[go: up one dir, main page]

JPS6234683B2 - - Google Patents

Info

Publication number
JPS6234683B2
JPS6234683B2 JP53067373A JP6737378A JPS6234683B2 JP S6234683 B2 JPS6234683 B2 JP S6234683B2 JP 53067373 A JP53067373 A JP 53067373A JP 6737378 A JP6737378 A JP 6737378A JP S6234683 B2 JPS6234683 B2 JP S6234683B2
Authority
JP
Japan
Prior art keywords
alumina
water vapor
rehydrated
water
transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53067373A
Other languages
Japanese (ja)
Other versions
JPS54158397A (en
Inventor
Takeshi Okano
Kazuhiko Konuma
Akinobu Taga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Industries Ltd filed Critical Mitsubishi Chemical Industries Ltd
Priority to JP6737378A priority Critical patent/JPS54158397A/en
Publication of JPS54158397A publication Critical patent/JPS54158397A/en
Publication of JPS6234683B2 publication Critical patent/JPS6234683B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/441Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は活性アルミナの製造法、一層詳しく
は、優れた圧縮強度、耐摩耗性及び大きな比表面
積を有し、且つ比較的微細な細孔半径と比較的大
きな細孔半径との双方に細孔半径の分布を有して
いる、特に触媒担体又は触媒として好適な粒状活
性アルミナを製造する方法に係わる。 活性アルミナは乾燥剤、吸着剤、触媒、触媒担
体等、各種の用途に供されている。従来活性アル
ミナの製造法としては、(1)粉末のγ−アルミナ、
ベーマイトゲル、ベーマイト又はジプサイトを、
水又はその他のバインダーを加えて造粒成形し、
次いでこの成形アルミナを約300〜900℃の温度で
加熱、活性化し、成型γ−又はη−アルミナを製
造する方法、(2)アルミナ三水和物(ジプサイト)
を部分的に〓焼した後、水と混合して造粒し、こ
の造粒アルミナを水中に浸漬してキユアーし、又
は約50〜150℃の水蒸気或いは水蒸気含有ガス中
にてキユアーし、次いで成形アルミナを加熱活性
化してγ−及び/又はη−アルミナを含有する活
性アルミナを製造する方法が知られている。しか
し(1)のような方法によつて製造された活性アルミ
ナは圧縮強度、摩耗強度、触媒担体としての性能
が共に劣る。また(2)の方法によつて製造された活
性アルミナの性能及び強度などは依然として触媒
担体として不満足なものである。 このような事情にかんがみ、本発明者等は上記
のような欠点のない優れた品質、性能を有する活
性アルミナを得るため鋭意研究を重ね、或る特定
の条件の組合わせによつて高活性を損なうことな
く、しかも優れた圧縮強度、耐摩耗性を有し、且
つ大きな表面積と細孔容積をもつ活性アルミナを
製造することができることを見出した。 本発明は高活性を維持し、且つ優れた圧縮強
度、耐摩耗強度及び大きな表面積、100Å以下と
10000〜30000Åの両方に細孔半径分布を有し、触
媒又は触媒担体として好適な活性アルミナを製造
する方法を提供することを目的とするものであつ
て、その要旨とするところは少くとも部分的に再
水和し得る遷移アルミナ又は遷移アルミナ含有物
に水を加えて成形し、次いで水蒸気により再水和
し、更に加熱して活性化する活性アルミナの製造
法において、上記遷移アルミナ又は遷移アルミナ
含有物100重量部に対して2〜70重量部の水及び
0〜10重量部の助剤を加えて所望の形状に成形
し、この成形物を0〜50℃の水蒸気又は水蒸気含
ガス中に24時間以上保持して部分的に再水和し、
次いで50〜150℃で、かつ前記部分的再水和の際
の温度より高い温度の水蒸気中又は水蒸気含有ガ
ス中に、上記遷移アルミナ粒子が実質的に再水和
するに足る時間保持することによつて再水和し、
次いで再水和したアルミナ粒子を300〜900℃の温
度で加熱、活性化することを特徴とする活性アル
ミナの製造法に存する。 以下本発明を詳細に説明する。 本発明方法では先ず、通常平均粒度約50μ程度
の部分的に再水和し得る遷移アルミナ又は遷移ア
ルミナ含有物、即ちχ−アルミナ或いはρ−アル
ミナ又はこれらアルミナを含有するアルミナ或い
は水酸化アルミニウムに水を加えて成形する。こ
の際、遷移アルミナ又は遷移アルミナ含有物100
重量部に対し、水を20〜70重量部用い、更にこの
際助剤を加えてもよい。助剤の添加量は10重量部
以下でよい。この場合用いられる助剤としては結
晶セルロース、硝酸アルミニウム、塩化アルミニ
ウム、酢酸、硝酸、酸性炭酸アルミニウム、ポリ
エチレングリコール、ポリビニルアルコール、ア
ンモニア水等が挙げられる。 即ち、この助剤は焼成時に消失し、焼成成形ア
ルミナ中に微細孔を残すものである。この成形物
の形状は粒状、例えば球状、円柱状、タブレツト
状等でありその大きさは一般に3〜10mm程度でよ
い。造粒法としては例えば押出マルメ造粒、転動
造粒法などが採られる。 次に本発明方法では二段階の再水和処理を行な
う。 先ずその第1段では、上記の成形遷移アルミナ
を0〜50℃、好ましくは5〜50℃一層好ましくは
10〜30℃の水蒸気中、又は上記温度範囲の水蒸気
含有ガス、例えば水蒸気と空気との混合物(例え
ば、水蒸気を発生させ、空気で送りこむなどの手
段による)中で、遷移アルミナ粒子が緩徐に再水
和して部分的にバイヤライトに変化する時間、即
ち24時間以上、好しくは2日以上、一層好ましく
は3〜6日間保持する。第2段の再水和では上記
のようにして部分的に再水和したアルミナを50〜
150℃で第1段の再水和より高い温度、好ましく
は80〜130℃、一層好ましくは100〜120℃の水蒸
気中、又は上記温度範囲の水蒸気含有ガス(例え
ば水蒸気と空気との混合物)で、部分水和したア
ルミナ粒子が実質的に再水和し、バイヤライト生
成が実質的に終るまでの時間、例えば2時間以上
保持する。 以上のようにして二段階の再水和処理が終れ
ば、この再水和したアルミナを300〜900℃の温度
で加熱し、活性化する。 かくして、優れた圧縮強度、摩耗強度及び大き
な表面積、そして100Å以下と10000〜30000Åの
両方に細孔半径分布を有する活性アルミナが得ら
れる。この活性アルミナは触媒担体としてのみな
らず、触媒としての活性にも優れている。 通常、強度の向上と活性向上とは相反するもの
