[go: up one dir, main page]

JPS6233365B2 - - Google Patents

Info

Publication number
JPS6233365B2
JPS6233365B2 JP8070083A JP8070083A JPS6233365B2 JP S6233365 B2 JPS6233365 B2 JP S6233365B2 JP 8070083 A JP8070083 A JP 8070083A JP 8070083 A JP8070083 A JP 8070083A JP S6233365 B2 JPS6233365 B2 JP S6233365B2
Authority
JP
Japan
Prior art keywords
antifouling
coating agent
resin
mortar
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8070083A
Other languages
Japanese (ja)
Other versions
JPS59206512A (en
Inventor
Tooru Fuyuki
Minoru Nomura
Masayoshi Nagaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP8070083A priority Critical patent/JPS59206512A/en
Publication of JPS59206512A publication Critical patent/JPS59206512A/en
Publication of JPS6233365B2 publication Critical patent/JPS6233365B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/70Coating or impregnation for obtaining at least two superposed coatings having different compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は発電所において、海水を使用する冷却
水系の構造物・機器類のコンクリートまたはモル
タルで形成されている海水接触面に対する効果的
な防汚方法に関する。 我が国の発電の主体を成す火力および原子力発
電所は、地理的制約によつてほとんど海浜地帯に
建設され、冷却水として海水を使用している。そ
の結果、発電所冷却水系の構造物・機器類の海水
接触面には海棲付着生物(以下汚損生物とい
う)、特にムラサキイガイ、フジツボ等の動物が
付着し、生長して流水径路の閉塞をひきおこし、
取水量の減少、冷却効率の悪化から発電効率を低
下させ、さらにこれら汚損生物が復水器冷却管に
流入して切傷を与えたり、穿孔を発生して発電停
止の被害を与えている。 従来、上記汚損生物の付着を防止する対策(以
下防汚という)としては、 (1) 物理的な方法(超音波・高周波・低調海水法
等) (2) 薬液注入による方法(硫酸銅・ピクリン酸
等) (3) 塩素ガス(または電解塩素)注入による方法 (4) 亜酸化銅形防汚塗料塗布による方法 などがあるが、 (1)の方法は効果と実施の困難性の点から実用化
されず、(2)の方法は海産生物に与える影響と経済
性の点から実施不可能であり、(3)の方法は管理が
容易である点から我が国で実用化されたが、海水
のアルカリ度や汚れによつて塩素の分解挙動が変
化するため、現実には防汚効果が不十分でありな
がら、塩素注入点付近では汚損生物の幼生と同時
に有用プランクトンを斃死させている。 (4)の方法は(1)、(2)、(3)の方法が大量の冷却水全
体にかかわる方法であるのに対し、面を防汚する
方法であるためより合理的・効果的であるが、し
かしながら、亜酸化銅形防汚塗料は非溶解マトリ
ツクス形塗料であるため、 急速に防汚剤の溶出速度を減じて短期間に防
汚力を失う。 有効な防汚剤の溶出速度は、三有機錫防汚剤
の溶出速度の10倍以上を要する。 さらに、銅イオンは分解・無毒化することが
ないので、特定海域で長い年月使用した場合、
銅イオンが蓄積する。 等の欠点がある。 本発明者等は、これらの問題を解決するものと
して、有機錫重合体を主体とする防汚塗布剤を用
いる冷却水系の防汚方法を特願昭56−78612号、
特願昭56−189898号として提案した。 これらの発明では、防汚塗布剤となる有機錫重
合体は、物体に塗布された状態では防汚成分とな
る有機錫単量体がアクリル樹脂と化学結合してお
り、いわば樹脂と一体であるが、海水に接触する
と徐々にイオン解離して防汚剤(三有機錫イオ
ン)を再生しつつ、樹脂本体も溶解し去る。すな
わち、下式で示すように、解離した三有機錫イオ
ンが防汚剤として作用し、汚損生物の付着を防止
するものである。 したがつて上記の方法は、 (1) 長期間一定の防汚力が持続する。すなわち塗
布膜厚と防汚期間がほぼ比例する。 (2) 防汚剤の溶出速度を必要最小限に管理するこ
とができ、公害対策上有利である。 (3) 溶け出した防汚剤は、紫外線・オゾン・酸素
等の作用を受けて分解無毒化し、最終的には無
害な無機錫に変化するため、亜酸化銅と異り防
汚剤が蓄積することがない。 などのように優れた方法である。 しかしながら、有機錫重合体防汚塗布剤をコン
クリートまたはモルタルに直接塗布すると、コン
クリートまたはモルタルは通常強アルカリ性であ
るため、塗布膜は海水との接触面とコンクリート
またはモルタルとの接触面の両面から溶解するこ
とになり、塗布膜は短期間に剥離を起し、有機錫
重合体防汚塗布剤のすぐれた防汚力を発揮するこ
とができない。 本発明者等は、この点について鋭意研究をした
結果、下塗塗布剤の基本樹脂としてエポキシ樹
脂、塩化ビニル樹脂、塩素化ポリオレフイン樹脂
(オレフインとしてはエチレン、プロピレン)が
コンクリートまたはモルタルとの付着力が強固で
アルカリの浸出を遮断し、かつ、有機錫重合体防
汚塗布膜との付着力にも優れることを見出し、本
発明を完成した。 すなわち、本発明は発電所冷却水系の構造物・
機器類のコンクリートまたはモルタルで形成され
ている海水接触面に、あらかじめエポキシ当量
180〜3300の範囲のエポキシ樹脂を含む下塗塗布
剤、塩化ビニルの含有量が91重量%以下でかつ酢
酸ビニルの含有量が34重量%以下の塩化ビニル、
酢酸ビニル共重合体であるビニル樹脂を含む下塗
塗布剤または塩素含有量が66重量%以上である塩
素化ポリオレフイン樹脂を含む下塗塗布剤を塗布
したのち、一般式 (式中Rは炭素数3〜5のアルキル基またはフエ
ニル基、R′、R″は水素原子またはメチル基を表
わす。)で示される不飽和有機錫単量体の重合体
もしくは共重合体、またはこの式〔A〕で示され
る不飽和有機錫単量体と共重合性のある他の不飽
和化合物との共重合体を主成分とする防汚塗布剤
を塗布することを特徴とするコンクリートおよび
モルタル表面の防汚方法である。 本発明で用いる下塗塗布剤は、耐アルカリ性が
強く、コンクリートまたはモルタルとの付着性が
良好であり、浸出するアルカリを遮断すると共に
さらに有機錫重合体防汚塗布膜との付着性にすぐ
れて居るものであつて、通常の不塗塗布剤として
使用されている塗布剤では得られない特徴があ
る。 本発明で使用する下塗塗布剤に用いる樹脂のう
ち、エポキシ樹脂については、エポキシ当量180
〜3300の範囲のものであつて、例えば油化シエル
エポキシ社製のエピコート807、815、815×A、
816、819、827、828、828×A、834、871、872、
1001、1002、1003、1055、1004、1007、1009等で
あり、またはこれら品種相当のエポキシ樹脂であ
る。 これらのものから選ばれた1種または2種以上
を含むエポキシ樹脂を主剤とし、アミン、アミン
アダクト、アミド、アミドアダクト、ポリアミド
樹脂等から選ばれた1種または2種以上の組合せ
を含む硬化剤を加えて、使用直前に混合し下塗塗
布剤とする。なお、主剤と硬化剤の混合比率は化
学量論的に等しいことが望ましい。 ここでエポキシ当量を180〜3300の範囲に限定
する理由については、エポキシ当量180以下で
は、架橋間分子量が小さすぎるために剛直とな
り、コンクリートまたはモルタルおよび有機錫重
合体防汚塗布膜との付着性を阻害するためであ
り、またエポキシ当量3300以上では分子量が大き
くて硬化剤との架橋反応が遅過ぎ、また下塗塗布
剤主剤を調整する際、高粘度、低固形分となつ
て、塗布膜厚が低くなるなど実用上好ましくない
ためである。 ビニル樹脂については、塩化ビニルの含有量が
91重量%以下であり、かつ、酢酸ビニルの含有量
が34重量%以下であるビニル樹脂、例えばユニオ
ンカーバイド社製ビニライトVYHH、VYHD、
VYLF、VYNS―3、VAGH、VAGD、VROH、
VMCH、VMCC、VMCA、VERR―40、VYDS、
VYDS−66、VYNCまたはこれら相当品であつ
て、これらの1種または2種以上の混合物を用い
て下塗塗布剤とする。 ここでビニル樹脂中の塩化ビニルの含有量を91
重量%以下する理由は、91重量%以上では下塗塗
布剤とした場合、コンクリートまたはモルタルお
よび有機錫重合体防汚塗布膜との付着力が弱くな
るためであり、また酢酸ビニルの含有量を34重量
%以下とする理由は、34重量%以上では耐アルカ
リ性が弱くなり、下塗塗布膜がコンクリートまた
はモルタルから剥離しやすくなるためである。 塩素化ポリオレフイン樹脂については、塩素含
有量66重量%以上である塩素化ポリエチレン樹脂
または塩素化ポリプロピレン樹脂であつて、例え
ば山陽国策パルプ社製スーパークロン907MA、
907LL、106H、307、406、507またはこれら相当
品であつて、これを用いて下塗塗布剤とする。 ここで塩素化ポリオレフイン樹脂を塩素化ポリ
エチレン樹脂または塩素化ポリプロピレン樹脂と
する理由は、塩素化ポリブチレン樹脂、塩素化ポ
リアミレン樹脂、塩素化ポリヘキシレン樹脂等で
は、塩素化反応を均一に行うためには、該オレフ
イン樹脂の分子量を低下させる必要があり、その
結果塗布膜の強靭性を阻害し、亀裂を生ぜしめる
など、コンクリートまたはモルタルとの付着力を
阻害するためである。また塩素含有量を66重量%
以上とする理由は、塩素含有量66重量%以下では
安定性が悪く、脱塩素または脱塩化水素反応等に
より下塗塗布膜が劣化して、コンクリートまたは
モルタルから剥離することがある等のほかに、発
生した塩素などが有機錫重合体防汚塗布膜に悪影
響をおよぼすなど、長期にわたり安定した性能を
持続し難いためである。 これら下塗塗布剤用樹脂は適当な溶剤に溶解
し、必要に応じて可塑剤、顔料、安定剤、コール
タール等を加え、常法により混練して下塗塗布剤
とする。 また、上塗として塗布される有機錫重合体防汚
塗布剤は、一般式 (式中Rは炭素数3〜5のアルキル基またはフエ
ニル基、R′、R″は水素原子またはメチル基を表
わす。)で示される例えばトリプロピル錫、トリ
