JPS6235463B2 - - Google Patents
Info
- Publication number
- JPS6235463B2 JPS6235463B2 JP4837479A JP4837479A JPS6235463B2 JP S6235463 B2 JPS6235463 B2 JP S6235463B2 JP 4837479 A JP4837479 A JP 4837479A JP 4837479 A JP4837479 A JP 4837479A JP S6235463 B2 JPS6235463 B2 JP S6235463B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- steel
- sec
- less
- annealing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
- C21D9/48—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、深絞り用高張力冷延鋼板の製造方法
に関するものである。
近年省エネルギーの観点から自動車の軽量化が
進められており、そのため強度の高い自動車用鋼
板の製造技術が鋭意研究されている。このような
自動車用鋼板は一般にプレス加工されるので強度
ばかりでなくプレス成形性にも優れていなければ
ならない。このような目的に供する鋼板として近
年フエライト相とマルテンサイト相の2相組織か
らなり、低降伏比で高張力を有し、かつ遅時効性
のためプレス成形性に優れたいわゆる2相組織鋼
が脚光を浴びている。しかしながらこの2相組織
鋼はその独特の組織となすための相当の合金元素
の添加を必要とするか、あるいは冷却速度を非常
に速くすることが必要であるが、このため製造コ
ストが高騰したり、あるいは{111}方位のフエ
ライト粒を十分に発達させることができず、r値
が低くなるという欠点があつた。
前記2相組織の高張力鋼板以外にPやNを添加
して高張力化する方法、あるいはリムド鋼に対し
オープン焼鈍を施して適度に脱炭脱窒処理を行な
い、プレス加工後焼付塗装時における歪時効硬化
現象を利用して高強度化を図る方法なども考えら
れるが、これらの方法は何れもプレス成形性、深
絞り性、生産性を全面的に満足させることのでき
る方法ではなかつた。
本発明は、前記従来方法の有する欠点を除去、
改善した深絞り用高張力冷延鋼板の製造方法を提
供することを目的とするものであり、
C0.010%以下、Si0.20%以下、Mn1.0%以下、
Al0.010〜0.080%、P0.10%以下、N0.010%以
下、Nbを下記(イ)、(ロ)の条件の何れかにより規定
される範囲内で含有する低炭素冷延鋼板を、熱間
圧延後、300℃以上、750℃以下の温度で巻取り、
冷間圧延の後、900℃以下の温度に加熱して再結
晶焼鈍し、その後下記(ハ)、(ニ)に示す冷却条件の何
れかにより冷却することを特徴とする深絞り用冷
延鋼板の製造方法によつて、前記目的を達成する
ことができる。
(イ) 巻取温度600℃以上の場合
0.3≦%Nb/7.75(%C)+6.65(0.25−0.023%可溶Al/%全N)(%全N)<1.2
(ロ) 巻取温度600℃未満の場合
0.3≦%Nb/7.75(%C)+6.65(0.93−0.073%可溶Al/%全N)(%全N)<1.2
(ハ) 400℃までを50℃/秒以下の冷却速度で徐冷
する。
(ニ) 400℃までを50℃/秒より速い冷却速度で冷
却した後、400〜200℃の間を10℃/秒以下の劣
却速度で徐冷する。
次に本発明を詳細に説明する。
本発明者等は生産性の良い連続焼鈍法による深
絞り用高張力冷延鋼板の製造技術について研究
し、上記冷却速度と材質との相関性を知見し、
C、N、Alの含有量に応じてNbを連続焼鈍後耐
時効性に支障のない範囲内で鋼板中に固溶C、N
が残留する程度に添加し、これによりプレス加工
―焼付塗装後の歪時効硬化現象を利用して、さら
に高強度化を図ることができることを新規に知見
して、本発明を完成した。
次に本発明を実験データについて説明する。
第1表に示す成分組成を有する鋼塊を3.5mm板
厚に熱間圧延後高温巻取(670℃で巻取る)と低
い温度取(525℃で巻取る)とを行なつた。
The present invention relates to a method for manufacturing a high-strength cold-rolled steel sheet for deep drawing. BACKGROUND ART In recent years, efforts have been made to reduce the weight of automobiles from the perspective of energy conservation, and for this reason, intensive research is being carried out on manufacturing technology for high-strength automobile steel sheets. Since such steel sheets for automobiles are generally press-formed, they must have excellent not only strength but also press formability. In recent years, so-called dual-phase steel has been developed as a steel sheet for this purpose, which has a two-phase structure of ferrite and martensitic phases, has a low yield ratio and high tensile strength, and has excellent press formability due to its slow aging properties. is in the spotlight. However, this dual-phase steel requires the addition of a considerable amount of alloying elements to create its unique structure, or requires a very fast cooling rate, which increases manufacturing costs. Alternatively, ferrite grains with {111} orientation could not be sufficiently developed, resulting in a low r value. A method of increasing the tensile strength by adding P or N to a high-strength steel plate with a two-phase structure, or by performing open annealing on rimmed steel to appropriately decarburize and denitrify it, and then apply a decarburization and denitrification treatment to the rimmed steel during baking painting after press working. Although methods of increasing strength by utilizing the strain age hardening phenomenon have been considered, none of these methods has been able to fully satisfy press formability, deep drawability, and productivity. The present invention eliminates the drawbacks of the conventional method,
The purpose of this is to provide an improved manufacturing method for high-strength cold-rolled steel sheets for deep drawing.
