JPS6232635B2 - - Google Patents
Info
- Publication number
- JPS6232635B2 JPS6232635B2 JP58025883A JP2588383A JPS6232635B2 JP S6232635 B2 JPS6232635 B2 JP S6232635B2 JP 58025883 A JP58025883 A JP 58025883A JP 2588383 A JP2588383 A JP 2588383A JP S6232635 B2 JPS6232635 B2 JP S6232635B2
- Authority
- JP
- Japan
- Prior art keywords
- switch
- pulse
- oscillation
- laser oscillator
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000010355 oscillation Effects 0.000 claims description 13
- 230000005284 excitation Effects 0.000 claims description 9
- 230000003287 optical effect Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/11—Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
- H01S3/1106—Mode locking
- H01S3/1109—Active mode locking
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08018—Mode suppression
- H01S3/08022—Longitudinal modes
- H01S3/08031—Single-mode emission
- H01S3/08036—Single-mode emission using intracavity dispersive, polarising or birefringent elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08018—Mode suppression
- H01S3/0804—Transverse or lateral modes
- H01S3/0805—Transverse or lateral modes by apertures, e.g. pin-holes or knife-edges
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
- H01S3/1068—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using an acousto-optical device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/11—Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
- H01S3/1123—Q-switching
- H01S3/115—Q-switching using intracavity electro-optic devices
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Description
【発明の詳細な説明】
この発明は、巨大レーザパルスを発生するQス
イツチレーザ発振器に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Q-switch laser oscillator that generates giant laser pulses.
Qスイツチレーザ発振器からは巨大レーザパル
スが得られるが、そのレーザパルスのモードおよ
び出現時刻等は不安定である。これを安定にする
ため従来次の方法がとられてきた。 A gigantic laser pulse can be obtained from a Q-switch laser oscillator, but the mode and time of appearance of the laser pulse are unstable. Conventionally, the following methods have been used to stabilize this.
その第1は、しきい値エネルギーよりわずかに
大きなエネルギーで励起を行い、緩和発振による
スパイクパルスを観測し、その時Qスイツチ動作
させる方法である。これによれば比較的モードお
よび強度が安定したレーザパルスが得られる。し
かしスパイクパルスの出現時刻がジツターが大き
く、そのためジツターの少ない巨大レーザパルス
を得る用途には適さず、レーザパルスの制御度も
不十分なことが多い。 The first method is to excite with energy slightly higher than the threshold energy, observe spike pulses due to relaxation oscillation, and then operate the Q switch. According to this, a laser pulse with relatively stable mode and intensity can be obtained. However, there is a large jitter in the appearance time of the spike pulse, and therefore it is not suitable for obtaining a gigantic laser pulse with little jitter, and the degree of control of the laser pulse is often insufficient.
第2の方法は、Qスイツチ素子等の光学的損失
を一定に保ち、励起パワーもわずかに発振が持続
する程度以上のパワーで一定に制御し、準定常発
振状態をしばらく持続させた後Qスイツチ動作さ
せるものである。この方法は理想に近いものであ
るが、実用上は励起パワーおよび共振器等を極め
て高精度に制御することが要求されるので問題が
多い、
この発明は、上記従来技術の第2の方法と同程
度の精度に制御された巨大レーザパルスを、第1
の方法以上に実用上簡便に得ることを目的として
いる。以下この発明について説明する。 The second method is to keep the optical loss of the Q-switch element constant, control the excitation power to a level above the power that slightly sustains oscillation, maintain the quasi-steady oscillation state for a while, and then turn off the Q-switch. It is something that makes it work. Although this method is close to the ideal, it has many problems in practice because it requires extremely high precision control of the excitation power and the resonator. A gigantic laser pulse controlled to the same degree of precision is
The aim is to obtain it more practically and easily than the method described above. This invention will be explained below.
まずこの発明の原理を述べる。 First, the principle of this invention will be described.
Qスイツチ動作をさせないノルマル発振におい
て、しきい値以上のエネルギーでパルス励起を行
うと緩和発振と呼ばれるスパイクパルスが幾つか
現われる。励起および共振器等の不安定性により
緩和発振の様相は不安定である。 In normal oscillation without Q-switch operation, when pulse excitation is performed with energy above the threshold, several spike pulses called relaxation oscillation appear. The mode of relaxation oscillation is unstable due to instability of excitation, resonator, etc.