ブチル錫、トリアミル錫、トリフエニル錫等の三
有機錫化合物のアクリレートまたはメタクリレー
トの重合体またはこの式〔A〕で示される不飽和
有機錫単量体と共重合性のある不飽和化合物例え
ばアクリル酸メチル、アクリル酸エチル、アクリ
ル酸ブチル、アクリル酸オクチル等のアクリル酸
エステル、またはメタクリル酸メチル、メタクリ
ル酸エチル、メタクリル酸ブチル、メタクリル酸
オクチル等のメタクリル酸エステルまたはスチレ
ン、ビニルトルエン等の不飽和化合物と式〔A〕
で示される不飽和有機錫単量体とを共重合させて
得た重合体を主成分とする塗布剤であつて、必要
により顔料、防汚剤、その他添加剤等を加え、常
法により混練して塗布剤とする。 有機錫重合体防汚塗布剤の塗布も、下塗塗布剤
と同様の方法によつて行われるが、その塗布膜厚
は冷却水として取水される海水の流速、PH、温度
と、要求される耐用年数(防汚力の持続時間)お
よび防汚剤の溶出速度によつて決定されるべきで
あり、耐用年数1年間を基準にして30μ以上を必
要とする。 かくして得られる本発明の耐アルカリ性に優れ
た下塗塗布剤と、有機錫重合体防汚塗布剤との組
合せ塗布による防汚方法によれば、本質的にアル
カリの浸出を防止し、上塗りとして塗布される有
機錫重合体防汚塗布膜がコンクリートまたはモル
タル素地から剥離することを防ぎ、公害対策上有
利な長期防汚を達成し得る。 次に実施例、比較例によつて本発明を詳細に説
明する。文中特にことわらない限り、部は重量部
である。 有機錫重合体防汚塗布剤(A)の調製 撹拌機付きのフラスコにトリブチル錫メタク
リレート112g、メチルメタクリレート65g、
ブチルアクリレート10g、オクチルアクリレー
ト23g、ベンゾイルパーオキサイド1.2g、お
よびキシレン200gの混合物を仕込み、85℃〜
90℃で2時間、続いて100℃〜1050℃で3時間
加熱撹拌し、さらに120℃で1間加熱撹拌して
共重合させた。得られた共重合溶液は無色透明
であり、25℃での粘度は660cpsであつた。 得られた共重合体溶液を、下記に示す量の他
の成分と配合し混練して有機錫重合体防汚塗布
剤(A)を調製した。 共重合体溶液 40.0部 二酸化チタン 10.0部 フタロシアニンブルー 20部 タルク 34.5部 キシレン 13.5部 下塗塗布剤A〜Hの調製 表1に配合を示すA〜Hそれぞれの主剤成分
を混練し、さらにA〜Dは使用直前に硬化剤を
加えて実施例の下塗塗布剤A〜Hを調製した。
The present invention relates to an effective antifouling method for seawater contact surfaces formed of concrete or mortar of cooling water system structures and equipment that use seawater in power plants. Due to geographical constraints, most of the thermal and nuclear power plants that form the main source of electricity generation in Japan are built on coastal areas and use seawater as cooling water. As a result, marine fouling organisms (hereinafter referred to as fouling organisms), especially animals such as mussels and barnacles, adhere to the surfaces of structures and equipment in the power plant cooling water system that come in contact with seawater, grow, and cause blockage of the water flow path. ,
Power generation efficiency is reduced due to a decrease in water intake and deterioration of cooling efficiency, and these fouling organisms enter the condenser cooling pipes, causing cuts and perforations, causing power generation to stop. Conventionally, measures to prevent the adhesion of the above-mentioned fouling organisms (hereinafter referred to as antifouling) include (1) physical methods (ultrasonic waves, high frequency waves, low-toned seawater methods, etc.), and (2) chemical injection methods (copper sulfate, picrin, etc.). (3) Injecting chlorine gas (or electrolytic chlorine); (4) Applying cuprous oxide antifouling paint; however, method (1) is not practical due to its effectiveness and difficulty in implementation. method (2) is not practical due to the impact on marine life and economic efficiency, and method (3) has been put to practical use in Japan because it is easy to manage, but Since the decomposition behavior of chlorine changes depending on alkalinity and dirt, in reality, the antifouling effect is insufficient, but useful plankton are killed at the same time as the larvae of fouling organisms near the chlorine injection point. Unlike methods (1), (2), and (3), which involve a large amount of cooling water as a whole, method (4) is more rational and effective because it is a method that prevents stains on the surface. However, since cuprous oxide type antifouling paints are non-dissolving matrix type paints, the elution rate of the antifouling agent rapidly decreases and the antifouling power is lost in a short period of time. The elution rate of an effective antifouling agent requires at least 10 times the elution rate of the triorganotin antifouling agent. Furthermore, copper ions do not decompose or become non-toxic, so if they are used in a specific sea area for a long time,
Copper ions accumulate. There are drawbacks such as. In order to solve these problems, the present inventors proposed a cooling water system antifouling method using an antifouling coating agent mainly containing an organic tin polymer, in Japanese Patent Application No. 56-78612.
This was proposed as patent application No. 189898, 1983. In these inventions, when the organic tin polymer that serves as the antifouling coating agent is applied to an object, the organic tin monomer that serves as the antifouling component is chemically bonded to the acrylic resin, so that it is integrated with the resin. However, when it comes into contact with seawater, the ions gradually dissociate to regenerate the antifouling agent (triorganotin ions) while the resin itself also dissolves away. That is, as shown in the formula below, the dissociated triorganotin ions act as an antifouling agent and prevent the attachment of fouling organisms. Therefore, the above method (1) maintains a constant antifouling power for a long period of time; In other words, the coating film thickness and the antifouling period are approximately proportional. (2) The elution rate of the antifouling agent can be controlled to the necessary minimum, which is advantageous in