JPS62299907A - Polarizing beam splitter - Google Patents
Polarizing beam splitterInfo
- Publication number
- JPS62299907A JPS62299907A JP14512286A JP14512286A JPS62299907A JP S62299907 A JPS62299907 A JP S62299907A JP 14512286 A JP14512286 A JP 14512286A JP 14512286 A JP14512286 A JP 14512286A JP S62299907 A JPS62299907 A JP S62299907A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- transmittance
- wavelength
- layers
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Filters (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、光デイスクファイル装置などに使用される偏
光ビームスプリッタ−の性能改善に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to improving the performance of polarizing beam splitters used in optical disk file devices and the like.
従来の技術
近年、静止画ディスクファイル装置9文章ファイル装置
など、大容量の情報記憶装置とし光デイスク装置の開発
、製品化か活発化しており、なか2ベーノ
でもこれら光デイスク装置の光学ヘッドを更に小型化・
高性能化・低価格化する試みが種々なされている。2. Description of the Related Art In recent years, the development and commercialization of optical disk devices as large-capacity information storage devices, such as still image disk file devices, 9 text file devices, etc., has become active. Miniaturization·
Various attempts have been made to improve performance and reduce cost.
係る光学ヘッドを実現するためには、半導体レーザーの
、P偏光のレーザービームは透過するが、S偏光のレー
ザービームは反射するような偏光ビームスプリッタ−の
特性改善が強く要望されている。In order to realize such an optical head, it is strongly desired to improve the characteristics of a polarizing beam splitter of a semiconductor laser, which transmits a P-polarized laser beam but reflects an S-polarized laser beam.
従来より、誘電体多層膜を用いて、偏光ビームスプリッ
タ−を実現しできた。例えば、BK7(商標)等の光学
ガラス上に、高屈折率材料とし偶数層積層して所望の特
性を得ようとするものである。Conventionally, polarizing beam splitters have been realized using dielectric multilayer films. For example, desired characteristics are obtained by laminating an even number of high refractive index materials on optical glass such as BK7 (trademark).
膜層数を20層とした場合の従来の膜構成を第9図に示
す・
一般に、偏光ビームスプリッタ−には、基盤上に薄膜系
を形成したものと、三角プリズム等で薄膜系をサンドイ
ッチ構造にしたものがある。光学3ベーン
ヘッドを更に小型化、低価格化するためには、基盤上に
薄膜系を形成した構造の・も1のの方が有利であるため
、最近ではこの方式のものが採用されつつある。Figure 9 shows the conventional film configuration when the number of film layers is 20.Generally, polarizing beam splitters have a thin film system formed on a substrate, and a sandwich structure in which the thin film system is formed using a triangular prism, etc. There is something I did. In order to further reduce the size and cost of the optical three-vane head, it is more advantageous to use a structure in which a thin film is formed on the substrate, so this type of head is recently being adopted.
BK7の屈折率をnq−1−51、T i O2の屈折
率を”H−2,22、S i02の屈折率をH=1.4
6゜空気側からの入射角を68°、設計波長をλO=8
56nmとした場合の上記膜構成の透過率特性を第10
図に示す。The refractive index of BK7 is nq-1-51, the refractive index of TiO2 is H-2,22, and the refractive index of Si02 is H=1.4.
6° The angle of incidence from the air side is 68°, the design wavelength is λO = 8
The transmittance characteristics of the above film structure when the wavelength is 56 nm are shown in the 10th
As shown in the figure.
縦軸が透過率(単位;%)であり、横軸が波長(単位;
n m )である。図中点線はλ−830nmを表わ
す。The vertical axis is the transmittance (unit; %), and the horizontal axis is the wavelength (unit;
nm). The dotted line in the figure represents λ-830 nm.
発明が解決しようとする問題点
このような膜構成の偏光ビームスプリッタ−を光学ヘッ
ドに用いた際、問題になる点を説明する。Problems to be Solved by the Invention Problems that arise when a polarizing beam splitter having such a film structure is used in an optical head will be explained.
一般に半導体レーザーの製造ばらつきは±10nmであ
る。従って、前記膜特性を有する偏光ビームスプリッタ
−を光学ヘッド等に用いた際P偏光の透過率が減少する
。Generally, manufacturing variations in semiconductor lasers are ±10 nm. Therefore, when a polarizing beam splitter having the above film characteristics is used in an optical head or the like, the transmittance of P-polarized light decreases.
