[go: up one dir, main page]

JPS6231851Y2 - - Google Patents

Info

Publication number
JPS6231851Y2
JPS6231851Y2 JP1981024730U JP2473081U JPS6231851Y2 JP S6231851 Y2 JPS6231851 Y2 JP S6231851Y2 JP 1981024730 U JP1981024730 U JP 1981024730U JP 2473081 U JP2473081 U JP 2473081U JP S6231851 Y2 JPS6231851 Y2 JP S6231851Y2
Authority
JP
Japan
Prior art keywords
detection
pressure
fluid
chamber
bellows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981024730U
Other languages
Japanese (ja)
Other versions
JPS57138025U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981024730U priority Critical patent/JPS6231851Y2/ja
Publication of JPS57138025U publication Critical patent/JPS57138025U/ja
Application granted granted Critical
Publication of JPS6231851Y2 publication Critical patent/JPS6231851Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Arrangements Characterized By The Use Of Fluids (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

【考案の詳細な説明】 本考案は流体管路内等に設けて流体の波動を検
出し、電気信号等に変換する波動検出装置に関す
るものである。
[Detailed Description of the Invention] The present invention relates to a wave detection device that is installed in a fluid pipe or the like to detect the wave motion of a fluid and convert it into an electrical signal or the like.

流体管路内に円柱やオリフイス板などを備えた
渦発生装置を設けてその下流側に一定周期の渦を
発生させ、その波動を検出して流量を測定するカ
ルマン渦流量計が知られている。そして、この種
の流量計は、流体の波動を検出して電気信号等に
変換する波動検出装置を備えており、また、この
波動検出装置は、流量計用として用いられるばか
りでなく管内等の流体の動圧を検出する手段とし
て独立使用される。
Karman vortex flowmeters are known, in which a vortex generating device equipped with a cylinder or an orifice plate is installed in a fluid pipe to generate vortices with a constant period on the downstream side, and the flow rate is measured by detecting the waves. . This type of flowmeter is equipped with a wave detection device that detects the wave motion of the fluid and converts it into an electrical signal, etc. This wave detection device is not only used for flowmeters, but also for inside pipes, etc. Used independently as a means of detecting fluid dynamic pressure.

ところが、従来におけるこの種の波動検出装置
は、いずれも波動の進む方向によつて検出感度が
変動するので、渦発生装置から波動が水平、垂直
と交互に現われるカルマン渦流量計に用いる場合
等においては、装置の装着位置選定がむつかしい
という欠点があつた。
However, in all conventional wave detection devices of this type, the detection sensitivity varies depending on the direction in which the waves travel, so when used in Karman vortex flowmeters where waves appear alternately horizontally and vertically from the vortex generator, etc. The disadvantage of this method was that it was difficult to select the mounting position of the device.

本考案は以上のような点に鑑みなされたもの
で、流体管路の外壁に取付けた筒状本体に、円形
鍔付きの検出棒を流体管路内に先端部を臨ませて
傾動自在に支持させ、波動による検出棒の傾動を
感圧素子と歪検出素子を介して電気信号に変換す
るように構成することにより、波動の方向に左右
されない自由な取付け位置の選定を可能として検
出感度を常時確保するとともに、一対の感圧素子
を同形状として互換性を計ることにより製作を容
易にした波動検出装置を提供するものである。
The present invention was developed in view of the above points, and consists of a cylindrical body attached to the outer wall of the fluid pipeline, and a detection rod with a circular flange that is tiltably supported with its tip facing into the fluid pipeline. By converting the tilting of the detection rod caused by waves into an electrical signal via a pressure-sensitive element and a strain-sensing element, it is possible to freely select the mounting position unaffected by the direction of the waves, and the detection sensitivity can be maintained at all times. The present invention provides a wave detection device that is easy to manufacture by ensuring compatibility and ensuring compatibility by making a pair of pressure sensitive elements the same shape.

以下、その構成等を図に示す実施例により詳細
に説明する。
Hereinafter, the configuration and the like will be explained in detail with reference to embodiments shown in the drawings.