であるが、本発明方法による製品は触媒担体又は
触媒としての性能が低下することなく、しかも強
度が向上する。このことは前述の特定条件からな
る二段階の再水和処理の結果と考えられる。しか
してその理論的根拠は明らかでないが、恐らく、
前記特定条件で行なう二段階の再水和処理によつ
た場合、最初はゆつくりした再水和により、基本
構造を構成するネツトワークが出来あがり、第2
段の再水和により、このネツトワークを中心に更
に補強が行なわれて実質的な再水和が完成するも
のと考えられる。これに対し、再水和が不十分な
らば勿論のこと、再水和が十分でも、これらが急
激に進行する場合には構造破壊などを伴い、良好
な物性が得られないと推測される。 次に本発明方法の実施例及びこれと対比する比
較例を示し、本発明の効果を明らかにする。 実施例 1 平均粒径約50μのX線的にχ−アルミナを示す
遷移アルミナ1Kgに約50gのアビセル〔旭化成(株)
製品、結晶セルロース〕を加えて混合器で1時間
混合し、このものに約550gの水を加えながら転
動造粒機で成形し、直径3〜4mmの球状アルミナ
を作つた。この遷移アルミナを成形後、水分を含
有したまま直ちに密閉容器に入れ、約25℃で3日
間保持し、次いで水を共存させた密閉容器に入
れ、100〜120℃において2時間保持することによ
り水蒸気キユアーした。次いでこの再水和アルミ
ナを乾燥後約600℃で3時間加熱し、活性化し
た。この活性アルミナを試料Aとする。 比較例 1 実施例1と同様にして製造した成形遷移アルミ
ナを、実施例1の処理条件中、「密閉容器中、約
25℃で3日間放置」の工程を省略し、その他は実
施例1と同様にして活性アルミナを得た。このも
のを試料Bとする。 比較例 2 実施例1と同様にして製造した成形遷移アルミ
ナを、実施例1における、密閉容器中約25℃で3
日間保持する代りに密閉容器中、約25℃で12時間
放置し、それ以外は実施例1と同様にして活性ア
ルミナを得た。このものを試料Cとする。 比較例 3 実施例1と同様にして製造した成形遷移アルミ
ナを大気中に3日間放置することにより空気中で
キユアーし、次いで実施例1と同様にして約600
℃で3時間加熱、活性化した。得られた活性アル
ミナを試料Dとする。 以上の試料A〜Dの圧縮強度、耐摩耗強度、各
試料を担体とした触媒の性能、比表面積、細孔容
量、最頻細孔半径を下記の方法で測定し、その結
果を第1表に示す。 (1) 圧縮強度(Kg/個) 木屋式硬度計を用いて粒の破壊荷重(Kg/
個)を測定し、20個の平均値を圧縮強度とし
た。 (2) 耐摩耗強度(%) JIS K1474−1975に準拠して測定した。 (3) 触媒活性 試料担体12c.c.を42%のシユウ酸バナジル水溶
液に3時間浸漬し、液切り後、乾燥器で100
℃、3時間乾燥する。 次いで焼成炉において500℃、3時間、空気
流通下で焼成し、活性アルミナ担持のV2O5
媒を作つた。この触媒12c.c.を脱硝用反応管に充
填し、8容量%の酸素、12容量%の炭酸ガス、
20容量%の水蒸気、100ppmのノツクス(窒素
酸化物)、100ppmのアンモニア、残余窒素
(ウエツトベース)の組成からなるノツクス含
有ガスをSV20000Hr-1、温度270℃の条件下で
通してノツクス分解率(%)を測定し、触媒性
能とした。 なおノツクス分解率は次式による。 ノツクス量(入口、100ppm)−ノツクス量(出口)/ノツクス(入口、100ppm)
×100 (4) 表面積 BET法N2吸着法により測定した活性アルミ
ナ担体の表面積(m2/g)である。 (5) 細孔容量(c.c./g)及び最頻細孔半径(Å) 水銀圧入法により測定した細孔半径40Å以上
の容積(c.c./g)であり、同時に細孔半径
(Å)分布を求めた。
This invention relates to a method for producing activated alumina, and more particularly, to a method for producing activated alumina, which has excellent compressive strength, wear resistance, and large specific surface area, and which has pores of both relatively fine pore radius and relatively large pore radius. The present invention relates to a method for producing granular activated alumina, which has a radial distribution and is particularly suitable as a catalyst support or catalyst. Activated alumina is used for various purposes such as desiccants, adsorbents, catalysts, and catalyst carriers. Conventional methods for producing activated alumina include (1) powdered γ-alumina;
boehmite gel, boehmite or gypsite,
Add water or other binder and granulate it,
Next, this molded alumina is heated and activated at a temperature of about 300 to 900°C to produce molded γ- or η-alumina. (2) Alumina trihydrate (gypsite)
After partially calcining, it is mixed with water and granulated, and the granulated alumina is cured by immersing it in water or in water vapor or water vapor-containing gas at about 50 to 150°C, and then A method of producing activated alumina containing γ- and/or η-alumina by thermally activating shaped alumina is known. However, activated alumina produced by the method (1) is inferior in compressive strength, abrasion strength, and performance as a catalyst carrier. Furthermore, the performance and strength of activated alumina produced by method (2) are still unsatisfactory as a catalyst carrier. In view of these circumstances, the present inventors have conducted extensive research