terms of pollution control. (3) The dissolved antifouling agent decomposes and becomes non-toxic under the action of ultraviolet rays, ozone, oxygen, etc., and eventually turns into harmless inorganic tin, so unlike cuprous oxide, the antifouling agent accumulates. There's nothing to do. This is an excellent method. However, when an organotin polymer antifouling coating is applied directly to concrete or mortar, the coating film dissolves from both the contact surface with seawater and the contact surface with concrete or mortar, as concrete or mortar is usually strongly alkaline. As a result, the coating film peels off in a short period of time, and the excellent antifouling power of the organic tin polymer antifouling coating agent cannot be exhibited. As a result of intensive research on this point, the present inventors have found that epoxy resins, vinyl chloride resins, and chlorinated polyolefin resins (ethylene and propylene as olefins) as basic resins for primer coating agents have good adhesion to concrete or mortar. The present invention was completed based on the discovery that it is strong, blocks alkali leaching, and has excellent adhesion to organic tin polymer antifouling coatings. In other words, the present invention is applicable to structures and systems of power plant cooling water systems.
Seawater contact surfaces made of concrete or mortar on equipment are pre-applied with epoxy equivalent.
Primer coating agent containing an epoxy resin in the range of 180 to 3300, vinyl chloride with a vinyl chloride content of 91% by weight or less and a vinyl acetate content of 34% by weight or less,
After applying a primer coating agent containing a vinyl resin that is a vinyl acetate copolymer or a primer coating agent containing a chlorinated polyolefin resin with a chlorine content of 66% by weight or more, the general formula (In the formula, R represents an alkyl group or phenyl group having 3 to 5 carbon atoms, and R' and R'' represent a hydrogen atom or a methyl group.) A polymer or copolymer of an unsaturated organotin monomer, Or concrete characterized by applying an antifouling coating agent containing a copolymer of the unsaturated organotin monomer represented by the formula [A] and another copolymerizable unsaturated compound as a main component. and an antifouling method for mortar surfaces.The undercoating agent used in the present invention has strong alkali resistance, good adhesion to concrete or mortar, blocks leaching alkali, and also contains an organic tin polymer antifouling agent. It has excellent adhesion to the coating film, a characteristic that cannot be obtained with coating agents used as ordinary non-coating coating agents. Among the resins used in the undercoat coating agent used in the present invention, For epoxy resin, epoxy equivalent 180
~3300, such as Epicote 807, 815, 815×A manufactured by Yuka Ciel Epoxy Co., Ltd.
816, 819, 827, 828, 828×A, 834, 871, 872,
1001, 1002, 1003, 1055, 1004, 1007, 1009, etc., or epoxy resins equivalent to these types. A curing agent whose main ingredient is an epoxy resin containing one or more selected from these, and a curing agent containing one or more combinations selected from amine, amine adduct, amide, amide adduct, polyamide resin, etc. and mix immediately before use to form a primer coating agent. Note that it is desirable that the mixing ratio of the base agent and the curing agent be stoichiometrically equal. The reason why the epoxy equivalent is limited to a range of 180 to 3300 is that if the epoxy equivalent is less than 180, the molecular weight between crosslinks is too small, resulting in rigidity and poor adhesion to concrete or mortar and the organotin polymer antifouling coating film. In addition, if the epoxy equivalent is 3300 or more, the molecular weight is large and the crosslinking reaction with the curing agent is too slow. Also, when preparing the base coating agent, the viscosity is high and the solid content is low, resulting in a problem with the coating film thickness. This is because it is not preferable in practice, as it lowers the value. Regarding vinyl resin, the content of vinyl chloride is
Vinyl resins with a vinyl acetate content of 91% by weight or less and 34% by weight or less, such as Vinylite VYHH, VYHD, manufactured by Union Carbide;
VYLF, VYNS-3, VAGH, VAGD, VROH,
VMCH, VMCC, VMCA, VERR-40, VYDS,
VYDS-66, VYNC, or their equivalents, and one or a mixture of two or more of these is used as a primer coating agent. Here, the content of vinyl chloride in vinyl resin is 91