第1図ないし第3図は本考案に係る波動検出装
置をカルマン渦流量計に実施した例を示し、第1
図はこれを実施したカルマン渦流量計の縦断面
図、第2図は同じく一部破断して示す斜視図、第
3図は波動検出装置の縦断面図である。図におい
て、矢印Aで示す流体流れ方向に対する上流側の
配管1と下流側の配管2には、接続フランジ1
a,2aがそれぞれ一体形成されており、これら
の接続フランジ1a,2aは、その間にパツキン
3および4と渦発生用のオリフイス板5とを介在
させてボルトで接合されている。そして、オリフ
イス板5は、薄板によつて円板状に形成されてお
り、その外周部の1箇所には、着脱用のつまみ5
aが一体形成されている。また、オリフイス板5
には、配管1,2の内径よりもやゝ小さい直径の
円孔をその中心を通る仕切板5bで対称形に分割
することにより半月状の流体通路5cが穿設され
ている。そして、流体は、このオリフイス板5の
流体通路5cを通過することにより、通過後の配
管2内に回転方向の異なる渦が交互に現われるい
わゆるカルマン渦を発生させ、全体の流れが矢印
Bで示すように蛇行する。
Figures 1 to 3 show examples in which the wave detection device according to the present invention is implemented in a Karman vortex flow meter.
The figure is a longitudinal cross-sectional view of a Karman vortex flowmeter implementing this method, FIG. 2 is a partially cutaway perspective view of the same, and FIG. 3 is a longitudinal cross-sectional view of a wave detection device. In the figure, the upstream piping 1 and the downstream piping 2 with respect to the fluid flow direction indicated by arrow A have connecting flanges 1
a, 2a are integrally formed, and these connecting flanges 1a, 2a are joined with bolts with gaskets 3 and 4 and an orifice plate 5 for vortex generation interposed therebetween. The orifice plate 5 is formed of a thin plate into a disc shape, and a knob 5 for attaching and detaching is provided at one location on the outer periphery of the orifice plate 5.
a is integrally formed. In addition, orifice plate 5
A semicircular fluid passage 5c is formed by dividing a circular hole having a diameter slightly smaller than the inner diameter of the pipes 1 and 2 symmetrically with a partition plate 5b passing through the center. By passing through the fluid passage 5c of the orifice plate 5, the fluid generates a so-called Karman vortex in which vortices with different rotational directions alternately appear in the pipe 2 after passing, and the overall flow is indicated by arrow B. meandering like that.

以上のように構成された渦発生装置の下流側に
は、第3図に断面図を示す波動検出装置6が、そ
の筒状本体7下端のねじ部を、配管2の管壁に設
けたボス8のねじ孔に螺合させて配設されてい
る。そして、筒状本体7の内部には、圧力検出室
9と、互に連続する一対のベローズ室10,11
からなる内室とが、筒状本体7の軸線方向に並設
されており、このうちのベローズ室10とベロー
ズ室11とは、径を異にして段付きの内室を形成
している。また、下部ベローズ室11と配管2の
内部とは、検出棒室12によつて連通されてい
る。
On the downstream side of the vortex generator configured as described above, a wave detection device 6 whose sectional view is shown in FIG. It is arranged so as to be screwed into the screw hole No. 8. Inside the cylindrical body 7, there is a pressure detection chamber 9 and a pair of mutually continuous bellows chambers 10, 11.
The bellows chamber 10 and the bellows chamber 11 have different diameters and form a stepped inner chamber. Further, the lower bellows chamber 11 and the inside of the pipe 2 are communicated through a detection rod chamber 12.