in order to obtain activated alumina with excellent quality and performance without the above-mentioned drawbacks, and have achieved high activity through a combination of certain conditions. It has been found that it is possible to produce activated alumina which has excellent compressive strength and abrasion resistance, as well as a large surface area and pore volume, without damage. The present invention maintains high activity, has excellent compressive strength, abrasion resistance strength, and large surface area, less than 100 Å.
The purpose of this paper is to provide a method for producing activated alumina which has a pore radius distribution in the range of 10,000 to 30,000 Å and is suitable as a catalyst or catalyst carrier, and its gist is at least partially In the method for producing activated alumina, the above-mentioned transition alumina or transition alumina-containing material is formed by adding water to the transition alumina or a transition alumina-containing material that can be rehydrated, and then rehydrating with steam, and further heating and activating the transition alumina or transition alumina-containing material. 2 to 70 parts by weight of water and 0 to 10 parts by weight of auxiliaries are added to 100 parts by weight of the product, molded into a desired shape, and the molded product is placed in steam or steam-containing gas at 0 to 50°C for 24 hours. Hold for more than an hour to partially rehydrate,
Then, the transition alumina particles are held in water vapor or a water vapor-containing gas at a temperature of 50 to 150°C and higher than the temperature during the partial rehydration for a time sufficient to substantially rehydrate the transition alumina particles. Twist and rehydrate.
The method of producing activated alumina is characterized in that the rehydrated alumina particles are then heated and activated at a temperature of 300 to 900°C. The present invention will be explained in detail below. In the process of the present invention, a partially rehydrated transition alumina or a transition alumina-containing material, usually having an average particle size of about 50 microns, i.e., χ-alumina or ρ-alumina, or an alumina containing these aluminas or aluminum hydroxide, is first treated with water. Add and shape. At this time, transition alumina or transition alumina-containing material 100
Water is used in an amount of 20 to 70 parts by weight, and an auxiliary agent may be added at this time. The amount of the auxiliary agent added may be 10 parts by weight or less. Examples of the auxiliary agents used in this case include crystalline cellulose, aluminum nitrate, aluminum chloride, acetic acid, nitric acid, acidic aluminum carbonate, polyethylene glycol, polyvinyl alcohol, and aqueous ammonia. That is, this auxiliary agent disappears during firing, leaving micropores in the fired and formed alumina. The shape of this molded product is granular, for example, spherical, cylindrical, tablet-like, etc., and its size may generally be about 3 to 10 mm. Examples of the granulation method include extrusion granulation, rolling granulation, and the like. Next, in the method of the present invention, a two-stage rehydration treatment is performed. First, in the first stage, the above-mentioned shaped transitional alumina is heated at 0 to 50°C, preferably 5 to 50°C, more preferably
