JPS6232122B2 - - Google Patents
Info
- Publication number
- JPS6232122B2 JPS6232122B2 JP57159470A JP15947082A JPS6232122B2 JP S6232122 B2 JPS6232122 B2 JP S6232122B2 JP 57159470 A JP57159470 A JP 57159470A JP 15947082 A JP15947082 A JP 15947082A JP S6232122 B2 JPS6232122 B2 JP S6232122B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- silicon
- particles
- pressure
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000001257 hydrogen Substances 0.000 claims description 82
- 229910052739 hydrogen Inorganic materials 0.000 claims description 82
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 78
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 22
- 229910052710 silicon Inorganic materials 0.000 claims description 20
- 239000010703 silicon Substances 0.000 claims description 18
- 239000002245 particle Substances 0.000 claims description 15
- 239000011232 storage material Substances 0.000 claims description 11
- 238000003860 storage Methods 0.000 claims description 10
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 9
- 239000007789 gas Substances 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 6
- 239000013081 microcrystal Substances 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 2
- 238000004220 aggregation Methods 0.000 claims 2
- 230000002776 aggregation Effects 0.000 claims 2
- 238000006243 chemical reaction Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 6
- 239000011882 ultra-fine particle Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 238000004817 gas chromatography Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000000862 absorption spectrum Methods 0.000 description 3
- 208000028659 discharge Diseases 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 238000002003 electron diffraction Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- GLGNXYJARSMNGJ-VKTIVEEGSA-N (1s,2s,3r,4r)-3-[[5-chloro-2-[(1-ethyl-6-methoxy-2-oxo-4,5-dihydro-3h-1-benzazepin-7-yl)amino]pyrimidin-4-yl]amino]bicyclo[2.2.1]hept-5-ene-2-carboxamide Chemical compound CCN1C(=O)CCCC2=C(OC)C(NC=3N=C(C(=CN=3)Cl)N[C@H]3[C@H]([C@@]4([H])C[C@@]3(C=C4)[H])C(N)=O)=CC=C21 GLGNXYJARSMNGJ-VKTIVEEGSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 229940125758 compound 15 Drugs 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- -1 hydrogen compound Chemical class 0.000 description 1
- 150000002483 hydrogen compounds Chemical class 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Silicon Compounds (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Physical Vapour Deposition (AREA)
Description
本発明は新規な水素吸蔵物質および該物質の製
造方法に関する。
珪素よりなる水素吸蔵物質については既に種々
の研究開発がなされており、例えば特願昭56―