A low carbon cold rolled steel sheet containing Al0.010~0.080%, P0.10% or less, N0.010% or less, and Nb within the range specified by either of the following conditions (a) or (b), After hot rolling, coiling at a temperature of 300℃ or higher and 750℃ or lower,
A cold-rolled steel sheet for deep drawing, characterized in that after cold rolling, it is heated to a temperature of 900°C or less to undergo recrystallization annealing, and then cooled under any of the cooling conditions shown in (c) and (d) below. The above object can be achieved by the manufacturing method. (a) When the coiling temperature is 600℃ or higher 0.3≦%Nb/7.75 (%C) + 6.65 (0.25-0.023% soluble Al/% total N) (% total N) < 1.2 (b) Coiling temperature Below 600℃ 0.3≦%Nb/7.75 (%C) + 6.65 (0.93-0.073% soluble Al/% total N) (% total N) < 1.2 (c) 50℃/sec or less up to 400℃ Cool slowly at a cooling rate of . (d) After cooling to 400°C at a cooling rate faster than 50°C/sec, slow cooling from 400 to 200°C at a deterioration rate of 10°C/sec or less. Next, the present invention will be explained in detail. The present inventors have studied the manufacturing technology of high-strength cold-rolled steel sheets for deep drawing using a continuous annealing method with good productivity, and have discovered the correlation between the cooling rate and material quality,
Depending on the content of C, N, and Al, Nb is added as a solid solution in the steel sheet within a range that does not affect the aging resistance after continuous annealing.
The present invention has been completed based on the new finding that it is possible to further increase the strength by adding the aluminum to such an extent that it remains, thereby making use of the strain aging hardening phenomenon after press working and baking painting. Next, the present invention will be explained using experimental data. A steel ingot having the composition shown in Table 1 was hot rolled to a thickness of 3.5 mm and then coiled at a high temperature (rolling at 670°C) and at a low temperature (rolling at 525°C).
【表】【table】
【表】
次に0.7mmまで冷間圧延した。第1図は連続焼
鈍ラインのヒートサイクルを示す模式図である
が、焼鈍条件を特徴づける因子として焼鈍温度
(TA、℃)、焼鈍時間(tA、sec)、焼鈍温度から
400℃までの平均冷却速度(v1、℃/sec)および
400℃から200℃までの平均冷却速度(v2、℃/
sec)をとり、本発明の実験鋼板をこれらの諸因
子を変えて焼鈍し、引続き0.7%のスキンパスを
行なつた。この鋼板の材質および焼付硬化性につ
いて以下に述べる。
まずNb量は鋼中のC、N量と密接な関係があ
るので、組成をNb(wt%)/{7.75C(wt%)+
6.65N(wt%)}で整理する。この値は第1表の
Nb/C+N(原子比)と等価である。この値が
約0.7の鋼をTA=830℃、tA=40sec、v1=6、
13℃/sec、v2=20℃/secの条件で焼鈍後の材質
とC量との関係を第2図に示す。C0.010%以下
の鋼では降伏応力(YP)が低く全伸び(El)、r
値、n値の高い材質のものが得られるが、C>
0.010%の鋼ではYPが高くなり、El、n値、r値
の低下も著しくなる。また時効指数(AI、7.5%
引張変形時の変形応力とそれを100℃、30minの
時効処理を行なつたときの降伏応力との差)はC
≦0.010%の鋼では3Kg/mm2以下であり、鋼板が
通常の条件下で使用される限り耐時効性において
問題はない。なお高温巻取材では低温巻取材に比
較して、YPが低く、Elが大きく軟質化の傾向が
明瞭であり、AIも減少する傾向にある。
第3図Aは鋼板に予歪を与えた後、さらに歪を
与えたときの歪と応力との関係を示す模式図であ
り、YPは予歪を与えた時の降伏応力、σy′は予
歪を与えた後焼付塗装処理した後歪を与えた時の
降伏応力、TS′は極限強さ、△σyはσy′とYPと
の差、△σwは加工硬化による上昇部分、△σA
は純粋に時効による降伏応力の増分である。
Nb(%)/{7.75C(%)+6.65N(%)}0.7
の鋼をTA=830℃、tA=40sec、v1=6℃/
sec、v2=20℃/secで焼鈍後、1%および5%の
引張予歪を付加し焼付塗装相当処理(170℃、
20min)を施したときの材料のTS′、σy′、△σ
y、△σA、△σwとC量との関係を第3図Bに示
す。同図よりTS′は予歪に関係なく1〜4Kg/mm2
程度上昇することが判る。また処理後の降伏応力
σy′は、△σyとC量との関係から判るように処
理前のYPに比較して1%予歪で約10Kg/mm2、5
%予歪で15〜16Kg/mm2位上昇する。この上昇量は
C量とはほぼ無関係であるが、C0.010%以上の
鋼ではn値の低下にともない加工硬化による上昇
部分(△σw)が減少する結果処理後の降伏応力
の上昇量は若干減少する傾向にある。純粋に時効
による降伏応力の増分(△σA)は4〜8Kg/mm2
で、低温巻取材の方が大きい傾向にある。これは
低温巻取材のAIが高温巻取材のものより高いこ
とから予想されることである。第2図の結果とも
併せ考えると高温巻取材を用いればYPの低下、