Transition alumina particles are slowly regenerated in water vapor at a temperature of 10 to 30°C or in a water vapor-containing gas in the above temperature range, such as a mixture of water vapor and air (e.g., by generating water vapor and passing it in with air). It is maintained for a period of time during which it is hydrated and partially transformed into bayerite, that is, 24 hours or more, preferably 2 days or more, and more preferably 3 to 6 days. In the second stage of rehydration, the partially rehydrated alumina as described above is
in water vapor at a temperature higher than the first stage rehydration at 150°C, preferably from 80 to 130°C, more preferably from 100 to 120°C, or in a water vapor-containing gas (e.g. a mixture of water vapor and air) in the above temperature range. , the partially hydrated alumina particles are held for a period of time, such as 2 hours or more, until the partially hydrated alumina particles are substantially rehydrated and bayerite formation is substantially completed. After the two-step rehydration process is completed as described above, the rehydrated alumina is heated at a temperature of 300 to 900°C to activate it. Activated alumina is thus obtained with excellent compressive strength, abrasion strength and large surface area, and a pore radius distribution both below 100 Å and between 10,000 and 30,000 Å. This activated alumina has excellent activity not only as a catalyst carrier but also as a catalyst. Generally, improvement in strength and improvement in activity are contradictory, but the product produced by the method of the present invention has improved strength without deteriorating its performance as a catalyst carrier or catalyst. This is considered to be the result of the two-stage rehydration process consisting of the specific conditions mentioned above. However, the theoretical basis for this is not clear, but perhaps
When the two-stage rehydration process is carried out under the above-mentioned specific conditions, the initial slow rehydration creates a network that constitutes the basic structure, and the second stage
It is believed that rehydration of the stage results in further reinforcement around this network, completing substantial rehydration. On the other hand, if the rehydration is insufficient, of course, and even if the rehydration is sufficient, if the rehydration proceeds rapidly, it is presumed that structural destruction will occur and good physical properties will not be obtained. Next, examples of the method of the present invention and comparative examples will be shown to clarify the effects of the present invention. Example 1 Approximately 50 g of Avicel [Asahi Kasei Corporation] was added to 1 kg of transition alumina, which exhibits χ-alumina in X-rays and has an average particle size of approximately 50 μm.
