[go: up one dir, main page]

JPS6235657B2 - - Google Patents

Info

Publication number
JPS6235657B2
JPS6235657B2 JP56205573A JP20557381A JPS6235657B2 JP S6235657 B2 JPS6235657 B2 JP S6235657B2 JP 56205573 A JP56205573 A JP 56205573A JP 20557381 A JP20557381 A JP 20557381A JP S6235657 B2 JPS6235657 B2 JP S6235657B2
Authority
JP
Japan
Prior art keywords
light
optical
optical fiber
deflector
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56205573A
Other languages
Japanese (ja)
Other versions
JPS58106526A (en
Inventor
Tsuneo Horiguchi
Masamitsu Tokuda
Masataka Nakazawa
Tsutomu Aoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Nippon Electric Co Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP20557381A priority Critical patent/JPS58106526A/en
Publication of JPS58106526A publication Critical patent/JPS58106526A/en
Publication of JPS6235657B2 publication Critical patent/JPS6235657B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/33Acousto-optical deflection devices

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

【発明の詳細な説明】 本発明は、光フアイバの後方散乱光の測定に使
用して好適な光分岐回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical branch circuit suitable for use in measuring backscattered light of an optical fiber.

光フアイバ中に光が伝搬すると、反射あるいは
散乱によつて後方散乱光が生じる。光フアイバの
一評価としてこの後方散乱光を測定するには、入
射光と後方散乱光を分離するための光分岐回路が
必要である。
When light propagates through an optical fiber, backscattered light is produced by reflection or scattering. To measure this backscattered light as an evaluation of the optical fiber, an optical branching circuit is required to separate the incident light and the backscattered light.

この種の光分岐回路には従来、 (1) ハーフミラーを使用したビームスプリツタ
型、 (2) 結晶の複屈折性を利用して光を分離する偏波
分離型、 (3) 光偏向器によりデジタル的に光を分離する光
偏向器型、 などの方法がある。
Conventional optical branching circuits of this type include (1) a beam splitter type that uses a half mirror, (2) a polarization splitter type that uses the birefringence of crystals to separate light, and (3) an optical deflector. There are methods such as an optical deflector type that digitally separates light using

上記(3)の方法は、光偏向器のオン、オフ時間を
電気的に制御することにより、被測定光フアイバ
の入射端等で生じる非常に大きなレベルのフレネ
ル反射を取除き、観測すべき微弱な後方散乱光の
みを取出すことが可能であり、(1)や(2)の方法に比
べて優れていると言える。
Method (3) above removes the very large level of Fresnel reflection that occurs at the input end of the optical fiber under test by electrically controlling the on/off time of the optical deflector, and This method can be said to be superior to methods (1) and (2) because it is possible to extract only the backscattered light that is significant.

しかしながら、上記(3)の方法による従来の光分
岐回路にも問題点があるので、第1図を参照して
具体的に説明する。第1図は光偏向器に超音波偏
向器を使用した従来の光分岐回路を示す。同図に
おいて、光源1から出射された光パルスLfは超
音波偏向器2をそのオフ中に通過した後、レンズ
3を通つて被測定光フアイバ4に入射される。こ
の光フアイバ4内で後方に散乱された光は再びレ
ンズ3を通つて超音波偏向器2に戻る。このと
き、発振器5により超音波偏向器2を動作(オ
ン)させると、後方散乱光Lbは元の光路から外
れる。かくして分離された後方散乱光Lbはレン
ズ6を経て検出器7に導かれ、測定に供される。
なお、2aは超音波により生じた格子である。
However, the conventional optical branch circuit using the method (3) above also has problems, so a detailed explanation will be given with reference to FIG. FIG. 1 shows a conventional optical branching circuit using an ultrasonic deflector as an optical deflector. In the figure, a light pulse L f emitted from a light source 1 passes through an ultrasonic deflector 2 while it is off, and then enters an optical fiber 4 to be measured through a lens 3 . The light scattered backward within the optical fiber 4 returns to the ultrasonic deflector 2 through the lens 3 again. At this time, when the ultrasonic deflector 2 is operated (turned on) by the oscillator 5, the backscattered light L b deviates from the original optical path. The backscattered light L b thus separated is guided to a detector 7 via a lens 6 and subjected to measurement.
Note that 2a is a grating generated by ultrasonic waves.

