[go: up one dir, main page]

JPS6234141A - In-finder display device - Google Patents

In-finder display device

Info

Publication number
JPS6234141A
JPS6234141A JP60173790A JP17379085A JPS6234141A JP S6234141 A JPS6234141 A JP S6234141A JP 60173790 A JP60173790 A JP 60173790A JP 17379085 A JP17379085 A JP 17379085A JP S6234141 A JPS6234141 A JP S6234141A
Authority
JP
Japan
Prior art keywords
anisotropic
transparent
optical axis
substances
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60173790A
Other languages
Japanese (ja)
Other versions
JPH0664269B2 (en
Inventor
Hajime Sakata
肇 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60173790A priority Critical patent/JPH0664269B2/en
Priority to DE19863627113 priority patent/DE3627113A1/en
Priority to GB8619323A priority patent/GB2180946B/en
Publication of JPS6234141A publication Critical patent/JPS6234141A/en
Priority to US08/092,569 priority patent/US5299037A/en
Publication of JPH0664269B2 publication Critical patent/JPH0664269B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Indication In Cameras, And Counting Of Exposures (AREA)

Abstract

PURPOSE:To display an alarming pattern with the brightness of a visible field retained by installing in an optical path of a finder plural gratings composed of an interface made of two substances roughly perpendicular to said optical path using an optically anisotropic material for either one of said two substances and controlling the optical axis direction. CONSTITUTION:Anisotropic substances 1 and 1' having different optical axis directions, a transparent optical member 2, a transparent electrode 3, a transparent space 4 and a transparent heater are provided. The optical axis directions of polarized components 7 and 7' orthogonally intersecting due to an incident light 6 and those of the anisotropic substances 1 and 1' are illustrated. The optical axis of the 1st-layered anisotropic substance 1 points a grating groove direction 8, while that of the 2nd- layered substance 1' points a direction 8'. The anisotropic substances 1 and 1' change their optical axis directions due to the impression of an electric field, and accordingly the refraction factor felt by the incident light 6 changes. In a static state without the impression of an electric field, the polarized component 7' of the incident light 6 in the 1st layer feels the abnormal refraction of the anisotropic substance 1, while the polarized component 7 feels the normal refraction ratio of the substance 1.

Description

【発明の詳細な説明】 (1) 技術分野 本発明は、表示装置、特にカメラやビデオ等の撮影装置
に於るファインダー内に、撮影時の各種情報を表示する
表示装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field The present invention relates to a display device, and particularly to a display device that displays various information at the time of photographing in a finder of a photographing device such as a camera or a video camera.

(2) 従来技術 従来、カメラやビデオ等の撮影装置に於るファインダー
内に、所定の撮影情報を表示する場合、撮影視野枠の外
側に配置されたLEDや液晶を用いていた。しかしなが
ら、この様な機構では、露出状態の不適切を警告する表
示を見落とす可能性があり、更に、撮影視野内の合焦領
域や露出適正領域等を表示する事は不可能であった・ 」−記の如き欠点を鑑みて、液晶ディスプレイ等を視野
と重ねて表示を行なうなどの提案が本件出願人などから
出されている。例えば、特開EV+ 52−11062
6では、TN(ツイスト−ネマチック)液晶ディスプレ
イを利用している。しかし、この種のディスプレイでは
通常偏丸板を利用する為、光利用効率が最大で50%程
度しか得られなかった。又、特開昭58−62626は
GH(ゲス)−ホスト)型液晶ディスプレイを利用した
もので、偏光板は不要であるものの色素分子による光吸
収が常時存在する為に光利用効率が低下していた。
(2) Prior Art Conventionally, when displaying predetermined photographic information in the finder of a photographing device such as a camera or a video camera, an LED or liquid crystal placed outside the photographic field of view has been used. However, with this type of mechanism, there is a possibility that the display warning of inappropriate exposure conditions may be overlooked, and furthermore, it is impossible to display the in-focus area or appropriate exposure area within the photographic field of view. - In view of the above-mentioned drawbacks, the applicant and others have proposed displaying a liquid crystal display or the like overlapping the visual field. For example, JP-A EV+ 52-11062
6 utilizes a TN (twisted-nematic) liquid crystal display. However, since this type of display normally uses a polarized plate, a maximum light utilization efficiency of only about 50% can be achieved. Furthermore, JP-A No. 58-62626 uses a GH (guess)-host) type liquid crystal display, and although a polarizing plate is not required, the light utilization efficiency is reduced due to the constant presence of light absorption by dye molecules. Ta.

従って、従来の方式ではファインダーに於る撮影視野円
表示装置の有用性が高いにもかかわらず、ファインダー
内の明るさが十分に取れないという欠点を有していた。
Therefore, in the conventional system, although the photographing field circle display device in the finder is highly useful, it has the drawback that sufficient brightness cannot be obtained within the finder.

〔3) 発明の概要 本発明の目的は、上記従来の欠点を除去し。[3) Summary of the invention The object of the present invention is to eliminate the above-mentioned conventional drawbacks.

ファインダー光路中のほぼ全光束を覆う位置に配置する
事が可能で、且つ常時ファインダー内の明るさを保持し
たままで、任意の場所に鮮明な表示が出来るファインダ
ー内表示装置を提供する事にある。
To provide an in-finder display device that can be placed in a position that covers almost the entire luminous flux in the finder optical path, and that can provide a clear display at any location while maintaining the brightness in the finder at all times. .