El、r値の向上等深絞り成形性には有利とな
る。しかし低温巻取材のものより固溶C、N量が
減少するため、歪時効による降伏点の上昇度は小
さくなる。
第2図、第3図Bから、Nb(%)/{7.75C
(%)+6.65N(%)}0.7の極低炭Alキルド鋼を
用いれば、連続焼鈍法により深絞り成形性および
耐時効性に優れた材質が得られ、かつ予歪付加後
焼付塗装処理を施すと引張強さが1〜4Kg/mm2程
度上昇し、降伏点は35〜40Kg/mm2程度となること
が判つた。ただしこの場合延性および耐時効性の
観点からC量が0.010%以下であることが要求さ
れる。
ところでNb(wt%)/{7.75C(wt%)+
6.65N(wt%)}<0.7の鋼を用いるならばNb炭窒
化物の量が減少するのでC>0.010%の鋼でも軟
質な鋼板が得られる可能性がある。そこでNb
(%)/{7.75C(%)+6.65N(%)}0.3の鋼を
TA=830℃、tA=40sec、v1=6℃/sec、v2=
20℃/secで焼鈍したときの材質とC量の関係を
第4図に示す。第3図Bにおける同一C量の鋼と
比較するとYPは2〜3Kg/mm2低下し、Elは3%
程度上昇する。しかしNb量の減少は固溶C、N
量を増大させることになりAIは確実に上昇し4
Kg/mm2以上となる。したがつてC>0.010%の鋼
では、Nb添加量を少量にすることによりEl等の
延性の向上は望めても耐時効性が劣化するので本
発明の目標材質を得ることは困難である。
ところでC量だけでなくN量も鋼材の材質およ
び時効特性に直接的な影響力を持つ。しかしアル
ミキルド鋼でNはCとは異なり故意に添加しない
限り40〜80ppm程度の範囲内にある。したがつ
てC≦0.010%の極低炭素アルミキルド鋼にある
特定範囲でNbを添加した鋼を連続焼鈍すれば深
絞り成形性、耐時効性および焼付塗装硬化性に優
れた材質のものが得られる可能性がある。そこで
次にC≦0.010%の極低炭アルミキルド鋼に添加
すべきNb量の適正範囲を検討する。
Nb量の適正添加範囲を検討する上では、Nb
と、Nbと化合してNbcを生成し得る状態にある
固溶C(以後C*で示す)および同じくNbと化
合してNbNを生成し得る状態にある固溶N(以後
N*で示す)の原子比Nb/(C*+N*)が問
題になる。従つて
Nb(%)/{7.75×C*(%)+6.65×N*(%)} …(1)
を1つのパラメータとすることは合理的なことと
考えられる。過時効処理を施さない連続焼鈍ライ
ンでは再結晶焼鈍後の室温までの冷却速度が速い
ので、CはFe3C(あるいはこれに準ずる鉄系炭
化物)として析出できない。したがつて(1)式のC
*(%)とは全C量を意味する。一方Nは鋼中の
Alとの親和力が比較的強い。このためNの一部
は熱延条件によつてその量に差異はあるものの熱
延板の状態でAlNとして存在し、その後の焼鈍時
にもほとんど溶解しないでAlNとして残留し、ま
た熱延板で固溶状態にあつたNの一部も冷間圧延
後の再結晶焼鈍中にAlNとして析出しうる。以後
焼鈍後AlNとして存在するN量をNA、全N含有
量をNTと略記する。すると(1)式におけるN*
(%)はNT(%)−NA(%)に等しい。以上から
(1)式は次式のようになる。
Nb(wt%)/{7.75C(wt%)+6.65(NT(wt%)−NA(wt%))} …(2)
NA量は熱延条件に大きく左右される。高温巻
取材ではAlNの析出速度の速い温度域に長く滞留
するため熱延板の状態でNの多くはすでにAlNと
して存在する。またAlNの析出量は、同一熱延条
件であつても鋼中のAlの量にも影響をうける。
そこでC0.006%でNb(wt%)/{7.75C(wt
%)+6.65NT(wt%)}0.7の鋼をTA=750、
800、830℃、tA=40sec、v1=6℃/sec、v2=
20℃/secで焼鈍したときのNA/NTとsolAl/N
T(いずれも重量比)の関係を第5図に示す。高
温巻取材ではsolAl/NT≧2(solAlは可溶Alを
意味する)であればNTの8割以上がAlNとして
固定されている。一方低温巻取材においてNTの
5割以上がAlNとなるためにはsolAl/NT≧6と
なることが必要条件である。第5図の高温巻取材
および低温巻取材のそれぞれの結果に注目する
と、2≦solAl/NT≦11の範囲に限定すれば、焼
鈍温度にはほぼ無関係にNA/NTとsolAl/NTと
は比例関係にある。この関係を一次関数と仮定し
最小自乗法で関数係数を決定した。その結果N
A/NTとsolAl/NTとの関係は高温巻取材では(3)
式、低温巻取材では(4)式で表わせる。
NA/NT=0.023(solAl/NT)+0.75 …(3)
NA/NT=0.073(solAl/NT)+0.07 …(4)
(3)、(4)式は本発明のために用いた組成範囲の鋼
を、代表的な焼鈍条件下で処理したときの分析結
果を基礎としたものである。したがつてNbの適
正添加範囲決定のためのパラメータである。(2)式
は高温巻取材では(5)式、低温巻取材では(6)式の如
くになり、以後この値をZとおく。
Z=Nb(wt%)/{7.75C(wt%)+6.65(0.25−0.023solAl/NT)NT(wt%)} …(5)
Z=Nb(wt%)/{7.75C(wt%)+6.65(0.93−0.073solAl/NT)NT(wt%)} …(6)
C0.005%および0.010%の鋼をTA=830℃、
tA=40sec、v1=6℃/sec、v2=20℃/secで焼
鈍したときの材質および焼付硬化性(σy′、5%
予歪)を(2)式をパラメーターとして整理したのが
第6図である。AIはC量、熱延条件には殆んど
無関係にZの増加とともに単調に減少する。Z<
0.3ではAI≧4Kg/mm2となり耐時効性に問題が生
じる。一方Z>1.2ではAI≦1Kg/mm2となるの
で、σy′の結果からもるように固溶C、Nが減少
しすぎてプレス後の焼付硬化量が僅少となる。
YP、Elに関してはZ≦1.2であればプレス成形性
に問題はない。以上の結果C≦0.010%の極低炭
素アルミキルド鋼にNbを次式で示される範囲内
で添加した。
0.3≦Z≦1.2 …(7)
鋼を熱間圧延後、所定の温度で巻取つたのち、
冷間圧延し、ついで連続焼鈍することにより深絞
り成形性、耐時効性、焼付塗装硬化性のすべてに
優れた高張力冷延鋼板が得られる。
ここの本発明において、熱間圧延後の巻取り温
度は300℃以上、750℃以下の範囲に限定する。と
いうのは300℃未満での巻取りは、設備上困難な
だけでなく、板形状を著しく損う不利があり、一
方、750℃を超える温度で巻取ると、脱スケール
性が劣化し、また粒径が粗大化して肌荒れと呼ば
れる表面欠陥が生じるからである。
次に連続焼鈍における焼鈍温度が材質におよぼ
す影響について検討する。N7鋼(C=0.008%、
Nb=0.069%)をtA=40sec、v1=6,13℃/
sec、v2=20℃/secで焼鈍したときの材質と焼鈍
温度の関係を第7図に示す。900℃までは焼鈍温
度が高くなるほどElは増加しYPは低下する。AI
も900℃までは4Kg/mm2以下である。900℃以上と
なるとNb(C、N)あるいはAlNが溶解しはじ
めるのでAIは急上昇する。同時にEl、YPも劣化
する。したがつて連続焼鈍ラインにおける焼鈍温
度は再結晶温度以上900℃以下であることが要求
される。
次に冷却速度v1,v2が材質におよぼす影響につ
いて検討する。N7鋼を用いて冷却速度v1,v2と
AIとの関係について調べた結果を、第8図に整
理して示す。
同図より明らかなように、v1≦50℃/secであ
れば、v2に関係なしにAI≦4Kg/mm2の良好な耐
時効性が得られた。
ところでv2>10℃/secの場合、v1>50℃/sec
ではAI>4Kg/mm2となり、耐時効性に問題が生
じる。これはTAからの冷却速度が大きいと、熱