このことは、各種効率を下げるだけでなく、反射率を増
加させる結果をまねく。ここで反射したレーザービーム
は、検出系に到達し、各信号検出。This results in not only lowering various efficiencies but also increasing reflectance. The laser beam reflected here reaches the detection system and detects each signal.
処理に悪影響を及ぼす。adversely affect processing.
誘電体多層膜は、温度・湿度等の環境変化によって波長
シフトを引き起こす。波長シフトとは、透過率特性の透
過領域ならびに反射領域が高波長側、短波長側に移動す
ることをいう。我々の実験では約±8nm移動すること
がわかっており、その時の透過率特性を第11図に示す
。Dielectric multilayer films undergo wavelength shifts due to environmental changes such as temperature and humidity. Wavelength shift refers to the movement of the transmission region and reflection region of the transmittance characteristic toward higher wavelengths and shorter wavelengths. In our experiments, we found that it moves by about ±8 nm, and the transmittance characteristics at that time are shown in FIG.
実線が、理想的な特性で、点線は波長シフトが起こった
時の特性を示す。The solid line shows the ideal characteristics, and the dotted line shows the characteristics when a wavelength shift occurs.
長波長側に移動した時には、λ2”’830nmでの透
過率が約87チ、短波長側に移動した時は約92チに透
過率が減少していることがわかる。It can be seen that when moving to the long wavelength side, the transmittance at λ2'''830 nm is about 87 inches, and when moving to the short wavelength side, the transmittance decreases to about 92 inches.
更に、半導体レーザーの波長も、±10nmばらつくわ
けであるから、最悪の場合を考えて長波長側に移動した
時は、λ2=820nmでの透過率、短波長側に移動し
た時はλ2= 840 nm での透過率を考えてお
く必要がある。グラフよりそれぞれ、60% 、85%
となり、著しく減少してしま6 ベーン
う。Furthermore, the wavelength of the semiconductor laser also varies by ±10 nm, so when moving to the long wavelength side considering the worst case, the transmittance will be λ2 = 820 nm, and when moving to the short wavelength side, the transmittance will be λ2 = 840. It is necessary to consider the transmittance in nm. From the graph, 60% and 85%, respectively.
Therefore, the number of vanes has decreased significantly.
誘電体多層膜を形成する際、その波長コントロール精度
は設計波長の±1−程度であるといわれている。従って
、本膜構成の場合は設計波長は、約λO”855nmで
あるから約±9 nmばらつくと考えてもよい。When forming a dielectric multilayer film, it is said that the wavelength control accuracy is approximately ±1- of the design wavelength. Therefore, in the case of this film configuration, the design wavelength is about λO''855 nm, so it can be considered that it varies by about ±9 nm.
半導体レーザーと波長において、カップリングを行なえ
ば、波長シフトを除いて良好な結果が得られるかけであ
るが、歩留りを向上させ量産効果を大にして低価格を図
るためには十分な特性ということはできない。If we couple the wavelength with the semiconductor laser, good results can be obtained except for the wavelength shift, but the characteristics are sufficient to improve the yield, maximize the mass production effect, and lower the price. I can't.
以上、P偏光特性の劣化について説明してきたが、入射
角度によっては、S偏光の反射率の劣化が問題となる場
合もある。The deterioration of the P-polarized light characteristics has been described above, but depending on the incident angle, the deterioration of the reflectance of S-polarized light may become a problem.
本発明はかかる点に鑑みてなされたもので、半一ザー波
長でのP偏光透過率、S偏光反射率が劣化しにくいよう
な膜構成を提供することを目的としている。The present invention has been made in view of this point, and it is an object of the present invention to provide a film structure in which the P-polarized light transmittance and the S-polarized light reflectance at the semi-zero wavelength are less likely to deteriorate.
6ヘノ
問題点を解決するための手段
上記問題点を解決する本発明の技術的な手段は、8層以
上の膜層数とし設計波長をλO、膜層数をNとすると基
盤より数えて、第2層、第4層、第N−2層、第N層の
光学的膜厚をλO/4よりずらし、それ以外の層の光学
的膜厚を約λO/4という膜構成とすることである。6 Means for Solving Problems The technical means of the present invention for solving the above problems is as follows: where the number of film layers is 8 or more, the design wavelength is λO, and the number of film layers is N, counting from the substrate. By making the optical thickness of the second layer, fourth layer, N-2 layer, and N-th layer different from λO/4, and setting the optical thickness of the other layers to approximately λO/4, be.
