JPS6232998B2 - - Google Patents
Info
- Publication number
- JPS6232998B2 JPS6232998B2 JP56109304A JP10930481A JPS6232998B2 JP S6232998 B2 JPS6232998 B2 JP S6232998B2 JP 56109304 A JP56109304 A JP 56109304A JP 10930481 A JP10930481 A JP 10930481A JP S6232998 B2 JPS6232998 B2 JP S6232998B2
- Authority
- JP
- Japan
- Prior art keywords
- barrier
- discharge
- flow
- aeration
- aeration device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Description
本発明は、曝気槽に設置して、汚水の浄化に用
いる曝気装置に関する。
従来、かかる曝気装置としては、水中に圧縮
空気を散気する形式のもの、水表面を機械的に
撹拌する形式のもの、水中に機械的な手段で水
の流れを作るとともに圧縮空気を供給する形式の
ものが知られている。最近は省エネルギーを行う
ため、の形式ものにおいて、水中に流れを作る
手段として大容量、低揚程の軸流ポンプを使用し
た曝気装置が多く用いられている。
この種の曝気装置を第1図に示す。水中モータ
1の回転軸には羽根車2が回転自在に取付けられ
ており、水中モータ1に固定したケーシング3
は、羽根車下方の吸込口4と羽根車上方でモータ
軸線のほぼ直角方向の全周にわたつて開口した吐
出し口5を備えている。羽根車上流側もしくは下
流側には散気口6,7が設けられており、気体導
管8を介して図示されていない気体源に接続さ
れ、酸素含有気体が供給される。かかる曝気装置
が曝気槽に設置されている。
したがつて、水中モータ1によつて駆動される
羽根車2の回転により吸込口4から曝気槽内の処
理流が吸込まれ、散気口6もしくは散気口7から
供給される酸素含有気体と混合撹拌され、気液混
相流となつて吐出し口5から全周にわたつて水平
方向に吐出される。
しかし、かかる曝気装置にあつては、その吐出
し口から吐出された気液混相流は、気泡の浮力に
より上昇流に変わり、その後曝気装置の上方に集
合して水面に達する流れを形成する。この結果、
曝気装置上部とその周囲には見かけ密度の大きな
差を生じ、曝気装置上部を上昇し、その周囲を下
降する単純で規模の大きい密度流が形成される。
このため、気泡はそれ自身の浮力による上昇速度
に密度流による上昇速度が加わるため、速やかに
水面に達し、気泡の滞留時間は著しく減少する。
また気泡が狭い領域へ集中するため、気泡の合一
が多く気泡径が大きくなり、これも気泡の滞留時
間を減少させる。これらの原因により、酸素利用
効率(送り込んだ気体中に含まれる酸素に対する
溶け込んだ酸素の割合)が低下する欠点があつ
た。
また、吐出し流れは曝気装置の吐出し口から放
射状に全方向に一様に吐出されるため、吐出され
た後の流速は吐出し口からの距離のほぼ二乗に反
比例して減少し、ために撹拌および酸素溶解能力
が減少する欠点があつた。
例えば特開昭50―125967号公報および特開昭50
―126574号公報には、中心に羽根車を有し、ほぼ
水平方向に全周にわたつて気体と液体との混相流
を吐出する形式の曝気装置が開示されている。し
かしながら、かかる公知の技術では羽根車の半径
方向外方に放射状に板状の複数個の案内羽根を設
けてあるので、羽根車を出た流れは板状の案内羽
根と衝突し、固形物および気泡が分離され、羽根
車の半径方向外方の全周にわたつて一様な流れに
なつて吐出されるようになつている。そのために
実質的に第1図に関して説明した公知技術と流れ
の態様が同じであり、したがつて同様な欠点を有
する。
したがつて本発明の目的は、気泡の滞留時間を
長くでき、かつ撹拌および酸素溶解能力を向上で
きる曝気装置を提供するにある。
本発明によれば、羽根車を有し、ケーシング内
で気液混合した後、ほぼ水平方向の全周にわたつ
て気体と液体の混相流を吐出する形式の曝気装置
において、その吐出し部の一部を塞いで、上記混
相流を複数個の吐出し流れに分割する障壁を備え
ている。
したがつて羽根車からの混相流は障壁によつて
一部が塞がれているので、吐出し流は部分的に阻
止される。そのために羽根車によつて加圧された
混相流は障壁のない所から、ジエツト状になつて
各ジエツトの間の死水域の液を伴いながら、比較
的に早い速度で吐出されるので、水平方向に遠方
まで到達する。その結果、水平方向の混合作用が
良好に行われ、気泡の広がる範囲を拡大できる。
さらに気泡が集中しないので、気泡の上昇速度が
おそくなり滞留時間が長くなり酸素利用効率が向
上する。
本発明の実施に際して障壁は、吐出し部と一体
に設けてもよく、またカバーに設けてもよく、或
いは曝気槽の底面に設けてもよい。
この障壁は水平方向の全周の10〜50%が好まし
い。
以下、第2図ないし第11図を参照し本発明の
実施例を説明する。
第2図および第3図は本発明の第1実施例を示
し、後述の点以外は第1図に示すような曝気装置
と同様の構造のものであり、曝気槽の底面に脚9
により設置されている。曝気装置ケーシング3の
吐出し口5に障壁10が一体に設けられており、
この障壁10により吐出流の吐出を阻止してい
る。障壁10の数は適宜選定でき、その際、中心
振り分けに設けることは、曝気槽内を均一に混合
する点で有効である。また、障壁10の曝気装置
中心から見た視角θの合計が全周の10〜50%が望
ましい。第9図に障壁10の割合を変えた時の酸
素利用効率の変化を示し、障壁10が10〜50%の
範囲で高い酸素利用効率が維持されることがわか
る。
このように、吐出し口5に障壁10を設け、吐
出流の無い領域を形成したことにより、吐出され
た流れは障壁を設けない従来の場合より減速が大
幅に小さくなつて、水平方向に遠方まで到達し、
この結果、水平方向の混合が良くなり、気泡の広
がる範囲が拡大する。このため、曝気槽の小さい
領域に気泡が集中することがなくなつて、単純で