上記目的を達成する為に、本発明に係るファインダー内
表示装置は、カメラのファインダー内に撮影情報、パタ
ーン等の表示を行なうファインター内表示装置に於て、
前記ファインダー内の光路中に2つの物質の界面から成
る複数個のグレーティングを光路に対しほぼ垂直に設け
、Il、つ該2つの物質の内一方を光学的な異方性物質
から構成し、該異方性物質の光学軸方向を制御する・1
tにより、第1の状態では、前記複数個のグレーティン
グに於る光学軸方向を全て一致させて被写体光を全て透
過させ、第2の状態では、1)11記複数個のグレーテ
ィングに於る重なり合う所定部分の光学軸方向を異なら
せて被写体光の少なくとも一部を遮断し、撮影情報、パ
ターン等の表示を行なう事を特徴とする。
In order to achieve the above object, an in-finder display device according to the present invention is an in-finder display device that displays shooting information, patterns, etc. in the finder of a camera.
A plurality of gratings made of interfaces of two materials are provided in the optical path in the finder almost perpendicularly to the optical path, one of the two materials is made of an optically anisotropic material, and Controlling the optical axis direction of anisotropic materials・1
t, in the first state, the optical axis directions of the plurality of gratings are all aligned so that all the subject light is transmitted, and in the second state, 1) the plurality of gratings in item 11 overlap It is characterized by changing the direction of the optical axis of a predetermined portion to block at least part of the object light and displaying photographic information, patterns, etc.

前記光学的異方性物質は電界、磁界、熱。The optically anisotropic substance is an electric field, a magnetic field, or heat.

圧力、光等によりその光学軸を変化させる事が出来る物
質、もしくは屈折率を変化せしめる=11が出来る物質
であって、例えば、液晶や電気光学結晶、即ち、PLZ
T、LiNbO3゜LiTaO3,TiO2,PMMA
、CCu4KDP、ADP、ZnO,BaTiO3。
A substance whose optical axis can be changed by pressure, light, etc., or a substance whose refractive index can be changed by =11, such as liquid crystal or electro-optic crystal, i.e. PLZ.
T, LiNbO3゜LiTaO3, TiO2, PMMA
, CCu4KDP, ADP, ZnO, BaTiO3.

B i 12 S i 020 、 B a 2 N 
a N b 5015 、 M nBi  、EuO,
CS2  、Gd 2 (MOO4)  3  。
B i 12 S i 020 , B a 2 N
a N b 5015 , M nBi , EuO,
CS2, Gd2(MOO4)3.

Bi  4Ti  30t2 、CuCJl、GaAs
、ZnTe、As2Se3.Se、AsGe5eS。
Bi 4Ti 30t2, CuCJl, GaAs
, ZnTe, As2Se3. Se, AsGe5eS.

DKDP 、MNA 、mNA 、UREA 、7オ〜
トレジスト、ネマチック液晶、コレステリック液晶、ス
メクチック液晶、強誘電液晶等が挙げられる。特に液晶
は安価で、且つ制御法が容易である為に好適な材料であ
る。
DKDP, MNA, mNA, UREA, 7o~
Examples include resist, nematic liquid crystal, cholesteric liquid crystal, smectic liquid crystal, and ferroelectric liquid crystal. In particular, liquid crystal is a suitable material because it is inexpensive and easy to control.

又、本表示装置は被写体光の透過、遮断(回折)による
モノクロパターンの表示の他、カラーフィルター等を用
いたカラー表示、グレーティングの分光透過率特性を利
用したカラー表示等を行なう事も出来る。
In addition to displaying a monochrome pattern by transmitting and blocking (diffraction) the subject light, this display device can also perform color display using a color filter or the like, color display using the spectral transmittance characteristics of a grating, etc.

更に上述のグレーティングを作成する方法としては、レ
ジストを用いる方法、フォトリソグラフィーとドライエ
ツチングによる方法、熱硬化性樹脂あるいは紫外線硬化
性樹脂等を用いたレプリカ法、ルーリングエンジンを用
いた切削法あるいはエンボス法等の各種方法が挙げられ
る。
Furthermore, methods for creating the above-mentioned grating include a method using a resist, a method using photolithography and dry etching, a replica method using a thermosetting resin or an ultraviolet curable resin, a cutting method using a ruling engine, or an embossing method. There are various methods such as

(4) 実施例 第1図、第214.第3図は本発明に係る表示装置に用
いる表示素子の基本構成図で、1及び1′は各々光学軸
の方向が異なる異方性物質、2は透明光学部材、3は透
明電極、4は透明スペーサ、5は透明ヒータである。
(4) Example Fig. 1, Fig. 214. FIG. 3 is a basic configuration diagram of a display element used in a display device according to the present invention, in which 1 and 1' are anisotropic materials whose optical axes differ in direction, 2 is a transparent optical member, 3 is a transparent electrode, and 4 is a The transparent spacer 5 is a transparent heater.

第1図は電界制御型の表示素子の基本構成図で、2つの
グレーティングが1つの素子内に形成されているもので
ある。第1図(A)の素子は透明光学部材2が三角形状
のグレーティングを有し、(l板透明スペーサ4を介し
て上下に異方性物質1.1’が配置されている。尚、透
明電極3は透明光学部材2のグレーティングに沿って形
成されている。第1図(B)の素子は一方の透明光学部
材2にグレーティングを形成し、透明スペーサ4の片面
に形成したクレーティングを相対する透明光学部材2側
に向けて配置し、透明スペーサ4を介して異方性物質l
、1′を」−下に配している。尚、透明電極3は各々の
透明光学部材2に設けられている。第1図(C)の素子
は平板透明電極3を有する透明光学部材2を相対する様
に向かい合わせ、該透明型[3間に両面にグレーティン
グを有する透明スペーサ4を配し、該透明スペーサ4を
介して上下にu方性物質1,1′を間隙部に配置してい
る。
FIG. 1 is a basic configuration diagram of an electric field control type display element, in which two gratings are formed within one element. In the device shown in FIG. 1(A), the transparent optical member 2 has a triangular grating, and anisotropic substances 1.1' are arranged above and below with an L-plate transparent spacer 4 in between. The electrode 3 is formed along the grating of the transparent optical member 2. In the device shown in FIG. The anisotropic material l is placed facing the transparent optical member 2 side to be
, 1' are arranged below. Note that the transparent electrode 3 is provided on each transparent optical member 2. In the device shown in FIG. 1(C), transparent optical members 2 having flat transparent electrodes 3 are placed facing each other, and a transparent spacer 4 having gratings on both sides is disposed between the transparent molds [3]. U-tropic substances 1 and 1' are placed in the gap above and below with the gap between them.