さらに、圧力検出室9内には、半導体型の歪検
出素子13が内壁に固定されて設けられており、
圧力検出室9には、この歪検出素子13によつて
受圧室14および15が隔成されている。そし
て、下部のベローズ室11と検出棒室12には、
検出棒16が、その円形鍔状のてこ板17を両室
10,11の段部に係合させて挿入されており、
この検出棒16は、てこ板17に連続する検出部
を検出棒室12から突出させてその先端部を配管
2内の流体管路の中心部近傍に臨ませているとと
もに、検出棒室12を大径に形成することによ
り、てこ板17の係合周縁部を中心にして傾動し
得るように構成されている。
Furthermore, inside the pressure detection chamber 9, a semiconductor type strain detection element 13 is provided fixed to the inner wall.
In the pressure detection chamber 9, pressure receiving chambers 14 and 15 are separated by the strain detection element 13. In the lower bellows chamber 11 and detection rod chamber 12,
A detection rod 16 is inserted with its circular brim-shaped lever plate 17 engaged with the stepped portions of both chambers 10 and 11,
The detection rod 16 has a detection portion that is continuous with the lever plate 17 protruding from the detection rod chamber 12 and has its tip facing near the center of the fluid conduit in the piping 2. By forming it with a large diameter, it is configured to be able to tilt around the engaging peripheral edge of the lever plate 17.

さらに、上下のベローズ室10,11内には、
一対の感圧ベローズ18および19が、検出棒1
6のてこ板17を挟んでこれと同芯状に配設され
ており、このうちの感圧ベローズ18は、両端開
口部をベローズ室10の天井壁とてこ板17上面
とにそれぞれ機密に固定されている。また、他方
の感圧ベローズ19は、両端開口部を、てこ板1
7下面とベローズ室11の底面段部とにそれぞれ
機密に固定されている。そして、感圧ベローズ1
8の内部と圧力検出室9の受圧室14とは、軸芯
を貫通する通路20によつて連通されており、感
圧ベローズ18の外部と圧力検出室9の受圧室1
5とは、バイパス状の通路21で連結されてい
る。そして、このように連通する感圧ベローズ1
8内部、通路20、受圧室14には封入液22が
封入されており、また、検出棒16の傾動によつ
て連動する両感圧ベローズ18,19外部と、通
路21、受圧室15には、別の封入液23が封入
されている。さらに、前記歪検出素子13は、リ
ード線24,25と端子26,27を介して受信
計器と接続されている。
Furthermore, inside the upper and lower bellows chambers 10 and 11,
A pair of pressure sensitive bellows 18 and 19 are connected to the detection rod 1
The pressure-sensitive bellows 18 are arranged concentrically with the lever plate 17 of 6 in between, and the pressure-sensitive bellows 18 has both end openings securely fixed to the ceiling wall of the bellows chamber 10 and the upper surface of the lever plate 17, respectively. has been done. In addition, the other pressure sensitive bellows 19 has both end openings connected to the lever plate 1.
7 and the bottom stepped portion of the bellows chamber 11 in a secure manner. And pressure sensitive bellows 1
The inside of the pressure sensitive bellows 18 and the pressure receiving chamber 14 of the pressure detection chamber 9 are communicated with each other by a passage 20 passing through the shaft core.
5 through a bypass-like passage 21. And the pressure sensitive bellows 1 communicating in this way
8, the passage 20, and the pressure receiving chamber 14 are filled with a sealed liquid 22, and the pressure sensitive bellows 18 and 19 are interlocked by the tilting of the detection rod 16, and the passage 21 and the pressure receiving chamber 15 are filled with a liquid 22. , another filling liquid 23 is sealed. Further, the strain detection element 13 is connected to a receiving instrument via lead wires 24, 25 and terminals 26, 27.

なお、図において、筒状本体7は、全体が一体
形成されているように示されているが、歪検出素
子13、感圧ベローズ18,19および検出棒1
6を装着可能にするため、実際にはこれが軸方向
に適宜分割形成されることは言うまでもない。
In addition, although the cylindrical main body 7 is shown as being integrally formed as a whole in the figure, the strain detecting element 13, the pressure sensitive bellows 18, 19, and the detecting rod 1
Needless to say, in order to make it possible to mount 6, it is actually divided into parts as appropriate in the axial direction.