Product, crystalline cellulose] was added and mixed for 1 hour in a mixer, and then molded in a rolling granulator while adding about 550 g of water to form spherical alumina with a diameter of 3 to 4 mm. After forming this transition alumina, it is immediately placed in a sealed container while still containing water and kept at approximately 25°C for 3 days, then placed in a sealed container with water coexisting and kept at 100 to 120°C for 2 hours to allow steam to form. I got cured. The rehydrated alumina was then dried and activated by heating at about 600° C. for 3 hours. This activated alumina is designated as sample A. Comparative Example 1 Molded transitional alumina produced in the same manner as in Example 1 was treated under the treatment conditions of Example 1 in a closed container with approximately
Activated alumina was obtained in the same manner as in Example 1 except that the step of "standing at 25°C for 3 days" was omitted. This is designated as sample B. Comparative Example 2 Molded transitional alumina produced in the same manner as in Example 1 was heated in a closed container at about 25°C for 30 minutes as in Example 1.
Activated alumina was obtained in the same manner as in Example 1 except that instead of holding it for 1 day, it was left in a closed container at about 25° C. for 12 hours. This material is designated as sample C. Comparative Example 3 Molded transitional alumina produced in the same manner as in Example 1 was cured in air by leaving it in the atmosphere for 3 days, and then cured in the same manner as in Example 1 for about 600 ml.
The mixture was activated by heating at ℃ for 3 hours. The obtained activated alumina is designated as Sample D. The compressive strength, abrasion resistance strength, performance of the catalyst using each sample as a carrier, specific surface area, pore volume, and mode pore radius of the above samples A to D were measured by the following methods, and the results are shown in Table 1. Shown below. (1) Compressive strength (Kg/piece) Using a Kiya type hardness tester, measure the breaking load of the grains (Kg/piece).
) was measured, and the average value of 20 was taken as the compressive strength. (2) Abrasion resistance strength (%) Measured in accordance with JIS K1474-1975. (3) Catalytic activity A 12c.c. sample carrier was immersed in a 42% vanadyl oxalate aqueous solution for 3 hours, and after draining, it was dried in a dryer to 100%
Dry at ℃ for 3 hours. The mixture was then fired in a firing furnace at 500°C for 3 hours under air circulation to produce a V 2 O 5 catalyst supported on activated alumina. This catalyst (12 c.c.) was packed into a denitrification reaction tube, and 8 volume% oxygen, 12 volume% carbon dioxide gas,
A NOx-containing gas consisting of 20% water vapor, 100ppm NOx (nitrogen oxides), 100ppm ammonia, and residual nitrogen (wet base) was passed under the conditions of SV20000Hr -1 and 270°C to determine the NOx decomposition rate (%). ) was measured and defined as catalyst performance. Note that the Nox decomposition rate is determined by the following formula. Nox amount (inlet, 100 ppm) - Nox amount (outlet) / Nox amount (inlet, 100 ppm)
×100 (4) Surface area This is the surface area (m 2 /g) of the activated alumina support measured by the BET method N 2 adsorption method. (5) Pore capacity (cc/g) and mode pore radius (Å) The volume (cc/g) with a pore radius of 40 Å or more measured by mercury intrusion method, and the pore radius (Å) distribution at the same time. I asked for it.