第2図は熱制御型の表示素子の基本構成図で基本構造は
図から解る様に第1図とほぼ同様である。但し、第2図
(A)では透明ヒータ5をスペーサ4の替りに配置して
異方性物質1,1′をJ−下に分けており、第2図(B
)では第1図(B)に於る透明電極3の妊りに透明ヒー
タ5を設けている。
FIG. 2 is a basic configuration diagram of a thermally controlled display element, and as can be seen from the diagram, the basic structure is almost the same as that in FIG. 1. However, in FIG. 2(A), a transparent heater 5 is placed in place of the spacer 4 to separate the anisotropic substances 1 and 1' into J-bottom, and FIG.
), a transparent heater 5 is provided around the transparent electrode 3 in FIG. 1(B).

更に、第3図は1つのグレーティングを形成した表示素
子を2段に配したもので、個々の素子に用いている異方
性物質1.1′は互いに光学軸の方向が異なる。各素子
は透明光学部材2にグレーティングが形成され、且つ該
部材2に設けた透明電極3によって電界を印加し異方性
物質1,1′の光学軸方向を制御する。
Furthermore, FIG. 3 shows a display device in which one grating is formed in two stages, and the anisotropic materials 1.1' used in each device have optical axes in different directions. In each element, a grating is formed on a transparent optical member 2, and an electric field is applied by a transparent electrode 3 provided on the member 2 to control the optical axis direction of the anisotropic substances 1, 1'.

以下に上述した表示素子の動作原理を述べる。」、記表
示素子の全も動作原理は殆ど等しい為、ここでは第1図
(A)の素子を例に挙げて説明する。尚、自然光等の任
意の偏光面を有する光は、所定の直交する2つの偏光成
分に分けて考える°19が出来る。
The operating principle of the display element described above will be described below. Since all of the display elements described above have almost the same principle of operation, the element shown in FIG. 1(A) will be explained here as an example. Note that light having an arbitrary plane of polarization, such as natural light, can be considered by dividing it into two predetermined orthogonal polarization components.

第4図は1−記表示素子の動作原理説明図で。FIG. 4 is a diagram illustrating the operating principle of the display element 1-.

6は入射光、7.7′は各々の入射光6に於るIfいに
直交する偏光成分、8,8′は異方性物質1.1′の光
学軸方向を示す。尚、第1図(A)と同し部材には同番
号を符す。
Reference numeral 6 indicates the incident light, 7.7' indicates the polarization component orthogonal to If in each incident light 6, and 8 and 8' indicate the optical axis direction of the anisotropic material 1.1'. Note that the same members as in FIG. 1(A) are designated by the same numbers.

第4図に於て、第1層目の異方性物質lの光学軸はグレ
ーティング溝方向8を向き、第2層11の異方性物質1
′の光学軸はグレーティングの配列方向8′を向いてい
る。ここで、異方性物質1及び1′は電界印加によりそ
の光学軸方向が変化し、入射光6が感じる屈折率が変化
する。
In FIG. 4, the optical axis of the anisotropic material 1 in the first layer is directed toward the grating groove direction 8, and the anisotropic material 1 in the second layer 11 is oriented in the grating groove direction 8.
The optical axis of ' is directed in the grating arrangement direction 8'. Here, the optical axis direction of the anisotropic substances 1 and 1' changes by applying an electric field, and the refractive index perceived by the incident light 6 changes.

第1の状IE、、即ち電界無印加の静的状態では、第1
層目に於る入射光6の偏光成分7′は異方性物¥11の
異常屈折neを感じ、偏光成分7は異方性物質lの常屈
折率noを感じる。又。
In the first state IE, that is, in the static state with no electric field applied, the first state IE is
The polarized light component 7' of the incident light 6 in the layer senses the extraordinary refraction ne of the anisotropic material 11, and the polarized light component 7 senses the ordinary refractive index no of the anisotropic material 1. or.

第2層目に於て、入射光6の偏光成分7′は異方性物質
1′の常屈折率no’を感じ、偏光成分7′は異方性物
質1′の異常屈折率ne′を感じる。
In the second layer, the polarized light component 7' of the incident light 6 senses the ordinary refractive index no' of the anisotropic material 1', and the polarized light component 7' senses the extraordinary refractive index ne' of the anisotropic material 1'. feel.

ここで、第1層目のグレーティングを形成する透明光学
部材2の屈折率をng、該グレーティングの高さをT、
第2層目のグレーティングを形成する透明光学部材2の
屈折率をng′、該グレーティングの高さをT′、入射
光の波長を入とすれば、第1層目及び第2層目のグレー
ティングに於る零次透過回折光の回折効率η0゜η0′
は各々の次の(1)式、(2)式で表ゎす!バが出来る
Here, the refractive index of the transparent optical member 2 forming the first layer grating is ng, the height of the grating is T,
If the refractive index of the transparent optical member 2 forming the second layer grating is ng', the height of the grating is T', and the wavelength of the incident light is input, then the first and second layer gratings Diffraction efficiency of zero-order transmitted diffracted light η0゜η0′
are expressed by the following equations (1) and (2). I can do it.