70200号明細書には珪素表面に水素スパツタリン
グを行つて、四配位珪素格子とこれを取り囲む
SiH2または/およびSH3の殻からなり、この珪素
格子内に水素を吸蔵した物質を珪素表面に沈着生
成させる方法が記載されている。また特願昭57―
13125号明細書にはモノシランを圧力0.1〜10Torr
の下でグロー放電または反応性スパツタリングに
より冷却した基質上に、―(SiH2)o―結合鎖およ
び四配位珪素格子を有し30〜70原子%の水素を吸
蔵している水素吸蔵物質を基質上に沈着させる方
法が記載されている。これらの物質中に吸蔵され
ている水素は四配位珪素格子内の空隙中に珪素と
化学結合していない遊離状態の水素として約5重
量%の量で存在する。
しかしながら、このような水素吸蔵構造をとつ
ている物質では、吸蔵水素を加熱により放出した
後、再び水素を吸蔵させることは極めて困難であ
る。例えばIBM社の特開昭56―45801号(ヨーロ
ツパ特許第25858A1号)公報の記載によれば、吸
蔵水素を放出させた後のアモルフアスシリコンを
水素プラズマ処理して13原子%(約0.5重量%)
の水素を再吸蔵させているに過ぎない。このよう
な低い水素再吸蔵量では実用に供することはでき
ない。また別法としてジーメンス社の特開昭55―
85401号(米国特許第4265720号)公報には、アモ
ルフアスシリコンの膜の上にPtまたはPdの膜を
設けて水素の再吸蔵を行うことが開示されている
が、これらの貴金属を使用することは経費の面で
問題があり、特に大量の水素吸蔵物質を使用する
場合には適用することができない。
本発明は上記のような従来の水素吸蔵物質より
も水素吸蔵量が大きくかつ再吸蔵能の優れた水素
吸蔵物質およびその製造方法を提供するものであ
る。
本発明による水素吸蔵物質はモノシランをグロ
ー放電処理し、水冷された基板上に生成された粒
径約2500Å(250nm)の粉末からなり(第1
図)、この粉末の個々の粒子は第2図の透過電子
顕微鏡写真および第3図の電子線回折図により粒
径約40〜数100Å(約4〜数10nm)の超微シリコ
ン微結晶粒子の集合体である。そしてこの1個の
超微粒子は電子線回折像から結晶質であることが
わかる。またこの超微粒子の赤外吸収スペクトル
図(第4図)から結合している水素は大部分を占
める―(Si=H2)o―,=Si=H2の他に、ごく少量
の―Si≡H3の基団の形で存在していることがわ
かる。(社団法人電気学会、1982年7月13日、電
子デバイス、新・省エネルギー合同研究会資料、
資料番号EDD―82―54,ESC―82―37参照)
以上の超微細構造を有するSi―H化合物を加熱
し、放出された水素をガスクロマトグラフイーに
より定量したところ5重量%の水素が吸蔵されて
いることがわかつた。一方、赤外吸収スペクトル
から求められた水素の量はたかだか5原子%
(0.2重量%)であるから、5−0.2=4.8重量%の
水素は遊離水素の形態で物質中に存在しているも
のと考えられる。本発明によれば、上記超微粒子
よりなる水素含有珪素物質を圧力容器内に収容
し、温度32〜350℃で0〜4Kg/cm2(ゲージ圧)
の水素圧力下で水素を吸蔵させると38〜53重量%
の水素が吸蔵されることがわかつた。このように
吸蔵された水素は超微粒子の表面に吸着されてい
るものと、または珪素・水素基団のメツシユ間に
閉ぢ込められているものとがあり、実験の結果は
多量の水素が液体水素に近い状態で吸蔵されてい
ることを示している。
以下の実施例によつて本発明を更に詳しく説明
する。
実施例
第5図の装置を用いて次のように操作した。シ
ランガスボンベ3および必要により水素ガスボン
ベ4からそれぞれ流量制御器(MFC)を介して
反応室6にシランガスおよび水素ガスを供給す
る。一方、高周波電源1によりマツチングボツク
ス2を介して上部電極7に10Wの電力を供給す
る。上部電極7と水冷されている基板8との間で
行われるグロー放電によりモノシラン単独または
モノシランと水素との混合ガスが分解して超微粒
子構造を有する珪素・水素化合物が基板上および
反応室壁に沈着し、その生成量は1時間に約33g
であつた。なお反応室内の圧力は1.3×10-3気
圧、ガス流量は10c.c./分であつた。
こうして得られた珪素・水素化合物を次に第6
図に示す装置で処理した。すなわち、反応容器1
4内に上記の珪素・水素化合物15を収容し、水
素ボンベ11から水素を反応容器に供給し、水素
圧4Kg/cm2で1〜3時間保持した。温度は室温
(32℃)から超微粒子間の界面の活性化の為に加
熱器13により350℃までとした(なお、350℃を
越すと―Si=H2基団は変化しないが―Si≡H3は
加熱分解により―(SiH2)o―とH2になるがそれ
以上の問題を生じない)。充分な量の水素が吸蔵
された後に、水素の供給を止め、反応容器内を大
気圧にし、予め1.3×10-5気圧にしてある真空容
器16内に反応容器内の水素を採取し、四方弁1
7を介してガスクロマトグラフイー18により水
素を定量した。次に反応容器14を大気にしたま
ま吸蔵温度以上(例えば350℃〜360℃)に加熱
し、珪素・水素化合物から放出される水素を真空
容器16に導き同様にガスクロマトグラフイーで
水素を定量した。この水素の定量操作をも早や水
素の放出が認められなくなるまで繰返して行い、
全吸蔵水素量を定量した。その結果を表1に示
す。
The present invention relates to a novel hydrogen storage material and a method for producing the material. Various research and developments have already been carried out on hydrogen storage materials made of silicon, such as the patent application filed in 1983.
