となるときに生ずる結合力を利用して強固な
セラミツクスを得る方法であつて、通常の自己焼
結法と異なり、比較的低温で焼結が可能であるこ
と、焼成温度よりも高い温度でも使用に耐えるこ
と、金属ケイ素等の粒度配合などによつて種々の
性質のものが得られることなどの利点があるため
工業的に広く利用されている。
しかし乍ら従来の方法では、金属ケイ素粒また
は金属ケイ素粒含有の紛粒体に、バインダー等を
所要量添加して混練したものを、型に充填・成形
し離型するとか、または押出し法により成形して
所謂グリーン成形体をつくり、これを反応焼結せ
しめているが、何れも複雑な形状のものの製造が
困難であるばかりでなく、グリーン成形体の変形
あるいはそれに内在している歪による焼結体の変
形などの問題もあり、さらに、縦横寸法比の大き
いものの場合は、充分な強度が得られないなどの
欠点があつた。
本願発明者らは、通気性の炭素質の型に金属ケ
イ素粒などを充填し、これを窒素気流中で焼成す
ると、型の気孔からの窒素ガスにより、型内で容
易に焼結反応が行なわれることを見出だし、本発
明を完成した。
本発明の一つの目的は、特に複雑な形状あるい
は寸法比の大きい場合でも、高い寸法精度と強度
を有する反応焼結体を効率良く製造する方法を提
供することであり、他の目的は、炭素質の型自体
をセラミツクスの被覆材として機能を発揮せしめ
る複合形セラミツクスの製造方法を提供すること
に在る。
本発明の要旨は、通気性を有する炭素質成形型
に金属ケイ素粒または金属ケイ素粒を含む粉粒体
を充填し、次いで該粉粒体が充填された該成形型
を窒素雰囲気中または窒素を含有する不活性雰囲
気中(ここで不活性とは、酸素、二酸化炭素など
の酸化性気体が実質的に無い状態をいう)で焼成
することを特徴とする反応焼結セラミツクスの製
造法に在る。
本発明に用いられる炭素質成形型は、窒素が成
形型の壁を通して供給されるため、該型の気孔率
は20〜42%の範囲に在ることが好ましく、20%以
下では窒素の供給が困難となり焼結に長時間を要
し、極端な場合には金属ケイ素のまま残り、反応
焼結体が得られず、また42%を超えると粉粒体と
接する型表面の平滑性が保たれなくなつたり、気
孔への粉粒の浸入が起き好ましくない。炭素質材
料のうちで黒鉛は特に加工性が良好なため寸法精
度の高い任意の形状の型が容易に入手できるなど
の利点がある。
なお、使用する炭素質の型と粉粒体の界面にお
いて、焼成により大きな結合力を生ずるので、こ
の性質を利用して型そのものを反応焼結体の被覆
材とした複合形セラミツクスを得ることができ
る。一方、反応焼結体そのものを目的の製品とす
るため型の剥離(必要により分割型とすれば良
い)が必要な場合には、粉粒体と接する型の内面
に紙を介在させるとか、窒化ホウ素粉を塗布する
とかの手段を採れば離型は容易となり、型の再利
用が図れる。また複雑な形状で離型が困難な場合
には、酸化雰囲気中で数百度に加熱すれば、炭素
質型は容易に消滅し、反応焼結体が健全な状態で
得られる。
利用する粉粒体としては、金属ケイ素単味、あ
るいは金属ケイ素と炭化ケイ素、窒素ケイ素ある
いはアルミナとの混合物など、目的に応じ金属ケ
イ素に他の粉粒体を混合することができる。また
それらの粒度、配合量などは、目的とする製品の
性質に適合するよう適宜選択すれば良い。
粉粒体を型に充填する場合、種々な方法を採る
ことができるが、複雑な形状の型に在つては振動
成形法によることが好ましく、黒鉛質の型はその
壁面と粉粒体との間の摩擦が小さいので、このよ
うな際には特に有利である。なお、粉粒体の充填
に先立つて、または途中で型の内部に同種または
異種のセラミツク成形体を挿入すれば、種々の複
合形反応焼結セラミツクスが得られる。
充填後、型ごと窒化焼成炉内に装入し窒素また
は窒素含有不活性雰囲気中で加熱昇温を行なう。
加熱は、室温から1000℃までは比較的速い50〜
150℃/hrの昇温速度で、窒化反応が開始する
1000℃を超えて1400℃までは比較的遅い5〜50
℃/hrの昇温速度で加熱することが好ましくその
後、製品によつて異なるが最高温度で10〜200時
間保持して充分な窒化反応を起させる。
窒化焼成炉内に送入されるガスは、反応成分で
ある窒素を含んだ不活性のものが用いられ、窒素
ガス単独、酸素や二酸化炭素を除去した燃焼廃ガ
ス等を用いることができる。
以上述べた如く、本発明方法によれば、成形後
離型することなく焼結工程に移行されるため、保
形に配慮する必要がなく、結合剤も一般に不要な
ので作業が単純化され、生産性が向上すると共に
複雑な形状でも寸法精度の良いセラミツク成形物
が得られる。
以下、本発明を実施例により具体的に説明す
る。
実施例 1〜5
金属ケイ素粒および炭化ケイ素粒を、それぞれ
粉砕・分級し、第1表に示した配合の粉粒体を用
意し、内面に窒化ホウ素粉を塗付した内径600mm
外径100mm長さ300mmの円筒形黒鉛型(気孔率28
%)に振動成形機を用いて充填した。
成形品を離型することなく型と共に焼成炉に装
入し、窒素ガス雰囲気中で、1000℃までは120
℃/hr、1000℃を超えて1400℃までは10℃/hrの
速度で昇温し、以後その温度で80時間保持した。
冷却後離型し、得られた棒状反応焼結体の物理的
性質を測定した。
比較例 1〜2
実施例1および4と同じ配合の粉粒体に、結合
剤としてメチルセルローズを0.4重量%添加(水
溶液で)して捏合し、押出し成形により直径60mm
の棒状体を得た。
該棒状体を実施例1〜5と同じ方法で焼成し、
得られた反応焼結体の物理的性質を測定した。
以上の結果をまとめて、同じく第1表に示す。
The present invention relates to a method for manufacturing ceramics using reactive sintering. The reaction sintering method is a method for obtaining strong ceramics by firing a compact containing metallic silicon particles in a nitrogen stream and utilizing the bonding force generated when metallic silicon turns into silicon nitride. Unlike the self-sintering method, it is possible to sinter at a relatively low temperature, it can withstand use even at temperatures higher than the firing temperature, and products with various properties can be obtained by changing the particle size of silicon metal etc. It is widely used industrially due to its advantages such as: However, in the conventional method, the required amount of binder etc. is added to metal silicon particles or powder containing metal silicon particles and kneaded, which is then filled into a mold, molded and released, or by extrusion method. The so-called green molded body is formed by molding, and this is then subjected to reaction sintering, but not only is it difficult to manufacture products with complex shapes, but the green molded body may be deformed or sintered due to inherent distortion. There are also problems such as deformation of the body, and furthermore, in the case of a material having a large aspect ratio, there is a drawback that sufficient strength cannot be obtained. The inventors of the present application have found that