【表】 上記第1表によれば、本発明方法によつて製造
された試料Aは、本発明方法と対比し、低温で緩
徐に長時間かけて水蒸気キユアーする工程を省略
して製造した試料B、低温で緩徐に水蒸気キユア
する処理を短時間行なつて製造した試料C、また
空気キユアーによつて水和して製造した試料Dの
何れよりも圧縮強度、耐摩耗強度、触媒性能が優
れていることが明らかである。 なお、以上説明し、実施例に示したところは、
本発明の理解を助けるための例示であり、本発明
はこれら例示によつて制限を受けるものでなく、
本発明はその要旨内で他の変更、変形例をとるこ
とができるものである。
[Table] According to Table 1 above, sample A manufactured by the method of the present invention is a sample manufactured by omitting the step of slow steam curing at low temperature for a long time, in contrast to the method of the present invention. B, sample C produced by slow steam curing at low temperature for a short time, and sample D produced by hydration by air curing, both in compressive strength, abrasion resistance, and catalytic performance. It is clear that In addition, what has been explained above and shown in the examples is as follows.
These are examples to help understand the present invention, and the present invention is not limited by these examples.
The present invention is capable of other changes and modifications within the scope of the invention.

Claims (1)

【特許請求の範囲】[Claims] 1 少くとも部分的に再水和し得る遷移アルミナ
又は遷移アルミナ含有物に水を加えて成形し、次
いで水蒸気により再水和し、更に加熱して活性化
する活性アルミナの製造法において上記遷移アル
ミナ又は遷移アルミナ含有物100重量部に対して
20〜70重量部の水及び0〜10重量部の助剤を加え
て所望の形状に成形し、この成形物を0〜50℃の
水蒸気又は水蒸気含有ガス中に24時間以上保持し
て部分的に再水和し、次いで50〜150℃で、かつ
前記部分的再水和の際の温度より高い温度の水蒸
気中又は水蒸気含有ガス中に上記遷移アルミナ粒
子が実質的に再水和するに足る時間保持すること
によつて再水和し、次いで再水和したアルミナ粒
子を300〜900℃の温度で加熱、活性化することを
特徴とする活性アルミナの製造法。
1. A process for producing activated alumina in which transition alumina or a transition alumina-containing material that can be at least partially rehydrated is formed by adding water, then rehydrated with steam, and further activated by heating. or for 100 parts by weight of transition alumina-containing material
20 to 70 parts by weight of water and 0 to 10 parts by weight of auxiliary agents are added and molded into the desired shape, and the molded product is kept in water vapor or water vapor-containing gas at 0 to 50°C for 24 hours or more to partially heat the product. and then in water vapor or a water vapor-containing gas at a temperature of 50 to 150°C and higher than the temperature during the partial rehydration, sufficient to substantially rehydrate the transition alumina particles. A method for producing activated alumina, which comprises rehydrating the alumina particles by holding the particles for a period of time, and then heating and activating the rehydrated alumina particles at a temperature of 300 to 900°C.
JP6737378A 1978-06-05 1978-06-05 Production of activated alumina Granted JPS54158397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6737378A JPS54158397A (en) 1978-06-05 1978-06-05 Production of activated alumina

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6737378A JPS54158397A (en) 1978-06-05 1978-06-05 Production of activated alumina

Publications (2)

Publication Number Publication Date
JPS54158397A JPS54158397A (en) 1979-12-14
JPS6234683B2 true JPS6234683B2 (en) 1987-07-28

Family

ID=13343134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6737378A Granted JPS54158397A (en) 1978-06-05 1978-06-05 Production of activated alumina

Country Status (1)

Country Link
JP (1) JPS54158397A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179268A (en) * 2009-02-07 2010-08-19 Kosei:Kk Plant for producing support

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3392125A (en) * 1963-07-11 1968-07-09 Kaiser Aluminium Chem Corp Method for preparing an alpha alumina catalyst support
JPS4998398A (en) * 1973-01-26 1974-09-18
JPS5021319A (en) * 1973-06-27 1975-03-06
JPS50161494A (en) * 1974-06-20 1975-12-27

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179268A (en) * 2009-02-07 2010-08-19 Kosei:Kk Plant for producing support

Also Published As

Publication number Publication date
JPS54158397A (en) 1979-12-14

Similar Documents

Publication Publication Date Title
US5733842A (en) Method of making porous catalyst carrier without the addition of pore forming agents
AU644256B2 (en) Catalyst carrier
US4051072A (en) Method for making pellet type catalyst
US4013587A (en) Process for the manufacture of spherical alumina-containing particles
US4260524A (en) Hollow catalyst carrier and hollow catalyst made of transition-alumina and process for production thereof
JPH0256246A (en) Production for catalyst including silver for ethylene oxide
US4061594A (en) Alumina-based bodies obtained by agglomeration which are resistant to elevated temperatures
RU2001111860A (en) The method of impregnation for catalysts
KR20150050420A (en) Alumina carrier, method of preparing the same, and silver catalyst
JPS6323739A (en) Catalyst based on zirconium for treating industrial waste gas containing sulfur compound and method
US3883442A (en) Non-shrinking alumina-based catalyst compositions
US4192855A (en) Process for the simultaneous separation of sulfur and nitrogen oxides from a gaseous mixture
US4119568A (en) Solid supported catalysts for catalytic reduction of nitrogen oxides in waste gases
US3894967A (en) Catalyst for purifying exhaust gases
US3594982A (en) Process for drying unsaturated organic gaseous compounds
US4258020A (en) Process for the simultaneous separation of sulfur and nitrogen oxides from a gaseous mixture
US2916356A (en) Calcination of macrosize alumina hydrate
US3743709A (en) Preparation of highly porous alumina
JPS6234683B2 (en)
JP2002136868A (en) Carrier of catalyst for manufacturing ethylene oxide, catalyst using the carrier for manufacturing ethylene oxide and method for manufacturing ethylene oxide
RU2199386C1 (en) Catalyst for removing nitrogen oxides from gases and method of preparation thereof
CN112007625B (en) Alpha-alumina carrier, preparation method, silver catalyst and application
US3623993A (en) Alumina desiccant for drying unsaturated organic gaseous compounds
RU2711605C1 (en) Method of producing alumina catalysts of the claus process and use thereof on sulfur production plants
JPH04338233A (en) Adsorbent for nox and method for removing nox by using this adsorbent