The reason for setting the vinyl acetate content below 34% by weight is that if it is 91% by weight or more, the adhesion to concrete or mortar and the organic tin polymer antifouling coating film becomes weak when used as a primer coating agent. The reason for setting the content to be less than 34% by weight is that alkali resistance becomes weaker when the content is more than 34% by weight, and the undercoat film easily peels off from the concrete or mortar. The chlorinated polyolefin resin is a chlorinated polyethylene resin or a chlorinated polypropylene resin with a chlorine content of 66% by weight or more, such as Super Chron 907MA manufactured by Sanyo Kokusaku Pulp Co., Ltd.
907LL, 106H, 307, 406, 507 or equivalent products, which are used as a primer coating agent. The reason why the chlorinated polyolefin resin is selected as chlorinated polyethylene resin or chlorinated polypropylene resin is that chlorinated polybutylene resin, chlorinated polyamylene resin, chlorinated polyhexylene resin, etc. are used in order to uniformly perform the chlorination reaction. This is because it is necessary to reduce the molecular weight of the olefin resin, and as a result, the toughness of the coating film is inhibited, causing cracks, etc., and inhibiting the adhesion with concrete or mortar. It also reduces the chlorine content to 66% by weight.
The reason for this is that if the chlorine content is less than 66% by weight, stability is poor, and the primer coating film may deteriorate due to dechlorination or dehydrochlorination reactions and may peel off from the concrete or mortar. This is because the generated chlorine etc. have an adverse effect on the organic tin polymer antifouling coating film, making it difficult to maintain stable performance over a long period of time. These resins for undercoating are dissolved in a suitable solvent, and if necessary, a plasticizer, pigment, stabilizer, coal tar, etc. are added thereto, and kneaded by a conventional method to obtain an undercoat. In addition, the organic tin polymer antifouling coating agent applied as a top coat has the general formula (In the formula, R represents an alkyl group having 3 to 5 carbon atoms or a phenyl group, and R' and R'' represent a hydrogen atom or a methyl group.) For example, tripropyltin, tributyltin, triamyltin, triphenyltin, etc. Polymers of acrylate or methacrylate of triorganotin compounds or unsaturated compounds copolymerizable with the unsaturated organotin monomer represented by this formula [A], such as methyl acrylate, ethyl acrylate, butyl acrylate, acrylic Acrylic esters such as octyl methacrylate, methacrylic esters such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, octyl methacrylate, or unsaturated compounds such as styrene and vinyltoluene, and formula [A]
A coating agent whose main component is a polymer obtained by copolymerizing with an unsaturated organotin monomer shown in and use it as a liniment. The organic tin polymer antifouling coating agent is applied using the same method as the base coating agent, but the coating film thickness depends on the flow rate, pH, and temperature of the seawater used as cooling water, and the required durability. It should be determined by the age (duration of antifouling power) and the elution rate of the antifouling agent, and 30 μ or more is required based on a one-year service life. According to the antifouling method by combining the thus obtained undercoat coating agent with excellent alkali resistance and the organic tin polymer antifouling coating agent of the present invention, the leaching of alkali is essentially prevented, and the stain resistant coating agent can be applied as a top coat. The organic tin polymer antifouling coating film can be prevented from peeling off from the concrete or mortar substrate, and long-term antifouling that is advantageous in terms of pollution control can be achieved. Next, the present invention will be explained in detail using Examples and Comparative Examples. Unless otherwise specified in the text, parts are parts by weight. Preparation of organotin polymer antifouling coating agent (A) In a flask equipped with a stirrer, add 112 g of tributyltin methacrylate, 65 g of methyl methacrylate,
Prepare a mixture of 10 g of butyl acrylate, 23 g of octyl acrylate, 1.2 g of benzoyl peroxide, and 200 g of xylene, and
Copolymerization was carried out by heating and stirring at 90°C for 2 hours, then at 100°C to 1050°C for 3 hours, and further heating and stirring at 120°C for 1 hour. The obtained copolymerization solution was colorless and transparent, and had a viscosity of 660 cps at 25°C. The obtained copolymer solution was blended with other components in the amounts shown below and kneaded to prepare an organic tin polymer antifouling coating agent (A). Copolymer solution 40.0 parts Titanium dioxide 10.0 parts Phthalocyanine blue 20 parts Talc 34.5 parts Xylene 13.5 parts Preparation of base coating agents A to H The main ingredients of A to H whose formulations are shown in Table 1 were kneaded, and further A to D Example basecoat applications A to H were prepared by adding a curing agent just before use.