Δ nT y) o = s i n c 2 (w−)  −−
−−−−(1)入 Δn′T’ ηo  ′= s i  n c 2  (π−)  
−−−−(2)λ 上式から、Δn=oの時はηo=1.Δn′=0の時は
ηo′=1となり、Δn T = m入(m= 1 、
2 、3、−−−−)の時はη0=0、Δn′T’=m
入(m= 1 、2 、3、−−一−)のu繁はηo 
′=0となる°バが解る。即ち、第1J?+目に於て、
no=ngもしくはne=ngt−満足させておけば、
偏光成分7及び7′のどちらか一方は素通りし、他方は
(1)式に従い変調される。又、第2層[1い於て、n
o′=ng′もしくはne′=ng′を満足させておけ
ば、偏光成分7及び7′のどちらか一方は素通りし。
Δ nT y) o = sin c 2 (w-) --
-----(1) Input Δn'T'ηo'= sin c 2 (π-)
-----(2)λ From the above equation, when Δn=o, ηo=1. When Δn'=0, ηo'=1, and Δn T = m input (m= 1,
2, 3, -----), η0=0, Δn'T'=m
The number of inputs (m = 1, 2, 3, --1-) is ηo
We can see that ′=0. That is, the 1st J? +In my eyes,
If no=ng or ne=ngt-is satisfied,
Either one of the polarized light components 7 and 7' passes through, and the other is modulated according to equation (1). In addition, the second layer [1, n
If o'=ng' or ne'=ng' is satisfied, either one of the polarized light components 7 and 7' will pass through.

他方は(2)式に従い変調される・ 次に異方性物質l及び1′に電界を印加する場合、異方
性物質1及び1′の光学軸方向は各々変化し、これに伴
ない入射光6の偏光成分7及び7′が感じる屈折率も変
化する。即ち、Δnの変化に多じて第1層目、第2層目
に於て前記(1)式及び(2)式に従った変調を受ける
事になる。
The other is modulated according to equation (2).Next, when applying an electric field to the anisotropic materials 1 and 1', the optical axis directions of the anisotropic materials 1 and 1' change, and accordingly, the incident The refractive index experienced by the polarized components 7 and 7' of the light 6 also changes. That is, depending on the change in Δn, the first and second layers are subjected to modulation according to equations (1) and (2).

例えば、異方性物質1及び1′に同じ液晶を用いる場合
はne=ne ′、no=no′で、初期条件としてn
g=ng ′=no、T=T’lne−ngl壷T=m
λとすれば、第1層目及び第2層口に於る零次透過回折
光の回折効率は両方ノいi?i記(1)式で表わす一゛
疼が出来る。
For example, when using the same liquid crystal for anisotropic materials 1 and 1', ne=ne', no=no', and the initial condition is n.
g=ng ′=no, T=T'lne-ngl urn T=m
If λ, the diffraction efficiency of the zero-order transmitted diffracted light at the entrance of the first layer and the second layer is both i? A tingling sensation expressed by formula (1) is produced.

又、スペーサ4の屈折率はほぼngに等しいとする。こ
の時、静的状態では、入射光6の偏光成分7は第1層目
を素通りし、偏光成分7′は上記(1)式に従いηo=
0となり、零次透過回折光は出射せず全て高次の回折光
となって出射する。又、第2層目に於ては偏光成分7は
ト記(1)式に従いη0=0となり、零次透過光回折光
は出射せず全て高次の回折光となって出射し、偏光成分
7′は高次回折光のまま素通りする。従って、本素子を
通り零次方向へ出射する光は存在しない事になる。
Further, it is assumed that the refractive index of the spacer 4 is approximately equal to ng. At this time, in a static state, the polarized light component 7 of the incident light 6 passes through the first layer, and the polarized light component 7' is ηo=
0, and the zero-order transmitted diffraction light is not emitted, but all the higher-order diffraction light is emitted. In addition, in the second layer, the polarized light component 7 becomes η0 = 0 according to equation (1), and the zero-order transmitted light diffracted light is not emitted, but all of the polarized light component 7 is emitted as higher-order diffracted light, and the polarized light component 7 is 7' passes through as high-order diffracted light. Therefore, no light passes through this element and is emitted in the zero-order direction.

次に、所定の電界を印加して液晶l及び1′の光軸方向
(配向方向)をグレーテイング面(矢印8及び8′を含
む面)に垂直、即ち入射光6の進行方向に向けた場合、
入射光6の偏光成分7及び7′は第1層目及び第2層目
に於て液晶1゜1′の常屈折率n□を感じる為、本素子
を素通りして全て零次透過光となり出射する。
Next, a predetermined electric field is applied to direct the optical axes (orientation directions) of liquid crystals 1 and 1' perpendicularly to the grating plane (plane including arrows 8 and 8'), that is, in the direction of propagation of the incident light 6. case,
Since the polarized light components 7 and 7' of the incident light 6 sense the ordinary refractive index n□ of the liquid crystal 1°1' in the first and second layers, they pass through this element and become zero-order transmitted light. Emits light.

従って、電界印加の有無により自然光等の任意の偏光面
を有する光の変調を、偏光板等を介せず行なう・扛が出
来る。
Therefore, depending on whether or not an electric field is applied, light having an arbitrary plane of polarization, such as natural light, can be modulated without using a polarizing plate or the like.