しかし本発明は、励起エネルギーをスパイクパ
ルスが5本以上現われるように極めて大きくする
ことにより、凝似的に定常発振する状態が実現可
能であることを見出し、実験的に確認した。この
状態では、共振器内電場は共振器内の種々の制御
素子により十分制御されており、Qスイツチ動作
をさせると、極めて安定で良質なジツターが少な
い巨大レーザパルスを得ることができる。 However, the present invention has found and experimentally confirmed that by increasing the excitation energy extremely so that five or more spike pulses appear, it is possible to achieve a state of quasi-steady oscillation. In this state, the electric field within the resonator is sufficiently controlled by various control elements within the resonator, and when the Q-switch is operated, an extremely stable, high-quality, gigantic laser pulse with little jitter can be obtained.
次にこの発明の実施例について説明する。 Next, embodiments of the invention will be described.
第1図はこの発明の一実施例を示す構成略図で
ある。この図で、1,8は反射鏡であり、両者で
構成される共振器によつて、YAGロツド4をフ
ラツシユランプで励起してレーザ発振をさせる。
ピンホール5とエタロン6によつて、横および縦
のモードを制御する。非常に短かいパルスを得る
ためモード同期用の音響光学素子7も配置する。
Qスイツチ用にポツケルス・セル2と偏光子3を
使用する。しきい値エネルギーは約7ジユールで
あるが、約16ジユールのパルス励起を行う。Qス
イツチ動作後約200ナノ秒後に巨大レーザパルス
列が出現する。 FIG. 1 is a schematic diagram showing an embodiment of the present invention. In this figure, reference numerals 1 and 8 are reflecting mirrors, and a resonator made up of both causes the YAG rod 4 to be excited by a flash lamp to cause laser oscillation.
The pinhole 5 and etalon 6 control the horizontal and vertical modes. In order to obtain very short pulses, an acousto-optic element 7 for mode locking is also arranged.
A Pockels cell 2 and a polarizer 3 are used for the Q switch. The threshold energy is about 7 Joules, but pulse excitation of about 16 Joules is performed. A huge laser pulse train appears approximately 200 nanoseconds after the Q-switch is activated.
第2図はQスイツチ動作とパルス列の時間的関
係を示すもので、シンクロスコープの波形写真を
模写したものである。 FIG. 2 shows the temporal relationship between the Q-switch operation and the pulse train, and is a reproduction of a waveform photograph taken by a synchroscope.
第2図で、左側の急激に立ち下がつているのが
Qスイツチ動作を示す電気信号であり、中央のパ
ルス列が得られたレーザパルスである。パルス列
のピークはQスイツチ動作後約200ナノ秒後に現
われている。得られたレーザパルス列は極めて良
質でエネルギー安定度も±1パーセント以下であ
る。しかもジツターは±10ナノ秒以下と極めて小
さい。 In FIG. 2, the sharply falling electric signal on the left side is an electrical signal indicating the Q-switch operation, and the pulse train in the center is the obtained laser pulse. The peak of the pulse train appears approximately 200 nanoseconds after the Q-switch operation. The obtained laser pulse train has extremely high quality and energy stability of less than ±1%. Moreover, the jitter is extremely small at less than ±10 nanoseconds.
Qスイツチ素子の光学的損失がパルス励起開始
後徐々に増加するようにすればより早く凝似定常
発振状態が実現され、より低エネルギーでQスイ
ツチレーザ発振が実現される。 If the optical loss of the Q-switch element is gradually increased after the start of pulse excitation, a quasi-steady oscillation state can be achieved more quickly, and Q-switch laser oscillation can be achieved with lower energy.
上述した実施例では発振開始の電気信号を発生
させてから350マイクロ秒後に、推定約100ピコ秒
の正確さで約1パーセントのエネルギー安定度の
巨大レーザパルスが得られた。原理的には、正確
な時計さえあれば無限に長い将来に100ピコ秒の
時間精度でレーザパルスを発生させられる。また
何かの現象後約200ナノ秒後にジツターなくレー
ザパルスを得ることができる。このように極めて
同期性の高い高安定パルスは、従来のQスイツチ
レーザの応用範囲を大きく広げるものである。 In the example described above, a giant laser pulse with an energy stability of about 1% was obtained with an estimated accuracy of about 100 picoseconds 350 microseconds after generating the electrical signal to start oscillation. In principle, as long as we have an accurate clock, we can generate laser pulses with a time accuracy of 100 picoseconds infinitely long into the future. Furthermore, a laser pulse can be obtained without jitter approximately 200 nanoseconds after an event occurs. Such highly synchronous and highly stable pulses greatly expand the range of applications of conventional Q-switch lasers.
以上説明したように、この発明は、単に強パル
ス励起を行うという極めて簡便な方法で、同期性
の極めて高い高品質で、かつ高安定のレーザパル
スを得るこができる利点がある。 As explained above, the present invention has the advantage of being able to obtain high-quality, highly stable laser pulses with extremely high synchronization using an extremely simple method of simply performing strong pulse excitation.