No. 70200 describes hydrogen sputtering on the silicon surface to form a four-coordinated silicon lattice and surrounding it.
A method is described in which a substance consisting of a shell of SiH 2 and/or SH 3 and containing hydrogen in the silicon lattice is deposited on the silicon surface. Also, the special request was made in 1987.
No. 13125 describes monosilane at a pressure of 0.1 to 10 Torr.
A hydrogen storage material having -( SiH2 ) o -bond chains and a four-coordinated silicon lattice and storing 30 to 70 at.% of hydrogen is deposited on a substrate cooled by glow discharge or reactive sputtering under A method for depositing on a substrate is described. The hydrogen occluded in these materials is present in the voids in the four-coordinated silicon lattice in an amount of about 5% by weight as free hydrogen that is not chemically bonded to silicon. However, in a substance having such a hydrogen storage structure, it is extremely difficult to store hydrogen again after releasing the stored hydrogen by heating. For example, according to IBM's Japanese Unexamined Patent Publication No. 56-45801 (European Patent No. 25858A1), amorphous silicon is treated with hydrogen plasma after it has released absorbed hydrogen to produce 13 atomic percent (approximately 0.5 weight percent) )
It merely re-absorbs hydrogen. Such a low hydrogen restorage amount cannot be put to practical use. Another method is Siemens' Unexamined Patent Publication 1973-
Publication No. 85401 (US Pat. No. 4,265,720) discloses that hydrogen is reabsorbed by providing a Pt or Pd film on an amorphous silicon film, but it is not possible to use these noble metals. However, there are problems in terms of cost, and it cannot be applied especially when a large amount of hydrogen storage material is used. The present invention provides a hydrogen storage material that has a larger hydrogen storage capacity and superior restorage ability than the conventional hydrogen storage materials as described above, and a method for producing the same. The hydrogen storage material according to the present invention consists of a powder with a particle size of approximately 2500 Å (250 nm) produced on a water-cooled substrate by glow discharge treatment of monosilane (first
The transmission electron micrograph in Figure 2 and the electron diffraction diagram in Figure 3 show that the individual particles of this powder are ultrafine silicon microcrystal particles with a particle size of about 40 to several 100 Å (about 4 to several tens of nanometers). It is a collective body. Further, it can be seen from the electron beam diffraction image that this single ultrafine particle is crystalline. Also, from the infrared absorption spectrum diagram of this ultrafine particle (Figure 4), the bonded hydrogen accounts for the majority -(Si=H 2 ) o -, =Si=H 2 , and a very small amount of -Si It can be seen that it exists in the form of a foundation of ≡H 3 . (The Institute of Electrical Engineers of Japan, July 13, 1982, Electronic Devices, New Energy Conservation Joint Study Group Materials,
(Refer to document numbers EDD-82-54 and ESC-82-37) When the Si-H compound with the above ultrafine structure was heated and the released hydrogen was quantified by gas chromatography, it was found that 5% by weight of hydrogen was occluded. I found out that On the other hand, the amount of hydrogen determined from the infrared absorption spectrum is at most 5 atomic percent.
(0.2% by weight), it is considered that 5 - 0.2 = 4.8% by weight of hydrogen exists in the substance in the form of free hydrogen. According to the present invention, the hydrogen-containing silicon material made of the ultrafine particles is housed in a pressure vessel, and the temperature is 32 to 350°C and 0 to 4 kg/cm 2 (gauge pressure).
When hydrogen is absorbed under hydrogen pressure of 38-53% by weight
It was found that hydrogen can be absorbed. Hydrogen absorbed in this way is either adsorbed on the surface of ultrafine particles or trapped between meshes of silicon and hydrogen groups, and experimental results show that a large amount of hydrogen is absorbed into the liquid. This shows that it is absorbed in a state similar to that of hydrogen. The invention will be explained in more detail by the following examples. Example The apparatus shown in FIG. 5 was operated as follows. Silane gas and hydrogen gas are supplied to the reaction chamber 6 from a silane gas cylinder 3 and, if necessary, a hydrogen gas cylinder 4, respectively, via a flow rate controller (MFC). On the other hand, the high frequency power supply 1 supplies 10 W of power to the upper electrode 7 via the matching box 2. Due to the glow discharge that occurs between the upper electrode 7 and the water-cooled substrate 8, monosilane alone or a mixed gas of monosilane and hydrogen is decomposed, and a silicon-hydrogen compound having an ultrafine particle structure is deposited on the substrate and on the walls of the reaction chamber. It is deposited, and the amount produced is about 33g per hour.