延板の状態で存在していたNb(C、N)あるい
はAlN等の析出物を核としたCやNの析出が十分
には進行できないためと考えられる。
しかしながらv2≦10℃/secとして、C、N固
溶限が比較的低い200〜400℃の領域を除冷するこ
とにより、CやNの析出を促進させた場合には、
v1>50℃/secでもAI≦4Kg/mm2を得ることがで
きた。
最後にP添加によるTS向上の効果について述
べる。N6、NP1、NP2、NP3鋼をTA=830℃、t
A=40sec、v1=6℃/sec、v2=20℃/secで焼鈍
したときの材質とP添加量の関係を第9図に示
す。高温巻取材でP=0.008%の鋼ではTS=35.5
Kg/mm2であるが、P=0.047%の鋼ではTSが5
Kg/mm2程度上昇する。しかしElは2〜3%減少
し、YPは2Kg/mm2程度上昇する。Pを0.10%以
下添加することは、YP、Elの劣化が比較的少な
くてTSを向上させることができるので、高張力
鋼板として利用価値が高い。
以上の結果から総合的に判断した最適条件下
で、連続焼鈍ラインにより実際に製造した冷延鋼
板の材質ならびに焼付硬化性を第2表に示す。[Table] Next, it was cold rolled to 0.7 mm. Figure 1 is a schematic diagram showing the heat cycle of a continuous annealing line.The factors that characterize the annealing conditions are annealing temperature (T A , °C), annealing time (t A , sec), and annealing temperature.
Average cooling rate (v 1 , °C/sec) up to 400 °C and
Average cooling rate from 400℃ to 200℃ (v 2 ,℃/
sec), the experimental steel plates of the present invention were annealed by changing these factors, and then a 0.7% skin pass was performed. The material and bake hardenability of this steel plate will be described below. First, the amount of Nb is closely related to the amount of C and N in steel, so the composition is Nb (wt%) / {7.75C (wt%) +
6.65N (wt%)}. This value is shown in Table 1.
It is equivalent to Nb/C+N (atomic ratio). For steel with this value of about 0.7, T A = 830°C, t A = 40 sec, v 1 = 6,
FIG. 2 shows the relationship between the material quality and C content after annealing under the conditions of 13°C/sec and v 2 =20°C/sec. Steel with C0.010% or less has low yield stress (YP), total elongation (El), r
A material with a high value and n value can be obtained, but C>
In steel with 0.010%, YP becomes high and El, n value, and r value decrease significantly. Also, the statute of limitations index (AI, 7.5%
The difference between the deformation stress during tensile deformation and the yield stress when it is aged at 100℃ for 30 minutes) is C.
For steel with ≦0.010%, it is 3 Kg/mm 2 or less, and there is no problem in aging resistance as long as the steel plate is used under normal conditions. Furthermore, compared to low-temperature rolled material, high-temperature rolled material has a lower YP, a larger El, and a clear tendency to become softer, and AI also tends to decrease. Figure 3A is a schematic diagram showing the relationship between strain and stress when a steel plate is prestrained and then further strained, where YP is the yield stress when prestrain is applied, and σ y ′ is The yield stress when strain is applied after applying pre-strain and baking coating treatment, TS′ is the ultimate strength, △σ y is the difference between σ y ′ and YP, △σ w is the increase due to work hardening, △σ A
is the increase in yield stress purely due to aging. Nb (%) / {7.75C (%) + 6.65N (%)} 0.7
T A = 830℃, t A = 40sec, v 1 = 6℃/
After annealing at sec, v 2 = 20℃/sec, tensile prestrain of 1% and 5% was added, and a treatment equivalent to baking painting (170℃,
TS′, σ y ′, △σ of the material when subjected to
The relationship between y , Δσ A , Δσ w and the amount of C is shown in FIG. 3B. From the same figure, TS' is 1 to 4 Kg/mm 2 regardless of prestrain.
It can be seen that the level increases. Furthermore, the yield stress σ y ′ after treatment is approximately 10 Kg/mm 2 at 1% pre-strain compared to YP before treatment, as seen from the relationship between Δσ y and C content.