規模の大きい密度流の形成が防止されることによ
り、気泡の上昇速度が密度流により加速されない
ため、気泡の滞留時間が長くなり、また気泡の合
一が少なくなり、酸素利用効率が向上する。
第4図ないし第6図は本発明の第2実施例を示
し、前記実施例では障壁は吐出し部に一体に設け
られていたが、この実施例では、曝気装置に着脱
自在に装着されるカバーに吐出し部から吐出する
気液混相流を複数個の吐出し流れに分割する障壁
が設けられている。すなわち、第4図において1
1は曝気装置に着脱自在に装着されるカバーで、
平板12とそれから垂下する障壁10aとからな
つている。このカバー11を第5図に示すよう
に、曝気装置上に装着することにより、障壁10
aが吐出し口5から吐出する気液混合流を複数個
の吐出し流れに分割する。また障壁を第6図に示
すように、中心部に向つて彎曲させた障壁10b
とすることにより、ガイド板として作用し、吐出
し流れを滑らかに分割することができる。このよ
うに障壁を彎曲させることは、前述の第1実施例
のものにおいても勿論有効である。
第7図は本発明の第3の実施例を示し、曝気装
置が設置される曝気槽底面に障壁10cを設けた
ものである。障壁10cは曝気装置を設置するた
めの案内の役目を果す。また、水流が上から下に
流れる下吐出し形式の曝気装置の場合には、第8
図に第4実施例として示すような、曝気槽の底面
に障壁10dを設ければ良い。
周囲8m×8m、水深5mの水槽で次表に示す
条件下で実験を行い、次表に示す結果を得た。
The present invention relates to an aeration device installed in an aeration tank and used for purifying sewage. Conventionally, such aeration devices include those that diffuse compressed air into the water, those that mechanically stir the water surface, and those that create a flow of water in the water using mechanical means and supply compressed air. The format is known. Recently, in order to save energy, aeration devices that use large-capacity, low-head axial flow pumps are often used as a means of creating a flow in water. This type of aeration device is shown in FIG. An impeller 2 is rotatably attached to the rotating shaft of the underwater motor 1, and a casing 3 fixed to the underwater motor 1
The motor is equipped with a suction port 4 below the impeller and a discharge port 5 that opens over the entire circumference in a direction substantially perpendicular to the motor axis above the impeller. Aeration ports 6, 7 are provided on the upstream side or the downstream side of the impeller and are connected to a gas source (not shown) via a gas conduit 8 to supply oxygen-containing gas. Such an aeration device is installed in the aeration tank. Therefore, the rotation of the impeller 2 driven by the underwater motor 1 sucks the treated flow in the aeration tank through the suction port 4, and mixes it with the oxygen-containing gas supplied from the aeration port 6 or 7. They are mixed and stirred to become a gas-liquid multiphase flow and are discharged from the discharge port 5 in the horizontal direction over the entire circumference. However, in such an aeration device, the gas-liquid multiphase flow discharged from the discharge port changes into an upward flow due to the buoyancy of the bubbles, and then gathers above the aeration device to form a flow that reaches the water surface. As a result,
A large difference in apparent density occurs between the upper part of the aerator and its surroundings, and a simple, large-scale density flow is formed that rises above the aerator and descends around it.