この場合留意すべきことは、超音波偏向器2の
偏向角度が高々2〜4度にすぎないことである。
そのため、偏向された後方散乱光Lbを元の光路
から十分離すには、光源1と超音波偏向器2間並
びに検出器7と超音波偏向器2間の間隔をおよそ
30cm〜1m程度とる必要があり、光分岐回路が大
型になつていた。更に上述の如く間隔が広いた
め、光源1、超音波偏向器2、レンズ3及び被測
定光フアイバ4のわずかな位置ずれ、あるいは超
音波偏向器2の偏向角度のわずかなずれがある
と、光路が大きく変化してしまうので、後方散乱
光Lbを最適に受光するには超音波偏向器2、被
測定光フアイバ4及び検出器7に微動台を取付け
る必要があつた。その結果、光分岐回路が複雑
化、大型化し、且つ操作性が悪かつた。
In this case, it should be noted that the deflection angle of the ultrasonic deflector 2 is only 2 to 4 degrees at most.
Therefore, in order to separate the deflected backscattered light L b from the original optical path sufficiently, the distance between the light source 1 and the ultrasonic deflector 2 and between the detector 7 and the ultrasonic deflector 2 should be approximately
It needed to be about 30cm to 1m, and the optical branch circuit had become large. Furthermore, since the spacing is wide as described above, if there is a slight positional deviation among the light source 1, ultrasonic deflector 2, lens 3, and optical fiber 4 to be measured, or a slight deviation in the deflection angle of the ultrasonic deflector 2, the optical path will be distorted. Since this changes greatly, it is necessary to attach a fine movement table to the ultrasonic deflector 2, the optical fiber 4 to be measured, and the detector 7 in order to optimally receive the backscattered light Lb. As a result, the optical branch circuit has become complicated and large, and has poor operability.

本発明は上記従来技術に鑑み、小型で安定な特
性の光偏向器型光分岐回路を提供することを目的
とする。この目的を達成するため本発明では、光
偏向器により偏向された後方散乱光と、偏向され
ずに直進する後方散乱光とを分離するために、両
方の後方散乱光を、光源からの光を光偏向器へ入
射させるのに使用するレンズそれ自体により集光
することとした。また、光源からの光は送光用光
フアイバを通してレンズに与えて光偏向器に入射
し、そのレンズで分離された一方の光を受光用光
フアイバで受光することとした。以下、第2図〜
第5図a,bに基づいて本発明を説明する。
SUMMARY OF THE INVENTION In view of the above-mentioned prior art, it is an object of the present invention to provide an optical deflector type optical branching circuit that is compact and has stable characteristics. To achieve this objective, in the present invention, in order to separate backscattered light that is deflected by an optical deflector and backscattered light that travels straight without being deflected, both backscattered lights are separated from the light from the light source. It was decided that the light would be focused by the lens itself used to make the light incident on the light deflector. Furthermore, the light from the light source is applied to a lens through a transmitting optical fiber and enters an optical deflector, and one of the lights separated by the lens is received by a receiving optical fiber. Below, Figure 2~
The present invention will be explained based on FIGS. 5a and 5b.

第2図は本発明の一実施例を示し、光源1から
の出射光は送光用光フアイバ8に入射され、超音
波偏向器2の近傍に導かれる。光フアイバ8の出
射光は第1のレンズ9により平行化され、超音波
偏向器2を通過したのち第2のレンズ3により集
光されて被測定光フアイバ4に入射される。被測
定光フアイバ4内で反射あるいは散乱されて後方
に伝搬された光即ち後方散乱光は、第2のレンズ
3により平行化され、超音波偏向器2に達する。
今、第1のレンズ9からの平行光を超音波偏向器
2にオフで通過させてから発振器5により超音波
偏向器2を動作即ちオンさせたとすると、第2の
レンズ3を通つた平行な後方散乱光は進行方向が
変化し、第1のレンズ9で集光されて超音波偏向
器2近傍で受光用光フアイバ10に入射され、検
出器7に導かれる。
FIG. 2 shows an embodiment of the present invention, in which light emitted from a light source 1 is input into a light transmitting optical fiber 8 and guided to the vicinity of an ultrasonic deflector 2. In FIG. The light emitted from the optical fiber 8 is collimated by the first lens 9, passes through the ultrasonic deflector 2, is condensed by the second lens 3, and enters the optical fiber 4 to be measured. The light reflected or scattered within the optical fiber 4 to be measured and propagated backward, that is, the backscattered light, is collimated by the second lens 3 and reaches the ultrasonic deflector 2 .
Now, suppose that the parallel light from the first lens 9 is passed through the ultrasonic deflector 2 in an off state, and then the ultrasonic deflector 2 is operated, that is, turned on, by the oscillator 5. The traveling direction of the backscattered light changes, it is focused by the first lens 9, enters the light receiving optical fiber 10 near the ultrasonic deflector 2, and is guided to the detector 7.