【表】【table】

【表】 比較例下塗塗布剤の調製 撹拌機付きのフラスコに、ロジン10.8部、タ
マノール145F(荒川林産業製ロジン変性フエ
ノール樹脂)30.6部、アマニ油14.0部、支那桐
油1.6部、ミネラルスピリツト10.0部、スワゾ
ールJ310(丸善石油社製芳香族石油ナフサ)
33.0部を仕込み、50℃に加温しつつ1時間撹拌
し、やや褐色に着色した透明な変性油溶液を得
た。 変性油溶液を用い、下記の配合によつて比較
例下塗塗布剤を調製した。 タルク 20.0部 バライタ 3.6部 弁 柄 8.0部 亜鉛華 4.0部 変性油溶液 57.9部 ナフテン酸コバルト 0.3部 ナフテン酸鉛 3.0部 ミネラルスピリツト 3.2部 実施例1〜8、比較例1〜2 下塗塗布剤A〜をモルタル仕上げを施したコ
ンクリート板それぞれ3枚に、表2に示す塗膜厚
となるごとく2〜3回スプレー塗装し、下塗未塗
装の比較例1とともに、さらにその上に有機錫重
合体防汚塗布剤(A)を塗膜厚60μで2回スプレー塗
装して実施例1〜8、比較例1〜2の塗装試験板
を作製した。 実施例、比較例それぞれの塗装試験板1枚は40
℃の人工海水に浸漬して経時的に付着性を調べ、
他の2枚は州本市由良湾で、筏から水面下1.5m
の海中に浸漬し、経時的に防汚効果と付着性を調
べた。結果を表3、表4、表5に示す。
[Table] Preparation of Comparative Example Primer Coating In a flask with a stirrer, 10.8 parts of rosin, 30.6 parts of Tamanol 145F (rosin-modified phenolic resin manufactured by Arakawa Hayashi Sangyo), 14.0 parts of linseed oil, 1.6 parts of Chinese tung oil, and 10.0 parts of mineral spirits. Section, Swazol J310 (aromatic petroleum naphtha manufactured by Maruzen Oil Co., Ltd.)
33.0 parts were charged and stirred for 1 hour while heating to 50°C to obtain a transparent denatured oil solution colored slightly brown. A comparative base coat coating agent was prepared using a modified oil solution according to the following formulation. Talc 20.0 parts Baryta 3.6 parts Valve handle 8.0 parts Zinc white 4.0 parts Modified oil solution 57.9 parts Cobalt naphthenate 0.3 parts Lead naphthenate 3.0 parts Mineral spirits 3.2 parts Examples 1-8, Comparative Examples 1-2 Primer coating agent A~ was spray-coated 2 to 3 times on each of three mortar-finished concrete plates to the coating thickness shown in Table 2, and an organic tin polymer antifouling coating was applied on top of Comparative Example 1, which had not been undercoated. Coated test plates of Examples 1 to 8 and Comparative Examples 1 to 2 were prepared by spray coating coating agent (A) twice at a coating thickness of 60 μm. One coated test board for each example and comparative example is 40
The adhesion was examined over time by immersing it in artificial seawater at ℃.
The other two photos are from Yura Bay, Shumoto City, 1.5m below the water surface from the raft.
The antifouling effect and adhesion were examined over time by immersing the material in the sea. The results are shown in Tables 3, 4, and 5.