For this reason, the bubbles quickly reach the water surface because the rising speed due to the density flow is added to the rising speed due to their own buoyancy, and the residence time of the bubbles is significantly reduced.
Furthermore, since the bubbles are concentrated in a narrow area, the bubbles often coalesce, increasing the bubble diameter, which also reduces the bubble residence time. Due to these causes, the oxygen utilization efficiency (the ratio of dissolved oxygen to the oxygen contained in the supplied gas) has been reduced. In addition, since the discharge flow is uniformly discharged radially in all directions from the discharge port of the aeration device, the flow velocity after discharge decreases approximately in inverse proportion to the square of the distance from the discharge port. The drawback was that the stirring and oxygen dissolving abilities were reduced. For example, JP-A No. 125967-125967 and JP-A-Sho 50
Japanese Patent No. 126574 discloses an aeration device that has an impeller in the center and discharges a multiphase flow of gas and liquid over the entire circumference in a substantially horizontal direction. However, in this known technique, a plurality of plate-shaped guide vanes are provided radially outward of the impeller, so the flow exiting the impeller collides with the plate-shaped guide vanes, causing solid matter and The air bubbles are separated and discharged in a uniform flow over the entire radial outer circumference of the impeller. For this purpose, the flow pattern is essentially the same as that of the prior art described with reference to FIG. 1, and therefore has similar disadvantages. Therefore, an object of the present invention is to provide an aeration device that can lengthen the residence time of bubbles and improve stirring and oxygen dissolution capabilities. According to the present invention, in an aeration device having an impeller and discharging a multiphase flow of gas and liquid over the entire circumference in a substantially horizontal direction after mixing gas and liquid in a casing, the discharge portion of the aeration device has an impeller. A barrier is provided to partially block the multiphase flow and divide the multiphase flow into a plurality of discharge flows. The multiphase flow from the impeller is therefore partially blocked by the barrier, so that the discharge flow is partially blocked. For this reason, the multiphase flow pressurized by the impeller is discharged from a place without a barrier in the form of a jet at a relatively high speed, accompanied by the liquid in the dead zone between each jet, so that it can be discharged horizontally. Reach far in a direction. As a result, the horizontal mixing action is performed well, and the range in which the bubbles spread can be expanded.
Furthermore, since the bubbles are not concentrated, the rising speed of the bubbles is slowed, the residence time is increased, and the oxygen utilization efficiency is improved. In the practice of the present invention, the barrier may be provided integrally with the discharge portion, may be provided on the cover, or may be provided on the bottom surface of the aeration tank. This barrier is preferably 10-50% of the total horizontal circumference. Embodiments of the present invention will be described below with reference to FIGS. 2 to 11. 2 and 3 show a first embodiment of the present invention, which has the same structure as the aeration device shown in FIG. 1 except for the points described later, and has legs 9 on the bottom of the aeration tank.