It was hot. The pressure inside the reaction chamber was 1.3×10 −3 atm, and the gas flow rate was 10 c.c./min. The silicon-hydrogen compound thus obtained is then
It was processed using the equipment shown in the figure. That is, reaction vessel 1
The above-mentioned silicon-hydrogen compound 15 was placed in the reaction vessel 4, and hydrogen was supplied from the hydrogen cylinder 11 to the reaction vessel and maintained at a hydrogen pressure of 4 kg/cm 2 for 1 to 3 hours. The temperature was set from room temperature (32°C) to 350°C using a heater 13 in order to activate the interface between ultrafine particles. H 3 becomes - (SiH 2 ) o - and H 2 by thermal decomposition, but it does not cause any further problems). After a sufficient amount of hydrogen has been absorbed, the supply of hydrogen is stopped, the inside of the reaction container is brought to atmospheric pressure, and the hydrogen in the reaction container is collected into the vacuum container 16, which has been previously set to 1.3×10 -5 atmospheres, and Valve 1
Hydrogen was determined by gas chromatography 18 through 7. Next, the reaction vessel 14 was heated to the storage temperature or higher (for example, 350°C to 360°C) while being exposed to the atmosphere, and the hydrogen released from the silicon-hydrogen compound was introduced into the vacuum vessel 16, where hydrogen was similarly determined by gas chromatography. . This hydrogen quantitative operation is repeated until no hydrogen release is observed.
The total amount of absorbed hydrogen was determined. The results are shown in Table 1.
【表】
なお、別法として水素吸蔵操作終了後、反応容
器内を大気圧にし、反応容器内をN2ガスで置換
し、次いで吸蔵温度以上(例えば350℃〜360℃)
に加熱して放出される水素の定量を行つたが、吸
蔵水素の定量値は表1の結果と同じであつた。
表1の結果から明らかなように、超微粉珪素水
素化合物に水素圧を0〜4Kg/cm2として水素を吸
蔵させるときに、温度に余り依存することなく、
38〜53重量%の水素が吸蔵されることがわかる。
また吸蔵された水素は単なる加熱により定量的に
使用することができ、水素の放出を終つた珪素・
水素化合物は再び水素吸蔵に付することができ、
吸蔵・放出を10000回繰返しても水素吸蔵特性に
変化はなく、本発明による水素吸蔵物質の寿命は
殆んど無限大である。
本発明の水素吸蔵物質は低い電力消費量で製造
され、単に圧力水素ガスを使用するだけで極めて
多量の水素を吸蔵することができ、また吸蔵され
ている水素は液体水素に近い状態で吸蔵されてい
るので従来の水素貯蔵金属化合物に比較して航空
機、船舶、自動車などの交通機関の水素燃料供給
源として極めて有用である。[Table] As an alternative method, after the hydrogen storage operation is completed, the inside of the reaction vessel is brought to atmospheric pressure, the inside of the reaction vessel is replaced with N 2 gas, and then the temperature is raised above the storage temperature (e.g. 350°C to 360°C).
The amount of hydrogen released by heating was determined, and the quantitative value of occluded hydrogen was the same as the results shown in Table 1. As is clear from the results in Table 1, when hydrogen is stored in an ultrafine silicon-hydrogen compound at a hydrogen pressure of 0 to 4 Kg/cm 2 , it is possible to store hydrogen without much dependence on temperature.
It can be seen that 38-53% by weight of hydrogen is occluded.
In addition, the occluded hydrogen can be used quantitatively by simple heating, and silicon that has finished releasing hydrogen can be used.
Hydrogen compounds can be subjected to hydrogen storage again,
There is no change in the hydrogen storage properties even after occlusion and desorption is repeated 10,000 times, and the life of the hydrogen storage material according to the present invention is almost infinite. The hydrogen storage material of the present invention is produced with low power consumption, can store extremely large amounts of hydrogen simply by using pressurized hydrogen gas, and the stored hydrogen is stored in a state close to liquid hydrogen. Therefore, compared to conventional hydrogen storage metal compounds, it is extremely useful as a hydrogen fuel source for transportation such as aircraft, ships, and automobiles.
第1図および第2図は本発明による水素吸蔵物
質の電子顕微鏡写真、第3図は該物質の電子線回
折図、第4図は該物質の赤外吸収スペクトル図、
第5図は該物質を製造するための概要を説明する
図、そして第6図は該物質の水素吸蔵を行うため
の概要を説明する図である。
図中符号:1……高周波電源、2……マツチン
グボツクス、3……シランガスボンベ、4……水
素ガスボンベ、6……反応室、7……上部電極、
8……基板、11……水素ボンベ、14……反応
容器、13……加熱器、15……珪素・水素化合
物、16……真空容器、18……ガスクロマトグ
ラフイー。
1 and 2 are electron micrographs of the hydrogen storage material according to the present invention, FIG. 3 is an electron diffraction diagram of the material, and FIG. 4 is an infrared absorption spectrum diagram of the material.
FIG. 5 is a diagram illustrating the outline of manufacturing the substance, and FIG. 6 is a diagram illustrating the outline of hydrogen storage of the substance. Codes in the figure: 1... High frequency power supply, 2... Matching box, 3... Silane gas cylinder, 4... Hydrogen gas cylinder, 6... Reaction chamber, 7... Upper electrode,
8...Substrate, 11...Hydrogen cylinder, 14...Reaction container, 13...Heater, 15...Silicon/hydrogen compound, 16...Vacuum container, 18...Gas chromatography.
Claims (1)
―(SiH2)o―、=Si=H2または―Si≡H3の形で水
素が共有結合している粒径4〜数10nmのシリコ
ン微結晶粒子の集合した粒径約250nmの粉末から
なり、シリコン微結晶粒子の集合体界面にシリコ
ン原子と結合していない遊離水素を38〜53重量%
含有している水素吸蔵物質。 2 モノシランガスまたはモノシランガスと水素
の混合ガスを圧力1.3×10-3気圧下で、電極間に
高周波電力が供給されたグロー放電により処理
し、水冷された基板上に得られたシリコン微結晶
粒子の表面のシリコン原子と―(SiH2)o―、=Si
=H2または―Si≡H3の形で水素が共有結合して
いる粒径4〜数10nmのシリコン微結晶粒子の集
合した粒径約250nmの粉末からなる生成物に温度
32〜350℃で0〜4Kg/cm2(ゲージ圧)の水素圧
力下で、シリコン微結晶粒子の集合体界面にシリ
コン原子と結合していない遊離水素を38〜53重量
%吸蔵させることを特徴とする水素吸蔵物質の製
造方法。[Scope of Claims] 1. Particles with a particle size of 4 to 4 in which hydrogen is covalently bonded to a silicon atom on the surface of a silicon microcrystal particle in the form of -(SiH 2 ) o -, =Si=H 2 or -Si≡H 3 It consists of a powder with a particle diameter of approximately 250 nm, which is an aggregation of silicon microcrystalline particles several tens of nanometers in size, and contains 38 to 53% by weight of free hydrogen that is not bonded to silicon atoms at the interface of the aggregation of silicon microcrystalline particles.