% prestrain increases by 15-16Kg/mm by 2 places. This amount of increase is almost unrelated to the amount of C, but in steels with C0.010% or more, the increase amount due to work hardening (△σ w ) decreases as the n value decreases, resulting in the amount of increase in yield stress after treatment. tends to decrease slightly. The increase in yield stress (△σ A ) purely due to aging is 4 to 8 Kg/mm 2
However, low-temperature rolled material tends to be larger. This is expected since the AI of the low-temperature web material is higher than that of the high-temperature web material. Considering this together with the results in Figure 2, if high temperature web material is used, YP will decrease.
It is advantageous for deep drawability such as improved El and r values. However, since the amount of solid solution C and N is smaller than that of the low-temperature rolled material, the degree of increase in yield point due to strain aging becomes smaller. From Figures 2 and 3B, Nb (%)/{7.75C
(%)+6.65N(%)}0.7 ultra-low carbon Al killed steel, it is possible to obtain a material with excellent deep drawability and aging resistance by continuous annealing, and it can be baked and painted after prestraining. It was found that the tensile strength increases by about 1 to 4 Kg/mm 2 and the yield point becomes about 35 to 40 Kg/mm 2 . However, in this case, the C content is required to be 0.010% or less from the viewpoint of ductility and aging resistance. By the way, Nb (wt%) / {7.75C (wt%) +
6.65N (wt%)}<0.7, the amount of Nb carbonitrides decreases, so it is possible to obtain a soft steel plate even with C>0.010% steel. So Nb
(%) / {7.75C (%) + 6.65N (%)}0.3 steel T A = 830℃, t A = 40sec, v 1 = 6℃/sec, v 2 =
Figure 4 shows the relationship between the material and the amount of C when annealed at 20°C/sec. Compared to steel with the same amount of C in Figure 3B, YP decreases by 2 to 3 Kg/ mm2 , and El decreases by 3%.
The degree increases. However, the decrease in the amount of Nb is caused by solid solute C and N.
By increasing the amount, AI will definitely increase 4
Kg/ mm2 or more. Therefore, in steels with C>0.010%, although it is possible to improve ductility such as El by adding a small amount of Nb, the aging resistance deteriorates, making it difficult to obtain the target material of the present invention. Incidentally, not only the amount of C but also the amount of N have a direct influence on the material quality and aging characteristics of the steel material. However, unlike C, N in aluminum killed steel is within the range of about 40 to 80 ppm unless it is intentionally added. Therefore, by continuously annealing ultra-low carbon aluminum killed steel with C≦0.010% and adding Nb in a certain range, a material with excellent deep drawability, aging resistance, and hardening by baking can be obtained. there is a possibility. Therefore, next we will examine the appropriate range of the amount of Nb that should be added to ultra-low carbon aluminum killed steel with C≦0.010%. When considering the appropriate addition range of Nb amount, Nb
, solid solution C in a state where it can combine with Nb to produce Nbc (hereinafter referred to as C * ), and solid solution N in a state where it can also combine with Nb to produce NbN (hereinafter denoted as N * ) The problem is the atomic ratio Nb/(C * +N * ). Therefore, it is considered reasonable to use Nb (%)/{7.75×C * (%)+6.65×N * (%)}...(1) as one parameter. In a continuous annealing line that does not perform overaging treatment, the cooling rate to room temperature after recrystallization annealing is fast, so C cannot be precipitated as Fe 3 C (or similar iron-based carbides). Therefore, C in equation (1)
* (%) means the total amount of C. On the other hand, N is in steel
It has a relatively strong affinity with Al. For this reason, some N exists as AlN in the hot-rolled sheet state, although the amount varies depending on the hot-rolling conditions, and even during subsequent annealing, it hardly dissolves and remains as AlN. A part of the N in the solid solution state may also precipitate as AlN during recrystallization annealing after cold rolling. Hereinafter, the amount of N present as AlN after annealing will be abbreviated as N A and the total N content will be abbreviated as N T . Then, N * in equation (1)
(%) is equal to N T (%) - N A (%). From the above
Equation (1) becomes as follows. Nb (wt%) / {7.75C (wt%) + 6.65 (N T (wt%) - N A (wt%))} ... (2) The amount of N A is greatly influenced by hot rolling conditions. In high-temperature rolled material, most of the N already exists as AlN in the hot-rolled sheet state because it stays for a long time in a temperature range where the precipitation rate of AlN is high. Furthermore, the amount of AlN precipitated is also affected by the amount of Al in the steel even under the same hot rolling conditions.
Therefore, at C0.006%, Nb (wt%)/{7.75C (wt
%) +6.65N T (wt%)}0.7 steel T A = 750,
800, 830℃, t A = 40sec, v 1 = 6℃/sec, v 2 =
N A /N T and solAl / N when annealed at 20℃/sec
The relationship between T (all weight ratios) is shown in Figure 5. In high-temperature rolled material, if solAl/N T ≧2 (solAl means soluble Al), more than 80% of N T is fixed as AlN. On the other hand, in order for 50% or more of N T to be AlN in a low-temperature rolled material, it is a necessary condition that solAl/N T ≧6. Paying attention to the results for the high-temperature rolled material and the low-temperature rolled material in Figure 5, it can be seen that if the range is limited to 2≦solAl/N T ≦11, N A /N T and solAl/N are almost independent of the annealing temperature. There is a proportional relationship with T. Assuming this relationship to be a linear function, the function coefficients were determined using the least squares method. As a result, N
The relationship between A /N T and solAl/N T is (3) for high-temperature web material.