It is installed by. A barrier 10 is integrally provided at the discharge port 5 of the aerator casing 3,
This barrier 10 prevents the discharge of the discharge flow. The number of barriers 10 can be selected as appropriate, and providing them in the center is effective in uniformly mixing the inside of the aeration tank. Further, it is desirable that the total visual angle θ of the barrier 10 viewed from the center of the aeration device is 10 to 50% of the entire circumference. FIG. 9 shows the change in oxygen utilization efficiency when the ratio of the barrier 10 is changed, and it can be seen that a high oxygen utilization efficiency is maintained when the barrier 10 is in the range of 10 to 50%. In this way, by providing the barrier 10 at the discharge port 5 and forming an area where there is no discharge flow, the deceleration of the discharged flow is much smaller than in the conventional case where no barrier is provided, and the discharge flow is spread far away in the horizontal direction. reach up to
As a result, horizontal mixing is improved and the range in which the bubbles spread is expanded. For this reason, the air bubbles are not concentrated in a small area of the aeration tank, and the formation of a simple, large-scale density flow is prevented, and the rising speed of the air bubbles is not accelerated by the density flow, so the air bubbles remain. This increases the time and reduces the coalescence of bubbles, improving oxygen utilization efficiency. 4 to 6 show a second embodiment of the present invention, in which the barrier was provided integrally with the discharge part in the previous embodiment, but in this embodiment, it is detachably attached to the aeration device. The cover is provided with a barrier that divides the gas-liquid multiphase flow discharged from the discharge portion into a plurality of discharge flows. That is, in Figure 4, 1
1 is a cover that is removably attached to the aeration device,
It consists of a flat plate 12 and a barrier 10a depending from the flat plate 12. By mounting this cover 11 on the aeration device as shown in FIG.
a divides the gas-liquid mixed flow discharged from the discharge port 5 into a plurality of discharge flows. Further, as shown in FIG. 6, the barrier 10b is curved toward the center.
By doing so, it acts as a guide plate and can smoothly divide the discharge flow. Curving the barrier in this way is of course also effective in the first embodiment described above. FIG. 7 shows a third embodiment of the present invention, in which a barrier 10c is provided at the bottom of an aeration tank in which an aeration device is installed. The barrier 10c serves as a guide for installing the aeration device. In addition, in the case of a bottom discharge type aeration device where the water flow flows from top to bottom, the eighth
A barrier 10d may be provided at the bottom of the aeration tank as shown in the figure as a fourth embodiment. Experiments were conducted in an aquarium with a circumference of 8 m x 8 m and a water depth of 5 m under the conditions shown in the following table, and the results shown in the following table were obtained.
【表】
この実験結果から、本発明による場合は従来の
吐出し部に障壁を設けない場合に比べて、総括物
質移動容量係数Kcaも大きく、酸素利用効率が高
いことが明らかとなつた。
以上説明したように本発明は、簡単な構造であ
りながら、次のような優れた作用効果を奏するも
のである。
酸素利用効率が大幅に向上する。
エネルギー消費が大幅に減少する。
気泡を曝気槽の広い領域に拡散できる。
曝気槽全体を平均的な混合強度で撹拌でき
る。
デツトスペースが少なくなる。
なお、以上は主として、水流が下から上に流れ
る上吐出し形式の曝気装置について述べたが、水
流が上から下に流れる下吐出し形式の曝気装置に
も勿論実施できる。その一例が10図および第1
1図に示されている。
第10図および第11図に示す第5実施例は、
第8図に示すような下吐出し形式の具体例であ
る。すなわち吐出し口5近くに流れに向つて流線
形状をした障壁10cがケーシング3と一体に設
けられており、この障壁10cによつてなめらか
に流れを分割することができる。また、ポンプは
軸流ポンプに限らず、斜流、あるいは渦巻ポンプ
であつてもよく、ポンプを駆動するモータは水中
モータに限らず、例えば槽外にモータを設置し、
ポンプを駆動するよにしてもよい。さらに障壁の
他に、吐出し部に吐出し流れの幅にほぼ一致する
平面状の案内板を設け、吐出された流れをできる
だけ減速させずに遠くまで到達させることは、酸
素利用効率の向上を計る上で有効である。[Table] From the results of this experiment, it was revealed that in the case of the present invention, the overall mass transfer capacity coefficient Kca was larger and the oxygen utilization efficiency was higher than in the case of the conventional case in which no barrier was provided in the discharge section. As explained above, although the present invention has a simple structure, it has the following excellent effects. Oxygen utilization efficiency is greatly improved. Energy consumption is significantly reduced. Air bubbles can be spread over a large area of the aeration tank. The entire aeration tank can be stirred with average mixing intensity. Det space is reduced. Although the above description has mainly been given to a top discharge type aeration device in which a water flow flows from the bottom to the top, the present invention can of course also be implemented in a bottom discharge type aeration device in which a water flow flows from the top to the bottom. An example is Figure 10 and Figure 1.