一方、超音波偏向器2を動作させても、その回
折効率は100%ではないため、偏向されずに直進
する後方散乱光もあるが、それは第1のレンズ9
により、受光用光フアイバ10に対し後述する距
離Dの間隔で配置された送光用光フアイバ8の端
面上に集光される。このように、第1のレンズ9
により、偏向された後方散乱光と、直進する後方
散乱光とを、集光されたビームスポツトとして分
離することができる。
On the other hand, even if the ultrasonic deflector 2 is operated, its diffraction efficiency is not 100%, so some backscattered light travels straight without being deflected.
As a result, the light is focused on the end face of the light transmitting optical fiber 8 which is arranged at a distance D, which will be described later, with respect to the light receiving optical fiber 10. In this way, the first lens 9
Accordingly, the deflected backscattered light and the straightly traveling backscattered light can be separated into a focused beam spot.

このとき上述の如く送光用、受光用の光フアイ
バ8,10を超音波偏向器2の近傍に配置して光
の入出力を行うことにより、光源1や検出器7と
超音波偏向器2との位置関係は制限されず光分岐
回路が小型になる。また、光フアイバ8,10と
超音波偏向器2との間隔が狭いため、これらの位
置ずれあるいは偏向角度のずれが多少あつても後
方散乱光の受光には殆んど影響しない。即ち、 今、超音波偏向器2をオン、オフしたときの光
線の第1のレンズ9の焦点面上における分離間隔
をD、第1のレンズ9の焦点距離をf、超音波偏
向器2の偏向角を2θ(ラジアン)とすると、 D=2θf …式(1) である。分離間隔Dは、第2図に示す如く光フア
イバ8,10どうしを隣接させた場合はフアイバ
径まで小さくすることができる。そこで、D=
125μm、2θ=2×π/180(ラジアン)とすると
、 f=3.6mmとなる。したがつて、レンズ9の厚さ
並びにレンズ9と超音波偏向器2との間隔を考慮
しても、光フアイバ8,10と超音波偏向器2と
の間隔は1〜2cmになるにすぎず、非常に小型化
された光分岐回路が作製可能である。
At this time, as described above, by placing the optical fibers 8 and 10 for light transmission and light reception near the ultrasonic deflector 2 and inputting and outputting light, the light source 1, the detector 7 and the ultrasonic deflector 2 are connected to each other. The positional relationship with the optical branch circuit is not limited and the optical branch circuit can be made smaller. Further, since the distance between the optical fibers 8, 10 and the ultrasonic deflector 2 is narrow, even if there is some deviation in their position or deflection angle, it will hardly affect the reception of the backscattered light. That is, now, when the ultrasonic deflector 2 is turned on and off, the separation interval of the light beam on the focal plane of the first lens 9 is D, the focal length of the first lens 9 is f, and the ultrasonic deflector 2 is When the deflection angle is 2θ (radian), D=2θf...Equation (1). The separation distance D can be reduced to the fiber diameter when the optical fibers 8 and 10 are placed adjacent to each other as shown in FIG. Therefore, D=
Assuming 125μm and 2θ=2×π/180 (radians), f=3.6mm. Therefore, even considering the thickness of the lens 9 and the distance between the lens 9 and the ultrasonic deflector 2, the distance between the optical fibers 8, 10 and the ultrasonic deflector 2 is only 1 to 2 cm. , it is possible to fabricate an extremely miniaturized optical branch circuit.