For low-temperature web material, it can be expressed as equation (4). N A /N T =0.023(solAl/N T )+0.75 …(3) N A /N T =0.073(solAl/N T )+0.07 …(4) Formulas (3) and (4) are This is based on the analysis results obtained when steel in the composition range used for the invention was processed under typical annealing conditions. Therefore, it is a parameter for determining the appropriate addition range of Nb. Equation (2) becomes Equation (5) for high-temperature rolled material and Equation (6) for low-temperature rolled material, and this value will be referred to as Z hereinafter. Z=Nb(wt%)/{7.75C(wt%)+6.65(0.25-0.023solAl/ NT ) NT (wt%)}...(5) Z=Nb(wt%)/{7.75C( wt%) + 6.65 ( 0.93−0.073solAl / N
Material and bake hardenability (σ y ′ , 5%
Figure 6 shows the pre-distortion) organized using equation (2) as a parameter. AI monotonically decreases as Z increases, almost unrelated to C content and hot rolling conditions. Z<
At 0.3, AI≧4Kg/mm 2 and a problem arises in aging resistance. On the other hand, when Z>1.2, AI≦1Kg/mm 2 , and as seen from the result of σ y ', solid solution C and N decrease too much and the amount of bake hardening after pressing becomes small.
Regarding YP and El, if Z≦1.2, there is no problem in press formability. As a result of the above, Nb was added to the ultra-low carbon aluminum killed steel with C≦0.010% within the range shown by the following formula. 0.3≦Z≦1.2 …(7) After hot rolling the steel and coiling it at a predetermined temperature,
By cold rolling and then continuous annealing, a high tensile strength cold rolled steel sheet with excellent deep drawing formability, aging resistance, and baking paint hardening properties can be obtained. In the present invention, the coiling temperature after hot rolling is limited to a range of 300°C or higher and 750°C or lower. This is because winding at temperatures below 300°C is not only difficult in terms of equipment, but also has the disadvantage of significantly damaging the sheet shape.On the other hand, winding at temperatures over 750°C deteriorates descaling properties and This is because the grain size becomes coarse and a surface defect called roughness occurs. Next, we will discuss the effect of annealing temperature on material quality during continuous annealing. N7 steel (C=0.008%,
Nb=0.069%), tA =40sec, v1 =6,13℃/
Fig. 7 shows the relationship between the material and the annealing temperature when annealing is performed at sec, v 2 = 20°C/sec. As the annealing temperature increases up to 900℃, El increases and YP decreases. A.I.
It is less than 4Kg/mm 2 up to 900℃. When the temperature exceeds 900°C, Nb (C, N) or AlN begins to dissolve, so the AI increases rapidly. At the same time, El and YP also deteriorate. Therefore, the annealing temperature in the continuous annealing line is required to be higher than the recrystallization temperature and lower than 900°C. Next, we will examine the effects of cooling rates v 1 and v 2 on material quality. Cooling rates v 1 , v 2 and
Figure 8 summarizes the results of our investigation into the relationship with AI. As is clear from the figure, when v 1 ≦50° C./sec, good aging resistance of AI≦4 Kg/mm 2 was obtained regardless of v 2 . By the way, if v 2 > 10℃/sec, then v 1 > 50℃/sec
In this case, AI>4Kg/mm 2 and a problem arises in aging resistance. This is because if the cooling rate from T A is high, the precipitation of C and N centered on precipitates such as Nb (C, N) or AlN that existed in the hot rolled sheet cannot proceed sufficiently. it is conceivable that. However, if v 2 ≦10°C/sec and slow cooling in the 200 to 400°C region where the C and N solid solubility limits are relatively low, the precipitation of C and N is promoted.
Even when v 1 >50°C/sec, AI≦4Kg/mm 2 could be obtained. Finally, we will discuss the effect of P addition on improving TS. N6, NP1, NP2, NP3 steel T A = 830℃, t
FIG. 9 shows the relationship between the material and the amount of P added when annealing was performed at A = 40 sec, v 1 = 6°C/sec, and v 2 = 20°C/sec. TS=35.5 for steel with P=0.008% in high temperature rolled material
Kg/ mm2 , but for steel with P = 0.047%, TS is 5
Increases by approximately Kg/ mm2 . However, El decreases by 2-3% and YP increases by about 2Kg/mm2. Adding 0.10% or less of P can improve TS with relatively little deterioration of YP and El, so it has high utility value as a high-strength steel sheet. Table 2 shows the material properties and bake hardenability of cold-rolled steel sheets actually produced on a continuous annealing line under optimal conditions comprehensively judged from the above results.
【表】【table】
【表】
但し第2表の鋼板A〜Lは830℃で40秒の焼鈍
後0.7%スキンパスし、板厚0.7mmとした鋼板であ
る。
本発明によれば、対象とする鋼の成分組成とし
て、C量はNb添加量とは無関係に0.01%以下で
なければ十分な延性と耐時効性を確保できない。
またNb添加の歩留りを高めるためにAl、Siによ
る脱酸は不可欠であり、Alは鋼中のNと結合し
耐時効性、深絞り性を向上させる効果を持つてい
るのでAl≧0.010%にすることが必要である。し
かしAlを過剰に含有すると介在物の問題あるい
は結晶粒が小さくなりすぎる等の問題があるため
Al≦0.080%にする必要がある。
Siを含有することは好ましいが、0.20%より多
いと第2表の実施例に示したように亜鉛めつき性
を損うので、Siは0.20%以下にする必要がある。
Mnは1.0%より多いと第2表の実施例に示した
ように延性の劣化および亜鉛めつき性が悪くなる
ので、Mnは1.0%以下にする必要がある。
Pは0.10%より多いと延性が劣化するので、P
は0.10%以下にする必要がある。
Nは時効特性に大きな影響力を有する元素であ
るが、アルミキルド鋼では故意にNを添加しない
限り、40〜80ppmの範囲で含有するに過ぎな
い。またC原子とN原子の鋼中における挙動の類
似性からN量もC量と同程度の範囲内であれば問
題はないと考えられる。Nは0.010%より多いと
時効性が大となるので、Nは0.010%以下にする
必要がある。
本発明によれば以上に述べた組成の鋼を熱間圧
延後高温巻取(巻取温度が600℃以上)あるいは
低温巻取(巻取温度が600℃以下)する。ただし
巻取温度は300℃以上、750℃以下とする。ついで
酸洗、冷間圧延後引続き連続焼鈍ラインで再結晶
温度以上900℃以下の温度範囲で焼鈍する。その
後400℃まで50℃/sec以下の平均冷却速度で冷却
し400℃から200℃までは任意の冷却速度で冷却す
るか、あるいは焼鈍温度から400℃まで50℃/sec
以上の平均冷却速度で冷却する場合は400℃から
200℃までを10℃/sec以下の平均冷却速度で冷却
する。
本発明によれば、上述の如くNb添加極低炭ア
ルミキルド鋼を連続焼鈍することにより、深絞り
性、耐時効性ならびに焼付塗装硬化性の3特性に
優れた高張力冷延鋼板を製造することができる。[Table] However, steel plates A to L in Table 2 are steel plates that were annealed at 830°C for 40 seconds and then skin-passed by 0.7% to a plate thickness of 0.7 mm. According to the present invention, sufficient ductility and aging resistance cannot be ensured unless the C content of the target steel is 0.01% or less, regardless of the amount of Nb added.