when a breathable carbonaceous mold is filled with metallic silicon particles and the like is fired in a nitrogen stream, a sintering reaction easily takes place within the mold due to the nitrogen gas from the pores of the mold. The present invention was completed based on this discovery. One object of the present invention is to provide a method for efficiently manufacturing a reaction sintered body having high dimensional accuracy and strength even when the shape is particularly complex or the size ratio is large. The object of the present invention is to provide a method for manufacturing composite ceramics in which the mold itself functions as a covering material for ceramics. The gist of the present invention is to fill an air-permeable carbonaceous mold with metal silicon particles or powder containing metal silicon particles, and then place the mold filled with the powder in a nitrogen atmosphere or under nitrogen. A method for producing reactive sintered ceramics characterized by firing in an inert atmosphere (here, inert refers to a state substantially free of oxidizing gases such as oxygen and carbon dioxide) containing . In the carbonaceous mold used in the present invention, since nitrogen is supplied through the mold wall, the porosity of the mold is preferably in the range of 20 to 42%, and if it is less than 20%, nitrogen cannot be supplied. It becomes difficult to sinter, requiring a long time to sinter, and in extreme cases, metallic silicon remains, making it impossible to obtain a reactive sintered body, and if it exceeds 42%, the smoothness of the mold surface in contact with the powder cannot be maintained. This is undesirable as it may run out or particles may enter the pores. Among carbonaceous materials, graphite has particularly good workability, so it has the advantage that molds of arbitrary shapes with high dimensional accuracy can be easily obtained. Furthermore, since a large bonding force is generated by firing at the interface between the carbonaceous mold and the granular material used, it is possible to utilize this property to obtain composite ceramics using the mold itself as a covering material for the reaction sintered body. can. On the other hand, if it is necessary to separate the mold (a split mold may be used if necessary) in order to make the reaction sintered body into the desired product, paper may be interposed on the inner surface of the mold in contact with the powder, or nitrided If a method such as applying boron powder is used, the mold can be easily released and the mold can be reused. If the shape is complex and it is difficult to release from the mold, the carbonaceous type can be easily eliminated by heating to several hundred degrees in an oxidizing atmosphere, and a reaction sintered body can be obtained in a healthy state. The powder to be used may be a single metal silicon, or a mixture of metal silicon and silicon carbide, nitrogen silicon, or alumina, and other powders may be mixed with metal silicon depending on the purpose. Further, their particle size, blending amount, etc. may be appropriately selected to suit the properties of the intended product. When filling a mold with powder or granules, various methods can be used, but it is preferable to use the vibration molding method for molds with complex shapes. This is particularly advantageous in such cases since the friction between the two is small. If a ceramic molded body of the same type or a different type is inserted into the mold before or during the filling of the powder, various composite reaction sintered ceramics can be obtained. After filling, the mold is placed in a nitriding furnace and heated to a high temperature in nitrogen or a nitrogen-containing inert atmosphere. Heating is relatively fast from room temperature to 1000℃ 50~
The nitriding reaction starts at a heating rate of 150℃/hr.