尚、第1図から第4図で示した表示素子は、各層に於る
グレーティングの配列方向が同一であるが、各層を形成
するグレーティングの配列方向は変調作用を妨げない限
り如何なる方向を向いていても良い。又、」二足グレー
ティングは三角波状のものであるが、第5図に示す如く
矩形状、正弦波状であっても良く、グレーティングの形
状には関係なく所望の機能を果す事が出来る。但し、グ
レーティングの形状が異なる場合、前記(1)式で示し
た様な回折効率の式が異なり、例えば、矩形状グレーテ
ィングはド記(3)式の様になる。
In the display elements shown in FIGS. 1 to 4, the gratings in each layer are arranged in the same direction, but the gratings forming each layer can be arranged in any direction as long as it does not interfere with the modulation effect. It's okay. Further, although the bipedal grating has a triangular wave shape, it may also have a rectangular or sinusoidal shape as shown in FIG. 5, and the desired function can be achieved regardless of the shape of the grating. However, when the shapes of the gratings are different, the formula for the diffraction efficiency as shown in the above formula (1) will be different. For example, for a rectangular grating, the formula for the diffraction efficiency will be as shown in formula (3) below.

l           AnT ηo= −(1+ c o s (2π□) )−−−
(3)2人 更に、複数個のグレーティングが個々に異なる形状をし
ていても構わず、グレーティングの形状は製作の容易性
、仕様等を加味して決めるべきものである・ 第6図は三角波状、矩形状のグレーティングを用いた場
合の本素子に於る零次透過光の可視波長域400〜70
0nmでの分光透過率特性を示している。ここで縦軸は
透過率η0、横軸は波長λで、図中9.9′は各々光透
過時の三角形状、矩形状グレーティングの特性を、1O
110′は各々光遮断時の三角波状、矩形状グレーティ
ングの特性を示している0図の様に矩形状グレーティン
グは波長選択性が強く、三角波状グレーティングは波長
選択性が、殆ど無い。
l AnT ηo= −(1+ cos (2π□) )−−−
(3) 2 people In addition, it does not matter if multiple gratings have different shapes individually, and the shape of the grating should be decided by taking into account ease of manufacture, specifications, etc. - Figure 6 shows a triangular shape. Visible wavelength range of zero-order transmitted light in this device when using a wavy or rectangular grating: 400 to 70
It shows the spectral transmittance characteristics at 0 nm. Here, the vertical axis is the transmittance η0, the horizontal axis is the wavelength λ, and 9.9' in the figure represents the characteristics of the triangular and rectangular gratings when light is transmitted, respectively.
Reference numeral 110' indicates the characteristics of the triangular wave grating and the rectangular grating when light is blocked.As shown in Figure 0, the rectangular grating has strong wavelength selectivity, and the triangular wave grating has almost no wavelength selectivity.

従って、上述の如くグレーティング形状は、撮影装置の
使用目的、表示装置周辺のシステム等を考慮して選択さ
れる。
Therefore, as described above, the grating shape is selected in consideration of the purpose of use of the imaging device, the system surrounding the display device, and the like.

以下、第1図(A)に示す表示素子の作成法の一例を示
す。
An example of a method for manufacturing the display element shown in FIG. 1(A) will be described below.

第7図は第1図(A)に示す表示素子の作成過程を示し
、11は液晶、第1図と同様の部材には同番号を符す。
FIG. 7 shows the manufacturing process of the display element shown in FIG. 1(A), in which reference numeral 11 denotes a liquid crystal, and members similar to those in FIG. 1 are denoted by the same numbers.

透明PBMA樹脂基板2 (37X26X1mm’、n
g=1.56)(1’)両面を透明表面とし、第7図(
A)の如く該基板2の片面の全面にピッチ3μm、深さ
2.4 m mの三角波状グレーティングをエンボス加
工により形成した。続いて該グレーティング基板2に厚
さ1000人のITO膜3を形成した。
Transparent PBMA resin substrate 2 (37X26X1mm', n
g=1.56) (1') Both sides are transparent surfaces, Figure 7 (
As shown in A), a triangular wave grating with a pitch of 3 μm and a depth of 2.4 mm was formed on the entire surface of one side of the substrate 2 by embossing. Subsequently, an ITO film 3 having a thickness of 1,000 wafers was formed on the grating substrate 2.

4−配回様の方法を用い、透明PHMA基板2に第7図
CB)に示す様な表示パターンを成nりしたノふ板をも
う一枚用意した。次に、第7図(C)の矢印の様に表と
裏に互いに直行する方向へ配向処理を施した厚さ5gm
のテフロン製スペーサ4を上記2枚の透明PBMA基板
2間に挟み、該スペーサ4により分けられた上下2層の
グレーティングの間隙部に正誘電性液晶MBBA (n
o=1.56 、ne=1.786)11を充填して第
7図(D)の如き表示素子を作成した。
Using the method similar to 4-Distribution, another cover plate having a display pattern as shown in FIG. 7CB) was prepared on the transparent PHMA substrate 2. Next, as shown by the arrow in Figure 7(C), the front and back sides were subjected to orientation treatment in directions perpendicular to each other, and the thickness was 5 g.
A Teflon spacer 4 is sandwiched between the two transparent PBMA substrates 2, and a positive dielectric liquid crystal MBBA (n
o=1.56, ne=1.786) 11 was filled to produce a display element as shown in FIG. 7(D).

以J−の如き方法で作成した表示装置をカメラのファイ
ンダーに適用した一例を以下に述へる。
An example in which a display device produced by the method described above is applied to a camera finder will be described below.

第8図は本発明に係るファインダー内表示装置の一例を
示す図で、12は上記表示装置、13はフレネルレンズ
付ピント板、14はコンデンサレンズ、15はペンタプ
リズム、16は接眼レンズ、17は反射鏡を示す。
FIG. 8 is a diagram showing an example of the display device in the finder according to the present invention, where 12 is the display device, 13 is a focusing plate with a Fresnel lens, 14 is a condenser lens, 15 is a pentaprism, 16 is an eyepiece lens, and 17 is a focusing plate with a Fresnel lens. Showing a reflector.