In addition, deoxidation with Al and Si is essential to increase the yield of Nb addition, and since Al combines with N in steel and has the effect of improving aging resistance and deep drawability, Al≧0.010% is essential. It is necessary to. However, if Al is contained excessively, there are problems such as inclusions or crystal grains becoming too small.
It is necessary to keep Al≦0.080%. Although it is preferable to contain Si, if it is more than 0.20%, the zinc plating properties will be impaired as shown in the examples in Table 2, so the Si content should be 0.20% or less. If the Mn content exceeds 1.0%, the ductility deteriorates and the galvanizing properties deteriorate as shown in the examples in Table 2, so the Mn content must be 1.0% or less. If P exceeds 0.10%, ductility deteriorates, so P
must be below 0.10%. N is an element that has a large influence on aging characteristics, but in aluminum killed steel, unless N is intentionally added, the content is only in the range of 40 to 80 ppm. Furthermore, due to the similarity in behavior of C atoms and N atoms in steel, it is considered that there is no problem as long as the amount of N is within the same range as the amount of C. If N is more than 0.010%, the aging property will be large, so N needs to be 0.010% or less. According to the present invention, the steel having the composition described above is hot-rolled and then coiled at a high temperature (the coiling temperature is 600°C or higher) or at a low temperature (the coiling temperature is 600°C or lower). However, the winding temperature shall be 300℃ or higher and 750℃ or lower. Then, after pickling and cold rolling, it is annealed in a continuous annealing line at a temperature range from the recrystallization temperature to 900°C. Then, cool down to 400℃ at an average cooling rate of 50℃/sec or less, then cool at any cooling rate from 400℃ to 200℃, or cool at 50℃/sec from the annealing temperature to 400℃.
When cooling at an average cooling rate of 400℃ or more
Cools up to 200℃ at an average cooling rate of 10℃/sec or less. According to the present invention, as described above, by continuously annealing Nb-added ultra-low carbon aluminum killed steel, a high-strength cold-rolled steel sheet with excellent three properties of deep drawability, aging resistance, and baking paint hardening properties can be manufactured. I can do it.
第1図は連続焼鈍ラインのヒートサイクルを示
す説明図、第2図は鋼板のC量と機械的性質との
関係を示す図、第3図Aは歪と応力との関係を示
す模式図、第3図Bと第4図はそれぞれ鋼板のC
量と機械的性質との関係を示す模式図、第5図は
鋼板のsolAl/NTとNA(AlN態のN)/NT(全
N)との関係を示す図、第6図は鋼板のNb/
(C+NT−NA)すなわちZと機械的性質との関
係を示す図、第7図は鋼板の焼鈍温度TAと機械
的性質との関係を示す図、第8図は鋼板の焼鈍後
の冷却速度v1,v2とAIとの関係を示す図、第9図
は鋼板のP量と機械的性質との関係を示す図であ
る。
Fig. 1 is an explanatory diagram showing the heat cycle of a continuous annealing line, Fig. 2 is a diagram showing the relationship between the carbon content and mechanical properties of a steel plate, and Fig. 3A is a schematic diagram showing the relationship between strain and stress. Figure 3B and Figure 4 respectively show C of steel plate.
A schematic diagram showing the relationship between quantity and mechanical properties. Figure 5 is a diagram showing the relationship between solAl/N T and N A (N in AlN state)/N T (total N) of the steel plate. Nb/ of steel plate
(C+N T -N A ) That is, a diagram showing the relationship between Z and mechanical properties, Figure 7 is a diagram showing the relationship between the annealing temperature T A of a steel plate and mechanical properties, and Figure 8 is a diagram showing the relationship between the annealing temperature T A of a steel plate and mechanical properties. FIG. 9 is a diagram showing the relationship between the cooling rates v 1 and v 2 and AI, and FIG. 9 is a diagram showing the relationship between the P content and mechanical properties of the steel plate.