Contains hydrogen storage substances. 2 Monosilane gas or a mixed gas of monosilane gas and hydrogen was treated under a pressure of 1.3 × 10 -3 atmospheres by glow discharge with high-frequency power supplied between the electrodes, and the surface of silicon microcrystal particles obtained on a water-cooled substrate. silicon atom and - (SiH 2 ) o -, = Si
A product consisting of powder with a particle size of about 250 nm, which is a collection of silicon microcrystal particles with a particle size of 4 to several tens of nanometers, to which hydrogen is covalently bonded in the form of =H 2 or -Si≡H 3 is heated to
It is characterized by occluding 38 to 53% by weight of free hydrogen that is not bonded to silicon atoms at the aggregate interface of silicon microcrystal particles under hydrogen pressure of 0 to 4 Kg/cm 2 (gauge pressure) at 32 to 350°C. A method for producing a hydrogen storage material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57159470A JPS5950001A (en) | 1982-09-16 | 1982-09-16 | Hydrogen occluding substance and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57159470A JPS5950001A (en) | 1982-09-16 | 1982-09-16 | Hydrogen occluding substance and its manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5950001A JPS5950001A (en) | 1984-03-22 |
JPS6232122B2 true JPS6232122B2 (en) | 1987-07-13 |
Family
ID=15694470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57159470A Granted JPS5950001A (en) | 1982-09-16 | 1982-09-16 | Hydrogen occluding substance and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5950001A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63138319U (en) * | 1987-03-03 | 1988-09-12 | ||
EP4075224A1 (en) | 2021-04-12 | 2022-10-19 | Kubota Corporation | Work machine capable of autonomous travel |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5870325B2 (en) * | 2006-02-14 | 2016-02-24 | 大学共同利用機関法人自然科学研究機構 | Initial activation method and hydrogenation method of hydrogen storage metal or alloy |
-
1982
- 1982-09-16 JP JP57159470A patent/JPS5950001A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63138319U (en) * | 1987-03-03 | 1988-09-12 | ||
EP4075224A1 (en) | 2021-04-12 | 2022-10-19 | Kubota Corporation | Work machine capable of autonomous travel |
Also Published As
Publication number | Publication date |
---|---|
JPS5950001A (en) | 1984-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lotoskyy et al. | An outstanding effect of graphite in nano-MgH2–TiH2 on hydrogen storage performance | |
Jurczyk et al. | Nanoscale Mg-based materials for hydrogen storage | |
CN103215469B (en) | Porous graphene, Graphene/porous metal composite material and their preparation method | |
KR100917697B1 (en) | Transition Metal-Carbon Nanotube Hybrid Catalysts Containing Nitrogen, Methods for Manufacturing the Same, and Methods for Producing Hydrogen Using the Same | |
EP1219567A1 (en) | Carbonaceous material for hydrogen storage and method for preparing the same, and cell and fuel cell | |
JP2001026410A (en) | Method for purifying carbon nanotube | |
Sun et al. | Surface reactivity of Si nanowires | |
CN105152687A (en) | Porous silicon carbide coating layer and production method thereof | |
CN116752114B (en) | A method for preparing nanodiamond based on graphene vertical sheets | |
JP2016526522A (en) | Onion-like carbon-type graphite nanomaterial, its production method and use | |
Jurczyk et al. | Nanocrystalline materials for Ni–MH batteries | |
JPS5933521B2 (en) | hydrogen storage medium | |
JPS6232122B2 (en) | ||
Santucci et al. | Oxygen loss and recovering induced by ultrahigh vacuum and oxygen annealing on WO 3 thin film surfaces: Influences on the gas response properties | |
CN109941986B (en) | Silicon dioxide/graphene three-dimensional composite material and preparation method and application thereof | |
KR100596677B1 (en) | Massive synthesis method of double-walled carbon nanotubes using the vapor phase growth | |
KR100596676B1 (en) | Massive synthesis method of single-walled carbon nanotubes using the vapor phase growth | |
CN117446871B (en) | Two-dimensional ferric oxide nano-sheet and preparation method thereof | |
JPS6359966B2 (en) | ||
JPS60231498A (en) | Synthesizing method of diamond under low pressure | |
US6440562B1 (en) | Tungsten super fine particle and method for producing the same | |
JP2004141837A (en) | Diamond powder with excellent hydrogen storage capacity, and its production method | |
Ohmi et al. | Magnesium hydride film formation using subatmospheric pressure H2 plasma at low temperature | |
JP3532412B2 (en) | Method for producing ultrafine Nb particles | |
JP2018038987A (en) | Hydrogen-occluding carbon material and method for producing the same |