以上のように構成されたカルマン渦流量計の動
作を説明する。流体が矢印Aで示すように流れて
オリフイス板5の流体通路5cを通過すると、こ
の流体は仕切板5bの下流側に回り込んでカルマ
ン渦が発生させる。このカルマン渦の発生数は単
位時間当りの流速に比例し、渦巻方向の異なるも
のが交互に現われることにより、全体の流れが矢
印Bで示すように蛇行し、流速に比例した周期の
波動となつて現われる。そして、この波動による
圧力が波動検出器6の検出棒16に加わると、検
出棒16は、てこ板17の下面周縁部の支点を中
心にして傾動するので、上側の感圧ベローズ18
が、その内側の封入液22により通路20を介し
て連通する歪検出素子13へ圧力変動を伝達す
る。また、これと同時に両方の感圧ベローズ1
8,19の外側の封入液23が、通路21を経て
歪検出素子13の反対側へ圧力変動を伝達し、こ
れら歪検出素子13両面の圧力変動は、電気信号
に変換されて端子26,27から受信計器へ伝送
される。
The operation of the Karman vortex flowmeter configured as described above will be explained. When the fluid flows as shown by arrow A and passes through the fluid passage 5c of the orifice plate 5, this fluid flows around to the downstream side of the partition plate 5b and generates a Karman vortex. The number of Karman vortices generated is proportional to the flow velocity per unit time, and as vortices with different directions appear alternately, the entire flow meanderes as shown by arrow B, creating waves with a period proportional to the flow velocity. appears. When pressure from this wave is applied to the detection rod 16 of the wave detector 6, the detection rod 16 tilts around the fulcrum at the lower peripheral edge of the lever plate 17, so that the upper pressure-sensitive bellows 18
, the pressure fluctuation is transmitted to the strain detection element 13 communicating with it via the passage 20 by the sealed liquid 22 inside the strain detection element 13 . Also, at the same time, both pressure-sensitive bellows 1
The sealed liquid 23 on the outside of the strain sensing elements 8 and 19 transmits pressure fluctuations to the opposite side of the strain sensing element 13 through the passage 21, and these pressure fluctuations on both sides of the strain sensing element 13 are converted into electrical signals and sent to the terminals 26 and 27. and transmitted to the receiving instrument.

そして、第4図は流体の流れを説明するための
流体管路の横断面図であつて、図において明らか
なように、配管1内では矢印Aで示す平行流であ
る流体は、オリフイス板5の流体通路5cを通過
すると符号Bで示す蛇行流となり、この蛇行流の
流れ方向を配管2の中心線E上でとらえた場合、
その方向が周期的に変化する。すなわち、オリフ
イス板5を離れた瞬間における流体の流れ方向は
中心線Eにほゞ平行しているが、次第にこれと直
交する方向へと流れ方向を変えてF点において最
も垂直方向に近ずき、このあと平行方向へと流れ
方向を変えるという周期を繰返す。これに対し、
本装置においては、波動の検出部材を丸棒状に形
成してその頭部に円形鍔部のてこ板17を設け、
このてこ板17をベローズ室10,11の段部で
支持させたので、波動の方向が検出棒16に対し
て360゜どの方向から作用しても、検出棒16は
同じようにてこ板17の下面周縁部を支点にして
傾動する。したがつて、波動検出装置6は、オリ
フイス板5の下流側であれば、これをどの位置に
設けても同様に動作するので、自由な位置を選択
して取付けることができ、常に高い波動検出感度
を確保することができる。
FIG. 4 is a cross-sectional view of the fluid pipe for explaining the flow of fluid, and as is clear from the figure, the fluid flowing in parallel as shown by arrow A in the pipe 1 flows through the orifice plate 5. When it passes through the fluid passage 5c, it becomes a meandering flow indicated by the symbol B, and when the flow direction of this meandering flow is taken on the center line E of the piping 2,
Its direction changes periodically. That is, the flow direction of the fluid at the moment it leaves the orifice plate 5 is almost parallel to the center line E, but gradually changes the flow direction to a direction perpendicular to this and approaches the vertical direction most at point F. , after which the flow direction is changed to the parallel direction, and the cycle is repeated. On the other hand,
In this device, the wave detection member is formed in the shape of a round bar, and a lever plate 17 with a circular flange is provided on the head thereof.
Since this lever plate 17 is supported by the steps of the bellows chambers 10 and 11, no matter which direction the wave motion acts on the detection rod 16 within 360 degrees, the detection rod 16 will be able to move the lever plate 17 in the same way. It tilts using the lower peripheral edge as a fulcrum. Therefore, the wave detection device 6 operates in the same way no matter where it is installed on the downstream side of the orifice plate 5, so it can be installed at any position and can always provide high wave detection. Sensitivity can be ensured.