ここで、使用する送受光の各光フアイバ8,1
0、レンズ3,9及び光偏向器について説明す
る。光フアイバはマルチモード光フアイバが一般
的であるが、被測定光フアイバ4がシングルモー
ド光フアイバの場合は、第1のレンズ9と第2の
レンズ3による像変換の観点から送光用の光フア
イバ8にはシングルモード光フアイバを使用した
方が入射効率が高く、またマルチモード光フアイ
バ特有のスペツクルパターンの影響も受けない安
定な光分岐回路を作製できる。一方、受光用の光
フアイバ10は、位置ずれや偏向角度ずれに対す
る許容度を高めるため、大コア径で大比屈折率差
のマルチモード光フアイバが適している。また、
グレーデツド型マルチモード光フアイバよりもス
テツプ型マルチモード光フアイバの方がコアの全
領域にわたつて光の受光角度範囲が一様で広いた
め、受光用光フアイバ10として望ましい。
Here, each optical fiber 8, 1 for transmitting and receiving light to be used is
0, the lenses 3 and 9 and the optical deflector will be explained. The optical fiber is generally a multi-mode optical fiber, but if the optical fiber 4 to be measured is a single-mode optical fiber, the light for light transmission is When a single mode optical fiber is used as the fiber 8, the incidence efficiency is higher, and a stable optical branch circuit can be produced which is not affected by the speckle pattern peculiar to multimode optical fibers. On the other hand, as the optical fiber 10 for receiving light, a multimode optical fiber with a large core diameter and a large relative refractive index difference is suitable in order to increase the tolerance to positional deviations and deflection angle deviations. Also,
A stepped multimode optical fiber is more desirable as the light receiving optical fiber 10 than a graded multimode optical fiber because the light receiving angle range is uniform and wide over the entire core region.

レンズ3,9としては実施例では単眼レンズで
示してあるが、光分岐回路の小型化及び組立の容
易さという点では、ロツドレンズの使用が適して
いる。
Although monocular lenses are shown as lenses 3 and 9 in the embodiment, rod lenses are suitable for miniaturization of the optical branch circuit and ease of assembly.

光偏向器としては超音波偏向器2の他、電気光
学効果を利用したものも使用できる。例えば
KD2PO4,LiTaO3,BaTiO3等の電気光学結晶で
作つたプリズム型光偏向器や、電気光学結晶によ
る変調素子と偏光分離用複屈折プリズムとを組合
せた電気光学光偏向器等である。また、超音波偏
向器の材料としては、PbMoO4,TeO2,Pb5
(GeO4)(VO42,α−HgS,Ge,Teガラス,
LiNbO3,As2Se3等が使用可能である。
As the optical deflector, in addition to the ultrasonic deflector 2, a device utilizing an electro-optic effect can also be used. for example
These include prism-type optical deflectors made of electro-optic crystals such as KD 2 PO 4 , LiTaO 3 , BaTiO 3 , etc., and electro-optic optical deflectors that combine a modulation element made of electro-optic crystals and a birefringent prism for polarization separation. . In addition, the materials for the ultrasonic deflector include PbMoO 4 , TeO 2 , Pb 5
(GeO 4 ) (VO 4 ) 2 , α-HgS, Ge, Te glass,
LiNbO 3 , As 2 Se 3 , etc. can be used.

第3図は他の実施例を示し、第2図とは逆に、
光源1からの光は超音波偏向器2を動作(オン)
させて向きを変えることにより被測定光フアイバ
4に入射させ、光フアイバ4からの後方散乱光は
超音波偏向器2をオフにして検出器7へ導くよう
に構成してある。しかし、この実施例の場合は、
超音波偏向器が必らずしも100%の偏向効率を有
していないため、超音波偏向器2の動作中に被測
定光フアイバ4端面からのフレネル反射光が検出
器7に導かれてしまう点、注意を要する。即ち、
一般にフレネル反射光は後方散乱光に比べ非常に
大きな信号(例えば波長0.85μm、光パルス幅
100nsで光フアイバ4が比屈折率差1.0%のマルチ
モード光フアイバとすると、30dB以上の信号
差)であるため、フレネル反射光が検出器7やそ
の後段の増幅器系を飽和させることになり、後方
散乱光の正確な測定を損うことになる。この点
で、第3図の実施例は第2図の実施例に比べ特性
的にやや劣ると言えるが、光分岐回路の小型化、
位置ずれや偏向角度ずれに対する安定性は同様の
効果を奏する。
FIG. 3 shows another embodiment, in contrast to FIG.
Light from light source 1 operates ultrasonic deflector 2 (on)
The backscattered light from the optical fiber 4 is guided to the detector 7 with the ultrasonic deflector 2 turned off. However, in this example,
Since the ultrasonic deflector does not necessarily have 100% deflection efficiency, the Fresnel reflected light from the end face of the optical fiber 4 to be measured is guided to the detector 7 while the ultrasonic deflector 2 is in operation. Please be careful when storing. That is,
Generally, Fresnel reflected light has a much larger signal than backscattered light (e.g. wavelength 0.85 μm, optical pulse width
If the optical fiber 4 is a multimode optical fiber with a relative refractive index difference of 1.0% at 100 ns, the signal difference is more than 30 dB), so the Fresnel reflected light saturates the detector 7 and the subsequent amplifier system. This will impair accurate measurement of backscattered light. In this respect, the embodiment shown in FIG. 3 can be said to be slightly inferior in characteristics to the embodiment shown in FIG.
Similar effects can be achieved in terms of stability against positional deviations and deflection angle deviations.