作 用
本発明は、上記膜構成を用いることにより、半導体レー
ザー波長ばらつき、波長シフト、R電体多層膜製造ばら
つきがあったとしても、使用波長帯でのP偏光透過率が
劣化しにくいような偏光ビームスプリッタ−を得ること
ができるものである。Function: By using the above-mentioned film structure, the present invention provides a structure in which the P-polarized light transmittance in the used wavelength band is unlikely to deteriorate even if there are semiconductor laser wavelength variations, wavelength shifts, and R-electronic multilayer film manufacturing variations. A polarizing beam splitter can be obtained.
実施例
第1図に本発明の偏光ビームスプリッタ−の膜構成の一
例を示す。Embodiment FIG. 1 shows an example of the film structure of a polarizing beam splitter of the present invention.
基盤は、7リントガラスの一種であるB a F 、。The base is BaF, which is a type of 7-lint glass.
(商標)n−1,66である。高屈折率物質としては、
T 102 + Z n S 、 Z r T z O
4低屈折率物質、!:してS i02 r Mg F
2が考えられるが、ここではT 1027へ−7
と8102を例にとって説明する。(Trademark) n-1,66. As a high refractive index material,
T 102 + Z n S , Z r T z O
4 Low refractive index materials! :S i02 r Mg F
2 is possible, but here we will explain by taking T 1027 to -7 and 8102 as examples.
本膜構成で、設計波長λO= 830 nm 、入射角
度68・とじた場合の透過率特性を第2図に示す。縦軸
が透過率(単位;%)で、横軸が波長(単位; nm
)である。図中2本の実線はそれぞれS偏光、P偏光の
透過率特性を示す。FIG. 2 shows the transmittance characteristics with this film configuration when the design wavelength λO = 830 nm and the incident angle is 68 mm. The vertical axis is the transmittance (unit: %), and the horizontal axis is the wavelength (unit: nm)
). Two solid lines in the figure indicate the transmittance characteristics of S-polarized light and P-polarized light, respectively.
P偏光透過率特性は、著しく改善されλ22−830n
±30nmの広範囲にわたって著しく改善されている。P-polarized light transmittance characteristics are significantly improved at λ22-830n.
It is significantly improved over a wide range of ±30 nm.
第3図に、全層数が26層で、設計波長λO=850n
m、入射角度θ=68.9°であり、第2の場合の透過
率特性を示す。Figure 3 shows that the total number of layers is 26, and the design wavelength λO = 850n.
m, the incident angle θ=68.9°, and the transmittance characteristics of the second case are shown.
P偏光、S偏光の透過率1反射率ともに大きく改善され
ている。Both the transmittance and reflectance of P-polarized light and S-polarized light are greatly improved.
第4図に全層数が30層で、設計波長がλO=785n
mであり、入射角度がθ=68.1’ 、の場合の透過
率特性を示す。各層の光学的膜厚は、である。Figure 4 shows that the total number of layers is 30 and the design wavelength is λO = 785n.
m, and the transmittance characteristics are shown when the incident angle is θ=68.1'. The optical thickness of each layer is.
図中点線は、λ11−78onを示す。The dotted line in the figure indicates λ11-78on.
P偏光の透過率、S偏光の反射率共にλ=780nm±
30nmの広範囲にわたって良好な特性となっている。Both the transmittance of P-polarized light and the reflectance of S-polarized light are λ=780nm±
It has good characteristics over a wide range of 30 nm.
第8層が約0.52XλO/4である。The eighth layer is approximately 0.52XλO/4.
λ2=830nm±30nm において、P偏光透過率
94%以上、S偏光反射率95%と良好な結果を示して
いる。At λ2=830nm±30nm, good results are shown, with a P-polarized light transmittance of 94% or more and an S-polarized light reflectance of 95%.
9 ・−
第6図に設計波長λO= 850nm 、入射角θ=7
5・、膜層数40層の場合の透過率特性をある。9 ・- In Figure 6, design wavelength λO = 850 nm, incident angle θ = 7
5. Transmittance characteristics when the number of film layers is 40.
λ=830nm±30nmにおいて、透過率特性2反射
率特性が著しく向上している。When λ=830 nm±30 nm, the transmittance characteristics 2 and the reflectance characteristics are significantly improved.