また、本装置においては、感圧ベローズ18と
19とを同形状、同容量に形成したので、互換性
を有し、製作が容易であるとともに在庫数量を減
らすことができる。
Furthermore, in this device, the pressure-sensitive bellows 18 and 19 are formed to have the same shape and the same capacity, so they are compatible, easy to manufacture, and can reduce inventory.

なお、本実施例においては、本考案をカルマン
渦流量計に実施した例を示したが、本考案はこれ
に限定するものでなく、管内等の流体の動圧を検
出する手段として広く用いることができるもので
ある。
In this example, an example in which the present invention is applied to a Karman vortex flowmeter is shown, but the present invention is not limited to this, and can be widely used as a means for detecting the dynamic pressure of a fluid in a pipe, etc. It is something that can be done.

以上の説明により明らかなように、本考案によ
れば波動検出装置において、流体管路の外壁に取
付けた筒状本体に、円形鍔付きの検出棒を流体管
路内に先端部を臨ませて傾動自在に支持させ、波
動による検出棒の傾動を感圧素子と歪検出素子を
介して電気信号に変換するように構成することに
より、波動による加圧方向がいずれの方向であつ
ても検出棒が同じように傾動するので、検出装置
の取付位置を自由に選択でき、常時、高い検出感
度を確保できることはもとより、一対の感圧素子
を同形状、同容量に形成することにより、製作が
容易になり、検査ならびに在庫数量の減少を計る
ことができる。
As is clear from the above explanation, in the wave detection device according to the present invention, a detection rod with a circular flange is attached to the cylindrical body attached to the outer wall of the fluid pipe with its tip facing into the fluid pipe. By supporting the detection rod so that it can be tilted freely and converting the tilting movement of the detection rod caused by waves into an electrical signal via a pressure-sensitive element and a strain detection element, the detection rod can be easily supported regardless of the direction in which pressure is applied by waves. Since they tilt in the same way, you can freely select the mounting position of the detection device, ensuring high detection sensitivity at all times, and making the pair of pressure sensitive elements the same shape and capacity makes it easy to manufacture. This makes it possible to reduce inspection and inventory quantities.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本考案に係る波動検出装
置の一実施例を示し、第1図はこれを実施したカ
ルマン渦流量計の縦断面図、第2図は同じく一部
破断して示す斜視図、第3図は波動検出装置の縦
断面図、第4図は流体の流れを説明するための流
体管路の横断面図である。 1,2……配管、6……波動検出装置、7……
筒状本体、10,11……ベローズ室、12……
検出棒室、13……歪検出素子、16……検出
棒、17……てこ板、18,19……感圧ベロー
ズ、20,21……通路、22,23……封入
液。
Figures 1 to 4 show an embodiment of the wave detection device according to the present invention, Figure 1 is a vertical cross-sectional view of a Karman vortex flowmeter implementing this, and Figure 2 is a partially cutaway view of the same. A perspective view, FIG. 3 is a vertical sectional view of the wave detection device, and FIG. 4 is a cross sectional view of a fluid conduit for explaining the flow of fluid. 1, 2...Piping, 6...Wave detection device, 7...
Cylindrical body, 10, 11... Bellows chamber, 12...
Detection rod chamber, 13... Strain detection element, 16... Detection rod, 17... Lever plate, 18, 19... Pressure sensitive bellows, 20, 21... Passage, 22, 23... Filled liquid.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 流体管路の外壁に取付けられ段付きの内室とこ
れに連続して流体管路へ開口する検出棒室とを備
えた筒状本体と、前記内室の段部と係合する円形
鍔部とこれに連続して前記検出棒室内を前記流体
管路内へ向つて延びる検出部とからなり円形鍔部
の係合部を中心にして傾動自在な検出棒と、この
検出棒と同芯状に前記円形鍔部を挟んでその両面
にそれぞれ一方の開口部を固定され他方の開口部
を前記内室の両端内壁にそれぞれ固定された一対
の感圧素子と、この感圧素子のうち前記円形鍔部
に対して前記検出部の反対側の感圧素子の内外を
連通する封入液通路を仕切つて配設され流体の圧
力変化を電気信号に変換する半導体型歪検出素子
とを備えるとともに、前記一対の感圧素子の形状
を同一にしたことを特徴とする波動検出装置。
A cylindrical body that is attached to the outer wall of the fluid conduit and includes a stepped inner chamber and a detection rod chamber that opens continuously to the fluid conduit, and a circular collar that engages with the step of the inner chamber. and a detection portion extending continuously from the detection rod chamber toward the inside of the fluid conduit; a pair of pressure-sensitive elements, each having one opening fixed to both sides of the circular flange and the other opening fixed to an inner wall at both ends of the inner chamber; a semiconductor-type strain detection element that is arranged to partition off a sealed liquid passage that communicates the inside and outside of the pressure sensitive element on the opposite side of the detection part with respect to the flange part, and converts pressure changes of the fluid into an electrical signal; A wave detection device characterized in that a pair of pressure sensitive elements have the same shape.
JP1981024730U 1981-02-23 1981-02-23 Expired JPS6231851Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981024730U JPS6231851Y2 (en) 1981-02-23 1981-02-23