【表】【table】

【表】 表3にみられるように、あらかじめ、エポキシ
樹脂を配合した下塗塗布剤A、Bを塗布した実施
例1、実施例2、一般にタールエポキシ樹脂塗布
剤と呼ばれる下塗塗布剤C、Dを塗布した実施例
3、実施例4、ビニル樹脂を配合した下塗塗布剤
E、Fを塗布した実施例5、実施例6、塩素化ポ
リエチレンを配合した下塗塗布剤Gを塗布した実
施例7、塩素化ポリプロピレンを配合した下塗塗
布剤Hを塗布した実施例8はいずれも40℃人工水
浸漬6か月後のゴバン目テストで異状なく、良好
な付着性を示したが、有機錫重合体防汚塗布剤(A)
をコンクリート板に直接塗布た比較例1および一
般に油性下塗ペイントと呼ばれる比較用下塗塗布
剤を塗布した比較例2はいずれも40℃人工海水
浸漬前に行つたゴバン目テストは25で正常であつ
たが、比較例1は浸漬1か月後に、比較2は浸漬
3か月後に塗布膜が全面剥離し、エポキシ樹脂、
タールエポキシ樹脂、ビニル樹脂、塩素化ポリオ
レフイン樹脂がコンクリートまたはモルタルに強
い付着力を有し、かつ耐アルカリ性にすぐれてい
ることを示した。
[Table] As shown in Table 3, Examples 1 and 2 were coated with primer coating agents A and B containing epoxy resin, and primer coating agents C and D, which are generally called tar epoxy resin coating agents, were coated in advance. Example 3 and Example 4 were coated, Example 5 and Example 6 were coated with primer coating agents E and F containing vinyl resin, Example 7 were coated with primer coating agent G containing chlorinated polyethylene, and chlorine. In Example 8, in which primer coating agent H containing chemically modified polypropylene was applied, there were no abnormalities in the goblin test after 6 months of immersion in artificial water at 40°C, showing good adhesion. Coating agent (A)
In Comparative Example 1, in which the material was applied directly to the concrete board, and in Comparative Example 2, in which a comparative undercoat paint, generally called oil-based undercoat paint, was applied, the goblin test conducted before immersion in artificial seawater at 40°C was 25, which was normal. However, in Comparative Example 1, the coating film completely peeled off after 1 month of immersion, and in Comparative Example 2, after 3 months of immersion, and the epoxy resin,
It was shown that tar epoxy resin, vinyl resin, and chlorinated polyolefin resin have strong adhesion to concrete or mortar and have excellent alkali resistance.

【表】【table】

【表】 表4の結果は試験板全面積に占める汚損生物の
付着率として表わしているが、本質的には下塗塗
布剤の有無(比較例1は下塗塗布剤を塗布してい
ない。)および下塗塗布剤の種類の違い(比較例
2は耐アルカリ性の弱い油性下塗ペイントを下塗
塗布剤として使用した。)に起因するコンクリー
トまたはモルタル素地との付着力の差で、その傾
向は表1のゴバン目テストの結果と同様である。
[Table] The results in Table 4 are expressed as the adhesion rate of fouling organisms to the total area of the test plate, but essentially they are based on the presence or absence of an undercoat (no undercoat was applied in Comparative Example 1). This is due to the difference in adhesion to the concrete or mortar base due to the difference in the type of primer coating agent (in Comparative Example 2, an oil-based primer paint with weak alkali resistance was used as the primer coating agent), and this tendency is shown in Table 1. The results are similar to those of the eye test.

【表】【table】

【表】 表5の結果は表3、表4の結果と同様の傾向で
あり、本発明に用いられる下塗布剤が、耐アルカ
リ性を有し、コンクリートまたはモルタルとの付
着性にすぐれることを示した。 実施例 9 A発電所の、モルタル仕上げをほどこしたコン
クリート製取水口壁面に下塗塗布剤A、Bを被塗
布面積の50%ずつに、それぞれ塗布膜厚50μで2
回、さらに有機重合体防汚塗布剤(A)を塗布膜厚60
μで全面に2回、エアレススプレーを用いて塗布
した。通水1年後に調査したところ、塗布膜の剥
離・汚損生物の付着ともになく、良好な防汚力を
示した。 実施例 10 B発電所の、モルタルライニングをほどこした
循環水管内面に、下塗塗布剤C、Dを被塗布面積
の50%ずつに、それぞれ塗布膜厚70μで2回、さ
らに有機錫重合体防汚塗布剤(A)を塗布膜厚60μで
全面に2回、ローラー刷毛を用いて塗布した。通
水2年後に調査したところ、塗布膜の剥離・汚損
生物の付着ともになく、良好な防汚力を示した。 実施例 11 C発電所の、コンクリート製取水口壁面に、下
塗塗布剤E、Fを被塗布面積の50%ずつに、それ
ぞれ塗布膜厚30μで3回、さらに有機錫重合体防
汚塗布剤(A)を塗布膜厚60μで全面に2回、エアレ
ススプレーを用いて塗布した。通水1年後に調査
したところ、塗布膜の剥離・汚損生物の付着とも
になく、良好な防汚力を示した。 実施例 12 D発電所の、モルタルライニングをほどこした
循環水管内面に、下塗塗布剤G、Hを被塗布面積
の50%ずつに、それぞれ塗布膜厚40μで2回、さ
らに有機錫重合体防汚塗布剤(A)を60μで全面に2
回、ローラー刷毛を用いて塗布した。通水1年後
に調査したところ、塗布膜の剥離・汚損生物の付
着ともになく、良好な防汚力を示した。 比較例 3 B発電所の、モルタルライニングをほどこした
循環水管内面の一部に、1か所は有機錫重合体防
汚塗布剤(A)を塗布膜厚60μで2回、他の1か所は
比較用下塗塗布剤を塗布膜厚40μで2回、さら
に有機錫重合体防汚塗布剤(A)を60μで2回、ロー
ラー刷毛を用いて塗布した。通水1年後に状態を
観察したところ、塗布膜は完全に剥離・消失し、
汚損生物が全面に付着していた。 以上実施例、比較例で説明したように、本発明
の防汚方法は、発電所冷却水系の構造物・機器類
のコンクリートまたはモルタルで形成されている
海水接触面に、エポキシ樹脂系下塗塗布剤、ビニ
ル樹脂系下塗塗布剤または塩素化ポリオレフイン
(オレフインとしてはエチレン、プロピレン)樹
脂系下塗塗布剤と有機錫重合体防汚塗布剤とを重
ね塗りすることにより、防汚力、塗布膜の付着力
ともに長期間の効果が期待できる、産業上有用な
ものである。
[Table] The results in Table 5 have the same tendency as the results in Tables 3 and 4, indicating that the primer used in the present invention has alkali resistance and has excellent adhesion to concrete or mortar. Indicated. Example 9 Primer coating agents A and B were applied to 50% of the area to be coated on the mortar-finished concrete water intake wall of power plant A, each with a film thickness of 50 μm.
2 times, and then apply organic polymer antifouling coating agent (A) to a film thickness of 60 mm.
μ was applied twice over the entire surface using an airless sprayer. When investigated after one year of water flow, there was no peeling of the coating film or adhesion of fouling organisms, indicating good antifouling ability. Example 10 Primer coating agents C and D were applied twice to 50% each of the area to be coated on the inner surface of the circulating water pipes lined with mortar at power plant B, each with a film thickness of 70 μm, and then an organic tin polymer antifouling agent was applied. Coating agent (A) was applied twice to the entire surface with a coating thickness of 60 μm using a roller brush. When investigated after 2 years of water flow, there was no peeling of the coating film or adhesion of fouling organisms, indicating good antifouling properties. Example 11 Primer coating agents E and F were applied three times to 50% each of the area to be coated on the concrete water intake wall of power plant C, each with a film thickness of 30 μm, and then an organic tin polymer antifouling coating agent ( A) was applied twice to the entire surface with a coating thickness of 60 μm using an airless sprayer. When investigated after one year of water flow, there was no peeling of the coating film or adhesion of fouling organisms, indicating good antifouling ability. Example 12 Primer coating agents G and H were applied twice to 50% each of the area to be coated on the inner surface of the circulating water pipes lined with mortar at power plant D, each with a film thickness of 40 μm, and then an organic tin polymer antifouling agent was applied. Apply coating agent (A) at 60 μ over the entire surface.
It was applied twice using a roller brush. When investigated after one year of water flow, there was no peeling of the coating film or adhesion of fouling organisms, indicating good antifouling ability. Comparative Example 3 On a part of the inner surface of the mortar-lined circulating water pipe in power plant B, organic tin polymer antifouling coating agent (A) was applied twice to a film thickness of 60μ at one location, and at the other location. A comparative undercoat coating agent was applied twice at a coating thickness of 40 μm, and an organic tin polymer antifouling coating agent (A) was applied twice at a coating thickness of 60 μm using a roller brush. When we observed the condition after one year of water flow, we found that the coating film had completely peeled off and disappeared.
Fouling organisms were adhered to the entire surface. As explained above in the Examples and Comparative Examples, the antifouling method of the present invention applies an epoxy resin undercoat to the concrete or mortar contact surfaces of power plant cooling water system structures and equipment. By overcoating a vinyl resin-based primer coating agent or a chlorinated polyolefin (olefin: ethylene or propylene) resin-based primer coating agent and an organic tin polymer antifouling coating agent, the antifouling power and adhesion of the coating film can be improved. Both are industrially useful and can be expected to have long-term effects.