第7図に設計波長λO= 830 nm 、入射角θ−
68°、膜層数20層の場合の透過率特性を示す。今ま
では基盤として111=1.66のフリント特Wはn=
1.51のBKyを用いた場合を示す。Figure 7 shows the design wavelength λO = 830 nm and the incident angle θ-
The transmittance characteristics are shown when the angle is 68° and the number of film layers is 20. Until now, the flint special W of 111 = 1.66 was n =
The case where BKy of 1.51 is used is shown.
他の層はすべて約λO/4 である。λ=830nm±
30nmにわたって、P偏光透過率、S偏光反射率は良
好な特性を示している。基盤としてBN2を用いても有
用なことがわかる。All other layers are approximately λO/4. λ=830nm±
P-polarized light transmittance and S-polarized light reflectance show good characteristics over 30 nm. It turns out that it is also useful to use BN2 as a base.
1o−・−゛
これまで述べた膜構成はすべて基盤上に、高屈折率物質
を形成した膜構成であるが、第8図に、低屈折率物質を
形成した場合の透過率特性を示す。1o-.-Although all the film structures described so far are film structures in which a high refractive index material is formed on a substrate, FIG. 8 shows the transmittance characteristics when a low refractive index material is formed.
設計波長はλO:855nm、膜層数は30層。The design wavelength is λO: 855 nm, and the number of film layers is 30.
入射角度はθ=68°である。基盤にはBN2を用いて
いる。The angle of incidence is θ=68°. BN2 is used for the base.
各層の光学的膜厚は、第2層が約0.9×λO/4゜第
4層が約0.62 XλO/4 、第28層が約0.5
6 XλO/4.第30層が約1.08XλO/4であ
り、その他の層は約λO/4である。The optical thickness of each layer is approximately 0.9×λO/4° for the second layer, approximately 0.62XλO/4 for the fourth layer, and approximately 0.5° for the 28th layer.
6 XλO/4. The thickness of the 30th layer is about 1.08XλO/4, and the thickness of the other layers is about λO/4.
λ=830nm±30nmにおいて、P偏光透過率、S
偏光透過率は良好な特性となっている。At λ=830nm±30nm, P polarized light transmittance, S
The polarized light transmittance has good characteristics.
しかし、第3図、第4図に示すように、基盤上に高屈折
率物質を有する方が、P偏光透過率は良好なようである
。However, as shown in FIGS. 3 and 4, it seems that the P-polarized light transmittance is better when a high refractive index material is provided on the substrate.
発明の効果
以上述べてきたように、第2層、第4層、第N−2層、
第N層の光学的膜厚をλO//4よりずらしてやること
により使用波長領域でも、透過率反射率が改善でき、量
産性・実用的にもき1わめて有効である。Effects of the invention As mentioned above, the second layer, the fourth layer, the N-2 layer,
By shifting the optical thickness of the Nth layer from λO//4, the transmittance/reflectance can be improved even in the wavelength range used, which is extremely effective in terms of mass production and practical use.
第1図は本発明の一実施例における偏光ビームスプリッ
タ−の膜構成を示す図、第2図は同偏光ビームスプリッ
タ−の基盤にBaFloを用い、設計波長がλO””8
55nmの場合の透過率特性を示す特性図、第3図は同
全層数が26層で、設計波長850nm、入射角度が6
8.9°の場合の透過率特性を示す特性図、第4図は同
全層数は30層で、設計波長が785nmであり、入射
角度が68.1°の場合の透過率特性を示す特性図、第
6図は同全層数が8層で設計波長がs o o nm、
入射角度が75°の場合の透過率特性を示す特性図、第
6図は同膜層数が40層で膜剤波長が850nm、入射
角度が76°の場合の透過率特性を示す特性図、第7図
は同膜層数が20層で設計波長が830nm、入射角度
が68°の場合の透過率特性を示す特性図、第8図は同
膜層数が30層。
設計波長が855nm、入射角度は680であり、第1
層目に低屈折率物質を用いた透過率特性を示す特性図、
第9図は従来の偏光ビームスプリッタ−の構成を示す図
、第10図はその透過率特性を示す特性図、第11図は
その特性が±B nmシフトした場合の特性図である。
1〜20・・・・・・層。FIG. 1 is a diagram showing the film structure of a polarizing beam splitter in an embodiment of the present invention, and FIG. 2 is a diagram showing the polarizing beam splitter using BaFlo as a substrate and having a design wavelength of λO""8.
Figure 3 is a characteristic diagram showing the transmittance characteristics in the case of 55 nm.The total number of layers is 26, the design wavelength is 850 nm, and the incident angle is 6.