This is shown in Figure 1. The fifth embodiment shown in FIGS. 10 and 11 is
This is a specific example of the bottom discharge type as shown in FIG. That is, a streamlined barrier 10c facing the flow is provided integrally with the casing 3 near the discharge port 5, and the flow can be smoothly divided by this barrier 10c. Furthermore, the pump is not limited to an axial flow pump, but may also be a mixed flow pump or a centrifugal pump, and the motor that drives the pump is not limited to a submersible motor; for example, the motor may be installed outside the tank,
A pump may also be driven. Furthermore, in addition to the barrier, providing a planar guide plate in the discharge section that roughly matches the width of the discharge flow to allow the discharge flow to reach as far as possible without slowing down will improve oxygen utilization efficiency. Effective for measurement.
第1図は本発明が実施される曝気装置の一例を
示す縦断面図である。第2図および第3図は本発
明の第1実施例を示し、第2図は曝気装置の斜視
図、第3図は横断面図である。第4図ないし第6
図は本発明の第2実施例を示し、第4図は障壁を
備えたカバーの斜視図、第5図はカバーを装着し
た曝気装置の斜視図、第6図は障壁を備えたカバ
ーの変形例の斜視図である。第7図および第8図
はそれぞれ本発明の第3および第4実施例を示す
曝気装置の斜視図である。第9図は障壁の割合と
酸素利用効率との関係を示すグラフである。第1
0図は本発明の第5実施例のケーシングの平面
図、第11図は第10図の断面図である。
1…水中モータ、2…羽根車、3…ケーシン
グ、4…吸込口、5…吐出し口、6,7…散気
口、8…気体導管、9…脚、10,10a,10
b,10c,10d…障壁、11…カバー、12
…平板。
FIG. 1 is a longitudinal sectional view showing an example of an aeration device in which the present invention is implemented. FIGS. 2 and 3 show a first embodiment of the present invention, with FIG. 2 being a perspective view of the aeration device and FIG. 3 being a cross-sectional view. Figures 4 to 6
The figures show a second embodiment of the invention, FIG. 4 is a perspective view of a cover with a barrier, FIG. 5 is a perspective view of an aeration device with the cover attached, and FIG. 6 is a modification of the cover with a barrier. FIG. 3 is a perspective view of an example. FIGS. 7 and 8 are perspective views of aeration devices showing third and fourth embodiments of the present invention, respectively. FIG. 9 is a graph showing the relationship between barrier ratio and oxygen utilization efficiency. 1st
0 is a plan view of a casing according to a fifth embodiment of the present invention, and FIG. 11 is a sectional view of FIG. 10. DESCRIPTION OF SYMBOLS 1... Underwater motor, 2... Impeller, 3... Casing, 4... Suction port, 5... Discharge port, 6, 7... Diffusion port, 8... Gas conduit, 9... Leg, 10, 10a, 10
b, 10c, 10d...Barrier, 11...Cover, 12
...flat plate.