Relatively slow 5-50 above 1000℃ and up to 1400℃
It is preferable to heat at a rate of temperature increase of °C/hr, and then maintain the maximum temperature for 10 to 200 hours, depending on the product, to cause a sufficient nitriding reaction. The gas fed into the nitriding furnace is an inert gas containing nitrogen as a reaction component, and nitrogen gas alone, combustion waste gas from which oxygen and carbon dioxide have been removed, etc. can be used. As described above, according to the method of the present invention, the sintering process is carried out without releasing the mold after molding, so there is no need to take shape retention into account, and binders are generally not required, simplifying the work and production. In addition to improving the properties, ceramic molded products with good dimensional accuracy can be obtained even in complex shapes. Hereinafter, the present invention will be specifically explained with reference to Examples. Examples 1 to 5 Metal silicon grains and silicon carbide grains were crushed and classified, respectively, and powders with the composition shown in Table 1 were prepared, and boron nitride powder was coated on the inner surface of the powder with an inner diameter of 600 mm.
Cylindrical graphite type with outer diameter 100mm and length 300mm (porosity 28
%) using a vibration molding machine. The molded product is charged into a firing furnace together with the mold without being released from the mold, and heated at 120°C up to 1000°C in a nitrogen gas atmosphere.
The temperature was increased at a rate of 10°C/hr from 1000°C to 1400°C, and then held at that temperature for 80 hours.
After cooling, the mold was released, and the physical properties of the obtained rod-shaped reaction sintered body were measured. Comparative Examples 1 to 2 To the powder and granules having the same composition as in Examples 1 and 4, 0.4% by weight of methyl cellulose was added as a binder (in an aqueous solution), kneaded, and extruded to form a diameter of 60 mm.
A rod-shaped body was obtained. The rod-shaped body was fired in the same manner as in Examples 1 to 5,
The physical properties of the obtained reaction sintered body were measured. The above results are summarized and also shown in Table 1.
【表】
実施例 6
気孔率26%、肉厚5mm、外径がそれぞれ90mmと
40mmで長さが400mmの2本の黒鉛管を用意し、太
い方の内面および細い方の外面に窒化ホウ素粉を
塗布して2重に直立させ、底部に閉塞栓を設けて
二つの管の中間部に実施例1と同じ粉粒体を振動
成形機により充填した。
これを型と共に実施例1〜5と同様に焼成した
後、離型し円筒の反応焼結体を得た。このものの
物理的性質は、実施例1とほぼ同様であつた。
比較例 3
比較例1と同じ捏合物を用いて外径80mm、そし
て肉厚20mmの円筒体を押出し成形したが、グリー
ン成形体の保形が極めて困難であると共に、得ら
れた焼結体の形状は不良で、圧縮強さも実施例6
と比較して極めて低かつた。
実施例 7
細い方の黒鉛管の外面に窒化ホウ素粉を塗布し
なかつたことを除いては、実施例6と同様に成形
および焼成を行なつた。
内面に黒鉛管が強固に結合した円筒形の複合形
セラミツクスが得られた。[Table] Example 6 Porosity: 26%, wall thickness: 5 mm, outer diameter: 90 mm.
Prepare two graphite tubes with a length of 40 mm and a length of 400 mm, apply boron nitride powder to the inner surface of the thicker one and the outer surface of the thinner one, stand them upright twice, and install a plug at the bottom to connect the two tubes. The same powder as in Example 1 was filled into the middle part using a vibration molding machine. This was fired together with a mold in the same manner as in Examples 1 to 5, and then released from the mold to obtain a cylindrical reaction sintered body. The physical properties of this product were almost the same as in Example 1. Comparative Example 3 A cylindrical body with an outer diameter of 80 mm and a wall thickness of 20 mm was extruded using the same mixture as in Comparative Example 1, but it was extremely difficult to maintain the shape of the green molded body, and the resulting sintered body The shape is poor and the compressive strength is similar to Example 6.