Figure 4 shows the transmittance characteristics when the total number of layers is 30, the design wavelength is 785 nm, and the incident angle is 68.1°. The characteristic diagram, Figure 6, shows that the total number of layers is 8 and the design wavelength is so o nm.
A characteristic diagram showing the transmittance characteristics when the incident angle is 75°, FIG. 6 is a characteristic diagram showing the transmittance characteristics when the number of film layers is 40, the film agent wavelength is 850 nm, and the incident angle is 76°, Fig. 7 is a characteristic diagram showing the transmittance characteristics when the number of the same film layers is 20, the design wavelength is 830 nm, and the incident angle is 68°, and Fig. 8 is a characteristic diagram showing the transmittance characteristics when the number of the same film layers is 30. The design wavelength is 855 nm, the incident angle is 680, and the first
Characteristic diagram showing transmittance characteristics using a low refractive index material in the layer,
FIG. 9 is a diagram showing the configuration of a conventional polarizing beam splitter, FIG. 10 is a characteristic diagram showing its transmittance characteristic, and FIG. 11 is a characteristic diagram when the characteristic is shifted by ±B nm. 1 to 20...layers.
Claims (1)
薄膜系において、全膜層数が8層以上であり、設計波長
をλ_O、膜層数をNとすると、基盤より数えて第2層
、第4層、第N−2層、第N層の光学的膜厚をλ_O/
4よりずらし、それ以外の層の光学的膜厚を約λ_O/
4とした偏光ビームスプリッター。In a thin film system consisting of a multilayer film in which dielectric multilayer films are alternately laminated on a substrate, the total number of film layers is 8 or more, and if the design wavelength is λ_O and the number of film layers is N, then the second The optical thickness of the layer, the fourth layer, the N-2 layer, and the N-th layer is λ_O/
4, and the optical thickness of the other layers is approximately λ_O/
4 polarizing beam splitter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14512286A JPS62299907A (en) | 1986-06-20 | 1986-06-20 | Polarizing beam splitter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14512286A JPS62299907A (en) | 1986-06-20 | 1986-06-20 | Polarizing beam splitter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62299907A true JPS62299907A (en) | 1987-12-26 |
Family
ID=15377905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14512286A Pending JPS62299907A (en) | 1986-06-20 | 1986-06-20 | Polarizing beam splitter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62299907A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0217701U (en) * | 1988-07-19 | 1990-02-06 | ||
JP2003329841A (en) * | 2002-05-17 | 2003-11-19 | Ushio Inc | Polarizing filter and polarized light irradiation device using the filter |
-
1986
- 1986-06-20 JP JP14512286A patent/JPS62299907A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0217701U (en) * | 1988-07-19 | 1990-02-06 | ||
JP2003329841A (en) * | 2002-05-17 | 2003-11-19 | Ushio Inc | Polarizing filter and polarized light irradiation device using the filter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4843617B2 (en) | Multilayer wire grid polarizer | |
US4367921A (en) | Low polarization beam splitter | |
US6005835A (en) | Composite prism and optical pickup using the same | |
JPS62299907A (en) | Polarizing beam splitter | |
US4595261A (en) | Phase retardation element and prism for use in an optical data storage system | |
JPH08254611A (en) | Beam splitter | |
JPS6340289B2 (en) | ||
JP2835535B2 (en) | Anti-reflection coating for optical components | |
JPS6315562B2 (en) | ||
JPH0242201B2 (en) | ||
JP2003114326A (en) | Polarized beam splitter and optical apparatus using the polarized beam splitter | |
JPS6250896B2 (en) | ||
JP2001013308A (en) | Prism type beam splitter | |
JPS6028603A (en) | Prism type beam splitter | |
JP2000193810A (en) | Reflection mirror | |
JPS62127701A (en) | Antireflection film | |
CN115185031B (en) | High-performance sub-wavelength grating polarizer based on sandwich substrate structure | |
JPH0690327B2 (en) | Dual wavelength optical head | |
JPS63298203A (en) | Polarization beam splitter | |
JPH10154345A (en) | Polarizing beam splitter | |
JPS63266402A (en) | Antireflection film | |
JP3344022B2 (en) | Optical device and optical pickup | |
JPS62148904A (en) | Two wavelength separating filter | |
JPS62299905A (en) | Two-wavelength separation filter | |
JPS62148905A (en) | Polarizing beam splitter |