第1図はこの発明の一実施例の構成を示す模式
図、第2図はQスイツチと出現レーザパルス列の
時間的関係を示す図である。
図中、1,8は反射鏡、2はポツケルス・セ
ル、3は偏光子、4はYAGロツド、5はピンホ
ール、6はエタロン、7は音響光学素子である。
FIG. 1 is a schematic diagram showing the configuration of an embodiment of the present invention, and FIG. 2 is a diagram showing the temporal relationship between the Q switch and the appearing laser pulse train. In the figure, 1 and 8 are reflecting mirrors, 2 is a Pockels cell, 3 is a polarizer, 4 is a YAG rod, 5 is a pinhole, 6 is an etalon, and 7 is an acousto-optic element.
Claims (1)
発振器において、前記レーザ発振器の発振しきい
値エネルギーより十分大きく凝似的な定常発振を
行わせるエネルギーのパルス励起を行う手段を具
備せしめたことを特徴とするQスイツチレーザ発
振器。 2 Qスイツチ素子は、パルス励起開始後徐々に
光学的損失を増大させるものである特許請求の範
囲第1項記載のQスイツチレーザ発振器。[Scope of Claims] 1. In a laser oscillator in which a Q-switch element is disposed in a resonator, a means for exciting a pulse of energy sufficiently larger than the oscillation threshold energy of the laser oscillator to cause condensed steady oscillation. A Q-switch laser oscillator characterized by: 2. The Q-switch laser oscillator according to claim 1, wherein the Q-switch element gradually increases optical loss after the start of pulse excitation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58025883A JPS59151482A (en) | 1983-02-18 | 1983-02-18 | Laser oscillator for q switch |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58025883A JPS59151482A (en) | 1983-02-18 | 1983-02-18 | Laser oscillator for q switch |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59151482A JPS59151482A (en) | 1984-08-29 |
JPS6232635B2 true JPS6232635B2 (en) | 1987-07-15 |
Family
ID=12178175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58025883A Granted JPS59151482A (en) | 1983-02-18 | 1983-02-18 | Laser oscillator for q switch |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59151482A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4656635A (en) * | 1985-05-01 | 1987-04-07 | Spectra-Physics, Inc. | Laser diode pumped solid state laser |
US5157677A (en) * | 1991-05-13 | 1992-10-20 | Litton Systems, Inc. | Single frequency, long tail solid state laser interferometer system |
US6188705B1 (en) * | 1997-05-16 | 2001-02-13 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Fiber grating coupled light source capable of tunable, single frequency operation |
-
1983
- 1983-02-18 JP JP58025883A patent/JPS59151482A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59151482A (en) | 1984-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5226051A (en) | Laser pump control for output power stabilization | |
US3747019A (en) | Method and means for stabilizing the amplitude and repetition frequency of a repetitively q-switched laser | |
US3736526A (en) | Method of and apparatus for generating ultra-short time-duration laser pulses | |
JP2001502476A (en) | Picosecond laser | |
KR101682593B1 (en) | Single pulse laser apparatus | |
Wannop et al. | Q-switching the erbium-YAG laser | |
Barbini et al. | Injection-locked single-mode high-power low-divergence TEA CO2 laser using SFUR configuration | |
JPS6232635B2 (en) | ||
KR102230744B1 (en) | Laser generation device | |
di Lazzaro et al. | Experimental study of a generalized self-filtering unstable resonator applied to an XeCl laser | |
US4326175A (en) | Multi-color, multi-pulse laser system | |
Ewart | Frequency tunable, nanosecond duration pulses from flashlamp pumped dye lasers by pulsed Q-modulation | |
JP2002151773A (en) | Laser and method for material processing | |
JP3303309B2 (en) | Laser oscillator | |
JP3131079B2 (en) | Q switch CO2 laser device | |
Brito Cruz et al. | A study of the self-injected laser for subnanosecond pulse generation | |
Cruz et al. | High power short pulse generation in two-frequency flashpumped dye laser | |
Weston et al. | Ultrashort pulse active/passive mode-locked Nd: YLF laser | |
Albrecht et al. | Active-passive mode-locked oscillator generating nanosecond pulses | |
JPS6330791B2 (en) | ||
CN113078544A (en) | Laser and method for realizing pulse group laser output based on cavity emptying group | |
JPH04346484A (en) | pulse laser oscillator | |
Duvillier et al. | Simple numerical control loop for stabilizing Nd: YAG and Nd: YLF single-mode oscillators | |
Washio et al. | Actively initiated quasi-passive mode-locking in a CW SELFOC Nd: glass laser | |
Müller et al. | Reduction of time jitter in a passively Q-switched and mode-locked ruby laser by a double-pulse technique |