第4図の実施例は、超音波偏向器2の素子の切
断研摩角度αを90度からずらした点が第2図の実
施例と異なる。これにより、超音波偏向器2の入
射端面2bからのフレネル反射光が受光用光フア
イバ10に入ることを防げ、測定精度が上る。第
4図中、破線で示す2b′がα=90度の場合の入射
端面であり、Aはα=90度の場合のフレネル反射
光の光路、Bはα≠90度の場合のフレネル反射光
の光路である。このことを第5図a,bを参照し
て説明する。第5図a,bは、超音波偏向器素子
の切断研摩角度をα=π/2−β(ラジアン)とした ときの超音波偏向器2の入射光線の軌跡を示した
ものである。第5図a,bいずれの場合も、超音
波偏向器2の入射端面2bからのフレネル反射光
Bと、被測定光フアイバ4から超音波偏向器2を
経て受光用光フアイバ10に入射する後方散乱光
bとがなす角度ζは、ζ=2nβとなる。但しn
は超音波偏向器素子の屈折率である。今、受光用
光フアイバ10のコア径をdとし、また被測定光
フアイバ4からの後方散乱光は受光用光フアイバ
10のコア中心に入射しており且つそのスポツト
サイズはコア径d以下であるとすると、 fζ≧d …式(2) であれば、超音波偏向器2の入射端面2bからの
フレネル反射光Bは受光用光フアイバ10に入射
されず、よつて検出器7には導かれない。例え
ば、 d=50μm f=3.6mm n=2.3 とすると、β≧0.17度であれば良い。特に第5図
aの場合は、β=θ/n(但し、θは式(1)の説明
に用いた超音波偏向器2の偏向角2θの半分であ
る。第2図参照)であると、光源1からの光Lf
は超音波偏向器端面に垂直に入射することになる
ため、光分岐回路の挿入損が少なくなる。
The embodiment shown in FIG. 4 differs from the embodiment shown in FIG. 2 in that the cutting and polishing angle α of the element of the ultrasonic deflector 2 is shifted from 90 degrees. This prevents the Fresnel reflected light from the incident end surface 2b of the ultrasonic deflector 2 from entering the light-receiving optical fiber 10, improving measurement accuracy. In Fig. 4, 2b' indicated by a broken line is the incident end face when α=90 degrees, A is the optical path of the Fresnel reflected light when α=90 degrees, and B is the Fresnel reflected light when α≠90 degrees. It is the optical path of This will be explained with reference to FIGS. 5a and 5b. FIGS. 5a and 5b show the trajectory of the incident light beam of the ultrasonic deflector 2 when the cutting and polishing angle of the ultrasonic deflector element is α=π/2−β (radians). In both cases of FIGS. 5a and 5b, the Fresnel reflected light B from the incident end surface 2b of the ultrasonic deflector 2 and the rear which enters the receiving optical fiber 10 from the optical fiber 4 to be measured via the ultrasonic deflector 2. The angle ζ formed by the scattered light L b is ζ=2nβ. However, n
is the refractive index of the ultrasonic deflector element. Now, the core diameter of the light-receiving optical fiber 10 is assumed to be d, and the backscattered light from the optical fiber 4 to be measured is incident on the core center of the light-receiving optical fiber 10, and its spot size is less than or equal to the core diameter d. If fζ≧d...Equation (2), then the Fresnel reflected light B from the incident end surface 2b of the ultrasonic deflector 2 will not enter the receiving optical fiber 10, and will therefore not be guided to the detector 7. do not have. For example, if d=50 μm, f=3.6 mm, and n=2.3, then β≧0.17 degrees is sufficient. In particular, in the case of Figure 5 a, β = θ/n (where θ is half the deflection angle 2θ of the ultrasonic deflector 2 used to explain equation (1). See Figure 2). , light L f from light source 1
is incident perpendicularly to the end face of the ultrasonic deflector, so the insertion loss of the optical branching circuit is reduced.