It was extremely low compared to Example 7 Molding and firing were carried out in the same manner as in Example 6, except that boron nitride powder was not applied to the outer surface of the thinner graphite tube. A cylindrical composite ceramic with graphite tubes firmly bonded to the inner surface was obtained.
Claims (1)
または金属ケイ素粒を含む粉粒体を充填し、次い
で該粉粒体が充填された該成形型を窒素雰囲気中
または窒素を含有する不活性雰囲気中で焼成する
ことを特徴とする反応焼結セラミツクスの製造
法。 2 炭素質成形型の気孔率が20〜42%であること
を特徴とする特許請求の範囲第1項記載の反応焼
結セラミツクスの製造法。[Scope of Claims] 1. A carbonaceous mold having air permeability is filled with metal silicon grains or a powder material containing metal silicon grains, and then the mold filled with the powder material is placed in a nitrogen atmosphere or in a nitrogen atmosphere. A method for producing reactive sintered ceramics characterized by firing in an inert atmosphere containing. 2. The method for producing reactive sintered ceramics according to claim 1, wherein the carbonaceous mold has a porosity of 20 to 42%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58063079A JPS59190275A (en) | 1983-04-12 | 1983-04-12 | Manufacturing method for reactive sintered ceramics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58063079A JPS59190275A (en) | 1983-04-12 | 1983-04-12 | Manufacturing method for reactive sintered ceramics |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59190275A JPS59190275A (en) | 1984-10-29 |
JPS6235995B2 true JPS6235995B2 (en) | 1987-08-05 |
Family
ID=13218966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58063079A Granted JPS59190275A (en) | 1983-04-12 | 1983-04-12 | Manufacturing method for reactive sintered ceramics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59190275A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5099658B2 (en) * | 2005-04-28 | 2012-12-19 | 独立行政法人産業技術総合研究所 | Manufacturing method of large thin ceramic body |
NO334256B1 (en) * | 2009-04-23 | 2014-01-20 | Saint Gobain Ind Keramik Rodental Gmbh | Process for the preparation of ceramic mold part of reaction-bound silicon nitride, apparatus and use thereof |
CN109721381B (en) * | 2019-02-20 | 2021-03-30 | 中国人民解放军海军工程大学 | Preparation method of silicon nitride shell reinforced silicon nitride foam ceramics |
-
1983
- 1983-04-12 JP JP58063079A patent/JPS59190275A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59190275A (en) | 1984-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3839540A (en) | Method of manufacturing silicon nitride products | |
JPS6256107B2 (en) | ||
EP2634160B1 (en) | Volume-change resistant silicon oxy-nitride or silicon oxy-nitride and silicon nitride bonded silicon carbide refractory | |
JPS6047225B2 (en) | Manufacturing method for densified silicon products | |
JPH0768066B2 (en) | Heat resistant composite and method for producing the same | |
US4419161A (en) | Method of producing composite ceramic articles | |
US4564601A (en) | Shaped polycrystalline silicon carbide articles and isostatic hot-pressing process | |
JPS6350311B2 (en) | ||
US4172109A (en) | Pressureless sintering beryllium containing silicon carbide powder composition | |
JP3094148B2 (en) | Manufacturing method of lightweight refractory | |
JPS6235995B2 (en) | ||
KR100299099B1 (en) | Manufacturing Method of Silicon Carbide Ceramic Seals by Liquid Phase Reaction Sintering | |
JPS605550B2 (en) | Manufacturing method of silicon carbide sintered body | |
JPH0736381B2 (en) | Heat resistant jig and its manufacturing method | |
JPS6212663A (en) | Method of sintering b4c base fine body | |
JPH0253388B2 (en) | ||
JPH0532349B2 (en) | ||
JP2851100B2 (en) | Method for producing low-density silicon carbide porous body | |
JP2696734B2 (en) | Manufacturing method of silicon nitride sintered body | |
JP2508511B2 (en) | Alumina composite | |
JP3570676B2 (en) | Porous ceramic body and method for producing the same | |
KR100355348B1 (en) | Method of manufacturing silicon nitride/silicon carbide nanocomposites | |
JPH04238866A (en) | Production of tube of sintered material of silicon carbide | |
JPS6128628B2 (en) | ||
JPH0597520A (en) | Method for manufacturing silicon carbide material |