Claims (1)
下、Al0.010〜0.080%、P0.10%以下、N0.010%
以下、Nbを下記(イ)、(ロ)の条件の何れかにより規
定される範囲内で含有する低炭素冷延鋼板を、熱
間圧延後、300℃以上、750℃以下の温度で巻取
り、冷間圧延の後、900℃以下の温度に加熱して
再結晶焼鈍し、その後下記(ハ)、(ニ)に示す冷却条件
の何れかにより冷却することを特徴とする深絞り
用高張力冷延鋼板の製造方法。 (イ) 巻取温度600℃以上の場合 0.3≦%Nb/7.75(%C)+6.65(0.25−0.023%可容Al/%全N)(%全N)<1.2 (ロ) 巻取温度600℃未満の場合 0.3≦%Nb/7.75(%C)+6.65(0.93−0.073%可容Al/%全N)(%全N)<1.2 (ハ) 400℃までを50℃/秒以下の冷却速度で除冷
する。 (ニ) 400℃までを50℃/秒より速い冷却速度で冷
却した後、400〜200℃の間を10℃/秒以下の冷
却速度で除冷する。[Claims] 1 C 0.010% or less, Si 0.20% or less, Mn 1.0% or less, Al 0.010 to 0.080%, P 0.10% or less, N 0.010%
Below, a low carbon cold rolled steel sheet containing Nb within the range specified by either of the conditions (a) or (b) below is hot rolled and then coiled at a temperature of 300°C or higher and 750°C or lower. , after cold rolling, it is heated to a temperature of 900°C or less to undergo recrystallization annealing, and then cooled under either of the cooling conditions shown in (c) or (d) below. A method for producing cold-rolled steel sheets. (a) When the coiling temperature is 600℃ or higher 0.3≦%Nb/7.75 (%C) + 6.65 (0.25-0.023%available Al/%total N) (%total N)<1.2 (b) Coiling temperature Below 600℃ 0.3≦%Nb/7.75 (%C) + 6.65 (0.93-0.073%available Al/%total N) (%totalN)<1.2 (c) 50℃/sec or less up to 400℃ Cool slowly at a cooling rate of (d) After cooling up to 400°C at a cooling rate faster than 50°C/sec, gradually cool from 400 to 200°C at a cooling rate of 10°C/sec or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4837479A JPS55141526A (en) | 1979-04-18 | 1979-04-18 | Production of high tension cold-rolled steel plate for deep drawing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4837479A JPS55141526A (en) | 1979-04-18 | 1979-04-18 | Production of high tension cold-rolled steel plate for deep drawing |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55141526A JPS55141526A (en) | 1980-11-05 |
JPS6235463B2 true JPS6235463B2 (en) | 1987-08-01 |
Family
ID=12801543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4837479A Granted JPS55141526A (en) | 1979-04-18 | 1979-04-18 | Production of high tension cold-rolled steel plate for deep drawing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS55141526A (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56166331A (en) * | 1980-04-25 | 1981-12-21 | Nippon Steel Corp | Manufacture of cold rolled steel plate with superior press workability |
JPS57181361A (en) * | 1981-04-28 | 1982-11-08 | Nippon Steel Corp | Large-sized cold rolled steel plate for forming with superior tensile rigidity and its manufacture |
JPS5943825A (en) * | 1982-09-07 | 1984-03-12 | Sumitomo Metal Ind Ltd | Manufacturing method of cold rolled steel sheet for press forming |
JPS6077957A (en) * | 1983-10-05 | 1985-05-02 | Kawasaki Steel Corp | High-tension cold-rolled steel sheet with superior deep drawability |
JPH01108392A (en) * | 1987-10-19 | 1989-04-25 | Sumitomo Metal Ind Ltd | Zn alloy electroplated steel sheet for trim of automobile body and production thereof |
TW550296B (en) * | 2000-02-29 | 2003-09-01 | Kawasaki Steel Co | High tensile cold-rolled steel sheet having excellent strain aging hardening properties and manufacturing method thereof |
TW565621B (en) * | 2000-05-26 | 2003-12-11 | Jfe Steel Corp | Cold-rolled steel sheet and galvanized steel sheet having strain age hardenability property and method for producing the same |
US20030015263A1 (en) | 2000-05-26 | 2003-01-23 | Chikara Kami | Cold rolled steel sheet and galvanized steel sheet having strain aging hardening property and method for producing the same |
DE102006025232A1 (en) * | 2006-05-29 | 2008-01-10 | Mann + Hummel Gmbh | filter housing |
-
1979
- 1979-04-18 JP JP4837479A patent/JPS55141526A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS55141526A (en) | 1980-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6235463B2 (en) | ||
JP2576894B2 (en) | Hot-dip galvanized high-tensile cold-rolled steel sheet excellent in press formability and method for producing the same | |
JP2682351B2 (en) | Method for manufacturing bake hardened cold rolled steel sheet with excellent resistance to normal temperature aging | |
JPS6111296B2 (en) | ||
JPH08176735A (en) | Steel sheet for can and production thereof | |
JPH02194126A (en) | Manufacturing method of bake-hardenable steel plate | |
JP3302118B2 (en) | Manufacturing method of cold rolled steel sheet with excellent deep drawability | |
JPS6249323B2 (en) | ||
JP3882263B2 (en) | Steel plate with excellent panel appearance and dent resistance after panel processing | |
JPS6111294B2 (en) | ||
JPH09310165A (en) | Thin steel plate for working excellent in fatigue characteristics and method for manufacturing the same | |
JPS6152218B2 (en) | ||
JP2560168B2 (en) | Method for producing cold-rolled steel sheet excellent in paint bake hardenability at low temperature | |
JPH03211228A (en) | Production of steel sheet with baking hardenability | |
JP3718987B2 (en) | Paint bake-hardening cold-rolled steel sheet excellent in aging resistance and method for producing the same | |
JPH01191748A (en) | Method for manufacturing cold-rolled steel sheets for press forming with excellent material uniformity inside the coil | |
JP3740875B2 (en) | Cold-rolled thin steel sheet for deep drawing with excellent impact resistance | |
JPH0681045A (en) | Production of cold rolled steel sheet excellent in workability and baking hardenability | |
JP4332960B2 (en) | Manufacturing method of high workability soft cold-rolled steel sheet | |
JPS5852430A (en) | Manufacturing method of galvanized steel sheet for drawing | |
JPH05171351A (en) | Cold rolled steel sheet for deep drawing having non-aging characteristic and excellent in baking hardenability and its production | |
JP3111462B2 (en) | Manufacturing method of high-strength bake hardenable steel sheet | |
JPS5831035A (en) | Production of zinc hot dipped steel plate having excellent workability and baking hardenability | |
JPH0125381B2 (en) | ||
JPH0776410B2 (en) | High-strength cold-rolled steel sheet for non-aging deep drawing excellent in bake hardenability and method for producing the same |