以上実施例をあげて説明したように、本発明に
よれば、光偏向器の光の入出力に同一のレンズを
使用し、またその光の入出力端にはそれぞれ光フ
アイバを使用することにより小型で安定な特性を
有する光分岐回路が得られる。これにより、光フ
アイバの後方散乱光の測定器に光分岐回路を容易
に組込むことができる。
As explained above with reference to the embodiments, according to the present invention, the same lens is used for the input and output of light of the optical deflector, and optical fibers are used for the input and output ends of the light respectively. An optical branch circuit that is compact and has stable characteristics can be obtained. As a result, the optical branching circuit can be easily incorporated into an instrument for measuring backscattered light of an optical fiber.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光分岐回路の一例を示す図、第
2図、第3図及び第4図はそれぞれ本発明の各実
施例を示す図、第5図a,bは第4図の実施例に
つき、超音波偏向器の光の通過及び反射の軌跡を
示す図である。 図面中、1は光源、2は超音波偏向器、3は第
2のレンズ、4は被測定光フアイバ、5は発振
器、7は検出器、8は送光用光フアイバ、9は第
1のレンズ、10は受光用光フアイバである。
FIG. 1 is a diagram showing an example of a conventional optical branching circuit, FIGS. 2, 3, and 4 are diagrams showing respective embodiments of the present invention, and FIGS. 5a and 5 are implementations of FIG. 4. FIG. 3 is a diagram showing, by way of example, the trajectory of light passage and reflection of an ultrasonic deflector; In the drawing, 1 is a light source, 2 is an ultrasonic deflector, 3 is a second lens, 4 is an optical fiber to be measured, 5 is an oscillator, 7 is a detector, 8 is an optical fiber for transmitting light, and 9 is a first optical fiber. The lens 10 is an optical fiber for receiving light.

Claims (1)

【特許請求の範囲】 1 送光用光フアイバと、この光フアイバの出射
光を平行化する第1のレンズと、この平行光の進
行方向を電気信号により変えることができる光偏
向器と、この光偏向器を経由した光を被測定光フ
アイバに入射させるための第2のレンズと、被測
定光フアイバから反射あるいは散乱され且つ第2
のレンズ、光偏向器及び第1のレンズをこの順で
経由した光であつて光偏向器で偏向された光と、
光偏向器で偏向されず直進した光とのうち、第1
のレンズで分離された一方の光を受光する受光用
光フアイバとを備えたことを特徴とする光分岐回
路。 2 上記光偏向器は送光用光フアイバからの出射
光を被測定光フアイバに入射させるときは動作せ
ずに光を直進させ、被測定光フアイアバからの光
を受光用光フアイバに入射させるときには動作し
て光の進行方向を変える光偏向器であることを特
徴とする特許請求の範囲第1項記載の光分岐回
路。 3 上記送光用光フアイバがシングルモード光フ
アイバであり、受光用光フアイバがマルチモード
光フアイバであることを特徴とする特許請求の範
囲第1項記載の光分岐回路。 4 上記受光用光フアイバのコア径をd、第1の
レンズの焦点距離をfとしたとき、送光用光フア
イバからの光偏向器に入射して光偏向器の入射面
で反射された光と、被測定光フアイバからの光偏
向器を経て受光用光フアイバに入射する光とが光
偏向器と第1のレンズ間でなす角度ζ〔ラジア
ン〕がζ≧d/fを満たすことを特徴とする特許請求 の範囲第1項記載の光分岐回路。
[Claims] 1. An optical fiber for transmitting light, a first lens that collimates the light emitted from the optical fiber, an optical deflector that can change the traveling direction of the parallel light by an electric signal, and a second lens for making the light that has passed through the optical deflector enter the optical fiber to be measured;
light that has passed through the lens, the optical deflector, and the first lens in this order and is deflected by the optical deflector;
Among the light that is not deflected by the optical deflector and goes straight, the first
An optical branching circuit comprising: a light-receiving optical fiber that receives one of the lights separated by a lens. 2. The optical deflector does not operate when the light emitted from the transmitting optical fiber enters the optical fiber to be measured and allows the light to travel straight, and when the light from the optical fiber to be measured enters the receiving optical fiber. 2. The optical branching circuit according to claim 1, wherein the optical branching circuit is an optical deflector that operates to change the traveling direction of light. 3. The optical branch circuit according to claim 1, wherein the light transmitting optical fiber is a single mode optical fiber, and the light receiving optical fiber is a multimode optical fiber. 4 When the core diameter of the light-receiving optical fiber is d and the focal length of the first lens is f, the light from the light-transmitting optical fiber that enters the optical deflector and is reflected by the incident surface of the optical deflector and the angle ζ [radian] formed between the optical deflector and the first lens by the light from the optical fiber to be measured that passes through the optical deflector and enters the receiving optical fiber satisfies ζ≧d/f. An optical branch circuit according to claim 1.
JP20557381A 1981-12-19 1981-12-19 Optical branching circuit Granted JPS58106526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20557381A JPS58106526A (en) 1981-12-19 1981-12-19 Optical branching circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20557381A JPS58106526A (en) 1981-12-19 1981-12-19 Optical branching circuit

Publications (2)

Publication Number Publication Date
JPS58106526A JPS58106526A (en) 1983-06-24
JPS6235657B2 true JPS6235657B2 (en) 1987-08-03

Family

ID=16509123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20557381A Granted JPS58106526A (en) 1981-12-19 1981-12-19 Optical branching circuit

Country Status (1)

Country Link
JP (1) JPS58106526A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110327U (en) * 1988-01-18 1989-07-25

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3506884A1 (en) * 1985-02-27 1986-08-28 Philips Patentverwaltung Gmbh, 2000 Hamburg OPTICAL TIME AREA REFLECTOR WITH HETERODYN RECEPTION
JPS62251633A (en) * 1986-04-24 1987-11-02 Ando Electric Co Ltd Optical fiber measuring instrument

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646210A (en) * 1979-09-21 1981-04-27 Nippon Telegr & Teleph Corp <Ntt> Optical switch

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646210A (en) * 1979-09-21 1981-04-27 Nippon Telegr & Teleph Corp <Ntt> Optical switch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110327U (en) * 1988-01-18 1989-07-25

Also Published As

Publication number Publication date
JPS58106526A (en) 1983-06-24

Similar Documents

Publication Publication Date Title
US4153330A (en) Single-mode wavelength division optical multiplexer
US4273445A (en) Interferometer gyroscope formed on a single plane optical waveguide
US4640615A (en) Liquid refractometer
US4444503A (en) Ring interferometer with a mode diaphragm
US20040081397A1 (en) Tap output collimator
US4873697A (en) Narrowband laser transmitter having an external resonator from which the output power can be taken
JPH02179626A (en) Light wavelength converter
JPS6235657B2 (en)
JPH0755635A (en) Optical switching device
JP3661036B2 (en) Waveguide type optical functional element
JPH11218638A (en) Optical constituent element
JPH0464030B2 (en)
JPH08261713A (en) Optical waveguide type displacement sensor
JP2007003728A (en) Light intensity detector
JPS6237761B2 (en)
JP3803776B2 (en) Waveguide type optical functional device
JPH0361924B2 (en)
JPS5955407A (en) optical demultiplexer
JPH0749430A (en) Optical circuit part
JPS625105A (en) Waveguide type photo-displacement sensor
KR100288072B1 (en) Displacement measuring device using integrated optical element
JPS6347602A (en) Wave guide type optical displacement sensor
JPH10232109A (en) Optical displacement sensor
JPH08271209A (en) Light waveguide path type displacement sensor and hemispherical lens used for the sensor
JP2004310073A (en) Optical monitor module