反射!17によりファインダー内に導かれた被写体光は
、表示装置12、ピント板13、コンデンサーレンズ1
4を介し、ペンタプリズム15により正立像となり接眼
レンズ16を通して撮影者の目に入る。ここで、表示装
置12に於て1両電極間に矩形状交流電界を印加してい
る期間は、ファインダー内の視野全体が光透過状態とな
っており、接眼レンズ16を通して被写体像を鮮明に見
る事が出来る。一方、露出不足警告や合焦状態等の警告
を表示する場合、露出や合焦等の検出装置からの信号に
従ってパターン化された警告表示部分の電界をOとし、
該表示部分を先述断状態として表示を行なう事が出来る
。その−例を、:59図に示す。図中18は中央部に4
5°の傾斜面の半透明鏡を有する透明光学部材で撮影レ
ンズを通った尤の一部を露出1,1検出川もしくは合焦
検出用受光未了21に送る作用を持つ。22は受光素子
21の出力を受けて分析する露出量検出回路もしくは合
焦検出回路で、又23は検出回路22からの検出信号を
受けてこれを電圧発生回路でこの回路の出力が本表示装
置12に印加される。
Reflection! The subject light guided into the finder by the display device 12, the focusing plate 13, and the condenser lens 1
4, it becomes an erect image by a pentaprism 15, and enters the photographer's eye through an eyepiece 16. Here, during the period when a rectangular alternating current electric field is applied between two electrodes in the display device 12, the entire field of view in the finder is in a light-transmitting state, and the object image is clearly seen through the eyepiece lens 16. I can do things. On the other hand, when displaying warnings such as underexposure warnings and focus status, the electric field of the warning display part that is patterned according to signals from the exposure and focus detection devices is set to O.
The display portion can be displayed in a predetermined state. An example of this is shown in Figure 59. In the figure, 18 is 4 in the center.
A transparent optical member having a semi-transparent mirror with a 5° inclined surface has the function of sending a portion of the light that has passed through the photographing lens to the exposure 1, 1 detection channel or the light receiving end 21 for focus detection. 22 is an exposure amount detection circuit or focus detection circuit that receives and analyzes the output of the light receiving element 21, and 23 is a voltage generation circuit that receives the detection signal from the detection circuit 22 and outputs it to the present display device. 12.

表示の例を第10図に示す0図中(a)は露出1間アン
ダー警告、(b)は露出量オーバー警告、(c)は適性
露出表示、(d)は前ピン状態、(e)は後ピン状態、
(f)は合焦を表している。以上のように、撮影視野枠
内表示が、高いコントラストで像の明るさは損なわずに
出来、且つ表示を行なわない場合は被写体像の観察に対
する影響が全くない。
An example of the display is shown in Figure 10. In Figure 10, (a) shows an underexposure warning for one period, (b) shows an overexposure warning, (c) shows an appropriate exposure, (d) shows the front focus state, and (e) is after pin state,
(f) represents focus. As described above, display within the photographing field frame can be performed with high contrast without impairing the brightness of the image, and when no display is performed, there is no effect on observation of the subject image.

」二足実施例では、表示装置12をコンデンサレンズ1
4とピント板13の間に配しているが、ファインダー内
に於るシステム構成によっては接眼レンズ16近傍等に
配しても良い事は明らかである。又、本表示装置はグレ
ーティングによる回折現象を利用している為、フレアー
光となる回折光を除去する手段、例えばファイバプレー
ト等を本表示装置の光束出射側に設ける等の対策を施す
のも有効である。
” In the two-legged embodiment, the display device 12 is connected to the condenser lens 1.
4 and the focusing plate 13, but it is clear that it may be placed near the eyepiece lens 16 depending on the system configuration within the finder. Additionally, since this display device utilizes the diffraction phenomenon caused by the grating, it is also effective to take measures to remove the diffracted light that becomes flare light, such as providing a fiber plate or the like on the light beam output side of this display device. It is.

次に、本発明に係る表示装置に於る別の構成例の作成方
法を述べる。透明PMMMA樹脂フィルム4の両面に第
11図に示す様なピッチ3μm、深さ1.8μmの矩形
波状クレーティングを矩形波状熱延ローラにより作成す
る。ここで該矩形波状グレーティングはフィルム4の表
裏でその配列方向が直交する様に作成される。
Next, a method for creating another configuration example of the display device according to the present invention will be described. Rectangular wavy cratings with a pitch of 3 μm and a depth of 1.8 μm as shown in FIG. 11 are formed on both sides of the transparent PMMMA resin film 4 using a rectangular wavy hot rolling roller. Here, the rectangular wave-like gratings are created so that their arrangement directions are perpendicular to each other on the front and back sides of the film 4.

次に、2枚のBK7基板(37X26X1mm’、ng
=1.49)の両面を透明平面とし、1枚は全面に、別
の1枚は第7図(B)に示した様なパターンに、ITO
1l!2を1ooo人の厚さに成膜した。続いて、該2
枚のBK7基板をITO膜面が相対する様に向かい合わ
せてクレーティングを有するフィルム4を挟み込む。次
に、フィルム4のグレーティングと両BK7基板との間
隙部に正?A電性液晶ZLI−2141−000(メル
/y製、no=149゜ne=1.64)を充填し、グ
レーティングの溝によって該液晶を溝方向に強制配向さ
せた。
Next, two BK7 boards (37X26X1mm', ng
= 1.49), both sides of which are transparent planes, one of which is covered with ITO, and the other with a pattern as shown in Figure 7 (B).
1l! 2 was formed into a film to a thickness of 100 mm. Next, 2
Two BK7 substrates are placed facing each other with their ITO film surfaces facing each other, and a film 4 having a crating is sandwiched therebetween. Next, the gap between the grating of film 4 and both BK7 substrates is filled with a positive electrode. A conductive liquid crystal ZLI-2141-000 (manufactured by Mel/y, no=149°ne=1.64) was filled, and the liquid crystal was forcibly aligned in the groove direction by the grooves of the grating.