Claims (1)
後、ほぼ水平方向の全周にわたつて気体と液体の
混相流を吐出する形式の曝気装置において、その
吐出し部の一部を塞いで、上記混相流を複数個の
吐出し流れに分割する障壁を備えたことを特徴と
する曝気装置。 2 吐出し部から吐出される気液混相流を複数個
の吐出し流れに分割する障壁を、吐出し部にそれ
と一体に設けてなることを特徴とする特許請求の
範囲第1項に記載の曝気装置。 3 曝気装置に着脱自在に装着されるカバーに、
吐出し部から吐出される気液混相流を複数個の吐
出し流れに分割する障壁を設けてなることを特徴
とする特許請求の範囲第1項記載の曝気装置。 4 曝気装置が設置される曝気槽の底面に、吐出
し部から吐出される気液混相流を複数個の吐出し
流れに分割する障壁を設けてなることを特徴とす
る特許請求の範囲第1項記載の曝気装置。[Claims] 1. In an aeration device having an impeller and discharging a multiphase flow of gas and liquid over the entire circumference in a substantially horizontal direction after mixing gas and liquid within a casing, the discharge portion thereof An aeration device comprising a barrier that blocks a portion of the multiphase flow and divides the multiphase flow into a plurality of discharge flows. 2. The device according to claim 1, characterized in that the discharge section is provided with a barrier that divides the gas-liquid multiphase flow discharged from the discharge section into a plurality of discharge flows. Aeration equipment. 3 A cover that is removably attached to the aeration device,
2. The aeration device according to claim 1, further comprising a barrier that divides the gas-liquid multiphase flow discharged from the discharge portion into a plurality of discharge flows. 4. Claim 1, characterized in that a barrier is provided on the bottom of the aeration tank in which the aeration device is installed, which divides the gas-liquid multiphase flow discharged from the discharge section into a plurality of discharge flows. Aeration equipment as described in section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56109304A JPS5811099A (en) | 1981-07-15 | 1981-07-15 | Aerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56109304A JPS5811099A (en) | 1981-07-15 | 1981-07-15 | Aerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5811099A JPS5811099A (en) | 1983-01-21 |
JPS6232998B2 true JPS6232998B2 (en) | 1987-07-17 |
Family
ID=14506794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56109304A Granted JPS5811099A (en) | 1981-07-15 | 1981-07-15 | Aerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5811099A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60148025U (en) * | 1984-03-10 | 1985-10-01 | 株式会社 関水社 | Solid-containing liquid stirring device for nuclear equipment |
KR100876203B1 (en) | 2008-04-03 | 2008-12-31 | 주식회사 유천엔바이로 | Underwater aerator taking into account aeration tank shape and water obstacles |
JP5850363B2 (en) * | 2011-11-08 | 2016-02-03 | 木野 幸▲徳▼ | Method for producing amino acid-containing liquid |
CN102730856A (en) * | 2012-07-16 | 2012-10-17 | 江苏丰源环保科技工程有限公司 | Titanium micro-pore aerator disc |
-
1981
- 1981-07-15 JP JP56109304A patent/JPS5811099A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5811099A (en) | 1983-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4210534A (en) | Multiple stage jet nozzle and aeration system | |
US3814396A (en) | Aeration apparatus | |
JP4786775B2 (en) | A device that stirs the liquid in the reactor and injects gas into this liquid. | |
US3341450A (en) | Gasification apparatus and method | |
US4681711A (en) | Method and apparatus for aeration of wastewater lagoons | |
JPS6253213B2 (en) | ||
US3837627A (en) | Method and apparatus for gasifying a liquid | |
JP2665629B2 (en) | Impeller for underwater aeration equipment | |
JP2010167329A (en) | Aeration agitator | |
JP3160057B2 (en) | Stirring aeration device | |
KR100806994B1 (en) | Underwater Aeration System with Improved Oxygen Transfer Rate and Stability | |
KR20040097040A (en) | Submersible Aerator with the Encreased Capacity of Aeration and Ability of Diffusion | |
JP3385047B2 (en) | Water purification equipment | |
JP4039430B2 (en) | Impeller | |
JPS6232998B2 (en) | ||
JPS5852686B2 (en) | Mandarin Congouriyu Haneguruma | |
US5051213A (en) | Method and apparatus for mixing fluids | |
JPS6136476B2 (en) | ||
JPS586290A (en) | Aeration device | |
JPH03229696A (en) | Air bubble generator | |
JPH0642796Y2 (en) | Submersible mechanical aerator | |
JPH07114947B2 (en) | Underwater aeration device | |
JPH08173987A (en) | Aeration device suitable for deep water tanks | |
JP2004000897A (en) | Apparatus for generating minute bubble | |
KR200373142Y1 (en) | Submersible Aerator with the Encreased Capacity of Aeration and Ability of Diffusion |