Claims (1)

【特許請求の範囲】 1 冷却水系のコンクリートまたはモルタルで形
成されている海水接触面に、エポキシ当量が180
〜3300の範囲であるエポキシ樹脂を含む下塗塗布
剤、塩化ビニルの含有量が91重量%以下で、か
つ、酢酸ビニルの含有量が34重量%以下の塩化ビ
ニル、酢酸ビニル共重合体であるビニル樹脂を含
む下塗塗布剤または塩素含有量が66重量%以上で
ある塩素化ポリオレフイン樹脂を含む下塗塗布剤
を塗布したのち、一般式 (式中Rは炭素数3〜5のアルキル基またはフエ
ニル基、R′、R″は水素原子またはメチル基を表
わす。)で示される不飽和有機錫単量体の重合体
もしくは共重合体、またはこの式〔A〕で示され
る不飽和有機錫単量体と共重合性のある他の不飽
和化合物との共重合体を主成分とする防汚塗布剤
を塗布することを特徴とするコンクリートおよび
モルタル表面の防汚方法。
[Claims] 1. The seawater contact surface formed of cooling water-based concrete or mortar has an epoxy equivalent of 180
A base coat containing an epoxy resin in the range of ~3300, a vinyl chloride/vinyl acetate copolymer with a vinyl chloride content of 91% by weight or less and a vinyl acetate content of 34% by weight or less After applying a primer coating agent containing a resin or a primer coating agent containing a chlorinated polyolefin resin with a chlorine content of 66% by weight or more, the general formula (In the formula, R represents an alkyl group or phenyl group having 3 to 5 carbon atoms, and R' and R'' represent a hydrogen atom or a methyl group.) A polymer or copolymer of an unsaturated organotin monomer, Or concrete characterized by applying an antifouling coating agent containing a copolymer of the unsaturated organotin monomer represented by the formula [A] and another copolymerizable unsaturated compound as a main component. and antifouling methods for mortar surfaces.
JP8070083A 1983-05-11 1983-05-11 Prevention of surface staining of concrete and mortar Granted JPS59206512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8070083A JPS59206512A (en) 1983-05-11 1983-05-11 Prevention of surface staining of concrete and mortar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8070083A JPS59206512A (en) 1983-05-11 1983-05-11 Prevention of surface staining of concrete and mortar

Publications (2)

Publication Number Publication Date
JPS59206512A JPS59206512A (en) 1984-11-22
JPS6233365B2 true JPS6233365B2 (en) 1987-07-21

Family

ID=13725600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8070083A Granted JPS59206512A (en) 1983-05-11 1983-05-11 Prevention of surface staining of concrete and mortar

Country Status (1)

Country Link
JP (1) JPS59206512A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015372A (en) * 1990-02-07 1991-05-14 The United States Of America As Represented By The Secretary Of The Navy Toxin containing perforated antifouling polymer nozzle grommet

Also Published As

Publication number Publication date
JPS59206512A (en) 1984-11-22

Similar Documents

Publication Publication Date Title
KR100530968B1 (en) Coating composition
EP1457531B1 (en) Antifouling paint composition, antifouling paint films, and ships, underwater structures, fishing gear and fishing nets covered with the films
JP3874486B2 (en) Paint composition
CA1084645A (en) Anti-fouling overcoating composition and use thereof
CN100465242C (en) Fluorosilicone block polymer type low surface energy marine antifouling coating and preparation method thereof
AU2001266093B2 (en) Antifouling paint
CN1304496C (en) Antifouling paint composition
JP6676654B2 (en) Antifouling paint composition, antifouling coating film, antifouling substrate, and method for producing the antifouling substrate
KR102680739B1 (en) Antifouling composite coating film, antifouling substrate, and method for manufacturing antifouling substrate
NZ512945A (en) Antifouling paint
JPH08269390A (en) Coating composition
JPWO2018221266A1 (en) Epoxy resin anticorrosion coating composition, anticorrosion coating, laminated antifouling coating, and antifouling substrate, and methods for producing these
JPH10279841A (en) Antifouling paint composition, coating film formed from this antifouling coating composition, antifouling method using the antifouling coating composition, and hull, underwater / waterborne structure or fishing material coated with the coating film
JPS6233365B2 (en)
JPH1161002A (en) Non-tin antifouling coating composition, antifouling coating, antifouling method, and ship coated with the antifouling coating
US4482652A (en) Marine anti-fouling paints
US4816071A (en) Coating composition
JP2006183059A (en) Paint composition
JPS60124667A (en) Method for preventing surface of rubber lining from being fouled
JP3120731B2 (en) Underwater antifouling agent
JPH10279840A (en) Antifouling paint composition, coating film formed from this antifouling coating composition, antifouling method using the antifouling coating composition, and hull, underwater / waterborne structure or fishery material coated with the coating film
WO1992007037A1 (en) Anti-fouling composition
JP4573337B2 (en) Method for producing coating composition
JPS6277306A (en) Novel antifouling agent and submarine antifouling coating material using said agent
CN101250378A (en) Silicon acrylic low surface energy marine antifouling coating and preparation method thereof