従って、フィルム4を介して上下のグレーティングの間
隙部に充填された液晶の配向方向は互いに直交している
Therefore, the alignment directions of the liquid crystals filled in the gap between the upper and lower gratings via the film 4 are perpendicular to each other.

」−記の2つの実施例に於る表示装置は、予め表示すべ
きパターンを装置内に作成して設けているが、本ファイ
ンダー内表示装置はマトリックス駆動をする市も当然可
能であり、カメラの各種検出装置と組み合わせてマトリ
ックス駆動を行なえば、合焦領域表示や露出適正領域表
示子もi7+能であり、種々の表示形態を得る事が出来
る。
Although the display devices in the two embodiments described above are provided with patterns to be displayed created in advance within the device, it is of course possible to use matrix-driven display devices for this viewfinder display device, and the camera If matrix driving is performed in combination with various detection devices, the in-focus area display and appropriate exposure area indicator will also be i7+ capable, and various display formats can be obtained.

又、表示装置の構成も第3図に示す如き2段構成も出来
、ファインダーの構成に応じて様々な装置構成を取り得
る事は明らかである。更にI−、記実施例では光学的な
異方性物質として液晶を適用した一例を示したが、異方
性物質は液晶に限られるものではなく、電気光学結晶等
の電気光学効果、熱光学効果、磁気光学効果を有する種
々の異方性物質を適用出来る。
Further, the structure of the display device can also be a two-stage structure as shown in FIG. 3, and it is obvious that various device structures can be adopted depending on the structure of the finder. Furthermore, in the above embodiment, an example in which liquid crystal was applied as an optically anisotropic substance was shown, but anisotropic substances are not limited to liquid crystals, and electro-optic effects such as electro-optic crystals, thermo-optics etc. Various anisotropic materials having magneto-optical effects can be applied.

(5) 発明の詳細 な説明した様に、本発明に係るファインター内表示装置
は、偏光特性が無い為に偏光板が不要であり、通常の状
7gに於て被写体光を高透過率で通過させ、撮影情報等
を表示する際は高コントラストで表示が可能な装置であ
る。従って、ファインダー内視野枠内外をとわず全面に
わたり警告パターンの表示や領域の表示等を、視野の構
成、明るさを保持したままで行なう事が出来る装置とな
る。
(5) As described in detail, the in-finder display device according to the present invention does not require a polarizing plate because it does not have polarization characteristics, and can transmit subject light with high transmittance in a normal state of 7g. The device is capable of displaying photographic information and the like with high contrast. Therefore, the apparatus becomes capable of displaying a warning pattern, displaying an area, etc. over the entire surface of the viewfinder, both inside and outside the field of view frame, while maintaining the configuration and brightness of the field of view.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は本発明に係る表示装置に用い
る表示素子の基本構成図。 第4図は第1図乃至′5F)3図で示した表示素子の動
作原理説明図、第5図はグレーティングの別の形状例を
示す図。第6図は三角波状及び矩形波状グレーティング
に於る可視波長域の分光透過率特性を示す図で、光透過
時と光遮断時に関して示している。 第7図は第1図(A)の表示素子の作成過程の一例を示
す図。 第8図は本発明に係るファインダー内表示装置の−・例
を示す図。 第9図は露出噛もしくは合焦検出装置と。 本装置を組合せた一例を示す図。 第10図は本表示装置による表示パターン例を示す図。 第11図は表示素子に用いるスペーサーの一例を示す図
。 1 、1’−−−−−一光学軸の方向が互いに異なる光
学的な異方性物質。 2  −−−−−一透明光学部材 3  −−−−−一透明電極 4  −−−−−一透明スペーサ 5  −−−−−一透明ヒーター 6  −−−−−一人射光 7 、7’−−−−−一人射光のTいに直交する偏光成
分8 、8’−−−−−一異方性物質の光学軸の方向9
  −−−−−一光透過時の三角波状グレーティングの
分光透過率特性 9’   −−−−−一光透過時の矩形波状グレーティ
ングの分光透過率特性 10−一〜−−−光遮断時の三角波状グレーティングの
分光透過率特性 10’  −−−−−一光遮断時の矩形波状グレーティ
ングの分光透過率特性 11 −−−−−一液晶 12 −−−−−一表示装置 13 −−−−−−ピント板 14 −−−−−−コンデンサレンズ 15 −−−−−−ペンタプリズム 16 −−−−m=接眼レンズ 17 −−−−−一反射鏡 18 −−−−−一中央に45°の傾斜面の半透明鏡を
有する透明光学部材 19 −−一−−−レンズ 20 −−−−−一鏡 21 −−−−−一検出用受光素子 22 −−−−−一検出用回路
1, 2, and 3 are basic configuration diagrams of a display element used in a display device according to the present invention. FIG. 4 is a diagram illustrating the operating principle of the display element shown in FIGS. 1 to '5F) 3, and FIG. 5 is a diagram showing another example of the shape of the grating. FIG. 6 is a diagram showing the spectral transmittance characteristics in the visible wavelength range of triangular wave gratings and rectangular wave gratings, and shows the spectral transmittance characteristics when light is transmitted and when light is blocked. FIG. 7 is a diagram showing an example of the manufacturing process of the display element shown in FIG. 1(A). FIG. 8 is a diagram showing an example of an in-finder display device according to the present invention. Figure 9 shows the exposure detection device or focus detection device. A diagram showing an example of a combination of the present devices. FIG. 10 is a diagram showing an example of a display pattern by the present display device. FIG. 11 is a diagram showing an example of a spacer used in a display element. 1, 1'----An optically anisotropic material in which the directions of one optical axis are different from each other. 2 -------One transparent optical member 3------One transparent electrode 4---One transparent spacer 5---One transparent heater 6---One incident light 7, 7'- ----Polarized light component 8, 8' perpendicular to T of the single incident light---Direction of the optical axis of the anisotropic material 9
----- Spectral transmittance characteristics of a triangular wave grating when one light is transmitted 9' ----- Spectral transmittance characteristics of a rectangular wave grating when one light is transmitted 10-1 to --- Triangular when light is blocked Spectral transmittance characteristics of wavy grating 10' ----- Spectral transmittance characteristics of rectangular wavy grating when blocking one light 11 ------- Liquid crystal 12 --- Display device 13 ------ - Focusing plate 14 -------Condenser lens 15 -------Penta prism 16 ----m=Eyepiece 17 ----One reflecting mirror 18 --------One 45° in the center Transparent optical member 19 having a semi-transparent mirror with an inclined surface --- One lens 20 --- One mirror 21 --- One detection light-receiving element 22 --- One detection circuit