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981024730U JPS6231851Y2 (en) 1981-02-23 1981-02-23

Publications (2)

Publication Number Publication Date
JPS57138025U JPS57138025U (en) 1982-08-28
JPS6231851Y2 true JPS6231851Y2 (en) 1987-08-15

Family

ID=29822441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981024730U Expired JPS6231851Y2 (en) 1981-02-23 1981-02-23

Country Status (1)

Country Link
JP (1) JPS6231851Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4735094A (en) * 1987-01-28 1988-04-05 Universal Vortex, Inc. Dual bluff body vortex flowmeter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5296561A (en) * 1976-02-10 1977-08-13 Japan Atomic Energy Res Inst Displacement measuring device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5296561A (en) * 1976-02-10 1977-08-13 Japan Atomic Energy Res Inst Displacement measuring device

Also Published As

Publication number Publication date
JPS57138025U (en) 1982-08-28

Similar Documents

Publication Publication Date Title
US4791818A (en) Cantilever beam, insertable, vortex meter sensor
US8079271B2 (en) Measuring system with a flow conditioner arranged at an inlet of a measuring tube
US4221134A (en) Differential pressure transducer with strain gauge
US4523477A (en) Planar-measuring vortex-shedding mass flowmeter
US6298734B1 (en) Rocker style sensor system for use in a vortex shedding flowmeter
EP0758077B1 (en) Vortex flow meter detector and vortex flow meter
JP2007531893A (en) Scaleable averaging insertion vortex flowmeter
JPH06201421A (en) Flowmeter
JPS6141923A (en) Flowmeter
JPS6047973B2 (en) Flowmeter
JPS6231851Y2 (en)
EP0744596A1 (en) Ultrasonic flow meter
RU222980U1 (en) HOUSING OF THE FLOW PART OF A VORTEX FLOWMETER WITH TWO ELECTRONIC UNITS
US4781070A (en) Flow meter
JP2001194193A (en) Flow meter
JPS6120535Y2 (en)
CN210375260U (en) Bent tube type Coriolis mass flowmeter
JPS5928326Y2 (en) differential pressure flowmeter
JPH04276519A (en) Apparatus for measuring mass flow pate of fluid
KR940009668A (en) Flow meter
JPS5924364B2 (en) Karman vortex flowmeter
JPS5953490B2 (en) Movable orifice flowmeter
JPH037780Y2 (en)
RU2130589C1 (en) Flow meter
JPH0569368B2 (en)