Claims (1)

【特許請求の範囲】[Claims] (1)カメラのファインダー内に撮影情報、パターン等
の表示を行なうファインダー内表示装置に於て、 前記ファインダー内の光路中に2つの物質の界面から成
る複数個のグレーテイングを光路に対しほぼ垂直に設け
、且つ該2つの物質の内一方を光学的な異方性物質から
構成し、該異方性物質の光学軸方向を制御する事により
、 第1の状態では、前記複数個のグレーテイングに於る光
学軸方向を全てほぼ一致させて被写体光を全て透過させ
、 第2の状態では、前記複数個のグレーテイングに於る重
なり合う所定部分の光学軸方向を異ならせて被写体光の
少なくとも一部を遮断し、撮影情報、パターン等の表示
を行なう事を特徴とするファインダー内表示装置。
(1) In an in-finder display device that displays shooting information, patterns, etc. in the finder of a camera, a plurality of gratings made of interfaces of two substances are placed in the optical path in the finder almost perpendicular to the optical path. and one of the two materials is composed of an optically anisotropic material, and by controlling the optical axis direction of the anisotropic material, in the first state, the plurality of gratings In the second state, the directions of the optical axes of the plurality of gratings are made to be approximately the same so that all the object light is transmitted, and in the second state, the directions of the optical axes of predetermined overlapping portions of the plurality of gratings are made different so that at least one part of the object light is transmitted. A display device in the viewfinder that is characterized by blocking the area and displaying shooting information, patterns, etc.
JP60173790A 1985-08-07 1985-08-07 Display device in the finder Expired - Fee Related JPH0664269B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60173790A JPH0664269B2 (en) 1985-08-07 1985-08-07 Display device in the finder
DE19863627113 DE3627113A1 (en) 1985-08-07 1986-08-06 DISPLAY DEVICE IN A VIEWFINDER
GB8619323A GB2180946B (en) 1985-08-07 1986-08-07 Display device in viewfinder
US08/092,569 US5299037A (en) 1985-08-07 1993-07-16 Diffraction grating type liquid crystal display device in viewfinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60173790A JPH0664269B2 (en) 1985-08-07 1985-08-07 Display device in the finder

Publications (2)

Publication Number Publication Date
JPS6234141A true JPS6234141A (en) 1987-02-14
JPH0664269B2 JPH0664269B2 (en) 1994-08-22

Family

ID=15967199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60173790A Expired - Fee Related JPH0664269B2 (en) 1985-08-07 1985-08-07 Display device in the finder

Country Status (1)

Country Link
JP (1) JPH0664269B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461726A (en) * 1987-09-01 1989-03-08 Canon Kk Optical modulation device
CN107430306A (en) * 2015-03-25 2017-12-01 埃西勒国际通用光学公司 Optical goods to contain liquid crystal, equipped with integrally formed spacer structure and form the film both alignment layers in intermediate layer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461726A (en) * 1987-09-01 1989-03-08 Canon Kk Optical modulation device
CN107430306A (en) * 2015-03-25 2017-12-01 埃西勒国际通用光学公司 Optical goods to contain liquid crystal, equipped with integrally formed spacer structure and form the film both alignment layers in intermediate layer
JP2018509660A (en) * 2015-03-25 2018-04-05 エシロル アンテルナショナル(コンパーニュ ジェネラル ドプテーク) Thin film alignment layer comprising an integrally formed spacing structure and forming an intermediate layer of an optical article containing liquid crystal

Also Published As

Publication number Publication date
JPH0664269B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
US5299037A (en) Diffraction grating type liquid crystal display device in viewfinder
US4856869A (en) Display element and observation apparatus having the same
US4878742A (en) Liquid crystal optical modulator
JP4631308B2 (en) Image display device
US20070041684A1 (en) Switchable viewfinder display
EP1726986A1 (en) Diffraction display device and viewfinder display device comprising the same
US6122465A (en) Reflective liquid crystal display having a hologram color filter
US4822146A (en) Optical modulation element
JP5218061B2 (en) Diffraction type display device, finder device and camera
JPS6234141A (en) In-finder display device
JP3717016B2 (en) Reflective liquid crystal display device using hologram
JPS6234142A (en) In-finder display device
JP3412775B2 (en) Liquid crystal element
JP2517589B2 (en) Light modulation element
JPH0652351B2 (en) Light modulator
JP3916244B2 (en) Reflective liquid crystal display device using hologram
JPH0652349B2 (en) Light modulator
JPS62237435A (en) Photometer
GB2180946A (en) Display device in viewfinder
JPS59228622A (en) Liquid-crystal optical phase filter
JPS63281141A (en) Photometric device
JPS63218920A (en) Optical modulating element
JPS62237424A (en) Light modulating element
JPH01927A (en) light modulator
JPS63218921A (en) Observing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees