JPS62298344A - Inspection device using nuclear magnetic resonance - Google Patents
Inspection device using nuclear magnetic resonanceInfo
- Publication number
- JPS62298344A JPS62298344A JP61140032A JP14003286A JPS62298344A JP S62298344 A JPS62298344 A JP S62298344A JP 61140032 A JP61140032 A JP 61140032A JP 14003286 A JP14003286 A JP 14003286A JP S62298344 A JPS62298344 A JP S62298344A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- signal detection
- coil
- frequency magnetic
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
3、発明の詳細な説明
〔産業上の利用分野〕
本発明は被検体中の各種原子核の核磁気共鳴信号を計測
し、核の密度分布や緩和時間分布や化学シフト分布など
を映像化する装置に係り、特に高精度な映像を得ること
に好適な装置に関する。[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention measures the nuclear magnetic resonance signals of various atomic nuclei in a specimen, and determines the density distribution, relaxation time distribution, and chemical shift of the nuclei. The present invention relates to a device for visualizing distribution, etc., and particularly to a device suitable for obtaining highly accurate images.
従来、信号検出用コイルの同調用コンデンサに直列接続
した交叉ダイオードとコイルを並列に接−続させ、信号
検出用コイルに流れる誘導電流をブロックさせる回路に
ついては、ソサエテイオブマグネテイク レゾナンスイ
ンメデイスンブックオブアブストラクツ4thアニュア
ルミーティング(1985年)第1082頁から第10
83頁。Conventionally, a circuit that blocks the induced current flowing through the signal detection coil by connecting the coil in parallel with a crossed diode connected in series to the tuning capacitor of the signal detection coil is described by the Society of Magnetic Resonance in Medicine. Book of Abstracts 4th Annual Meeting (1985) pp. 1082-10
83 pages.
および第1085頁から第1086頁(Society
ot Magnetic Re5onance in
Medicine Book ofAbstracts
4th Annual Meeting (1985
) pp1082−1083and pp1085−1
086)において論じられている。and pages 1085 to 1086 (Society
ot Magnetic Re5onance in
Medicine Book of Abstracts
4th Annual Meeting (1985)
) pp1082-1083and pp1085-1
086).
上記従来技術は高周波磁場発生時に信号検出用コイルに
誘導電流が流れ、前記高周波磁場を打消すような磁場が
発生するのを防ぐことを目的ととしていたが、信号検出
時に交叉ダイオードのoff抵抗が損失となり、信号検
出用コイルのQ値が低下する点について配慮がされてお
らず、S/Nが低下する問題があった。The purpose of the above conventional technology is to prevent an induced current from flowing in a signal detection coil when a high-frequency magnetic field is generated, and to prevent the generation of a magnetic field that cancels the high-frequency magnetic field.However, when detecting a signal, the off resistance of the crossed diode is No consideration was given to the fact that a loss would occur and the Q value of the signal detection coil would decrease, resulting in a problem of a decrease in S/N.
すなわち、従来の信号検出用コイルの同調およびインピ
ーダンス整合回路の一例を第4図に示す。That is, FIG. 4 shows an example of a conventional signal detection coil tuning and impedance matching circuit.
1は信号検出用コイル、2は同調コンデンサ、3はイン
ピーダンス整合用コンデンサ、4は交叉ダイオード、5
はコンデンサ2と共鳴周波数すなわち高周波磁場の周波
数で共振条件を満たすインダクタンス素子である。第4
図に示した信号検出用コイルの同調回路の信号検出時に
おける等価回路を第5図に示す。reはコイル1の損失
、Llはコイル1のインダクタンス、Crは同調用コン
デンサ2の容量、r4は交叉ダイオードのoff抵抗、
L2はインダクタンス索子5のインダクタンスを示す、
Lz=Lz=Lであるので、第3図に示した等価回路の
インピーダンスは共鳴周波数をωとすると1次式で表わ
される。1 is a signal detection coil, 2 is a tuning capacitor, 3 is an impedance matching capacitor, 4 is a crossing diode, 5
is an inductance element that satisfies resonance conditions at the resonance frequency of the capacitor 2, that is, the frequency of the high-frequency magnetic field. Fourth
FIG. 5 shows an equivalent circuit at the time of signal detection of the tuned circuit of the signal detection coil shown in the figure. re is the loss of the coil 1, Ll is the inductance of the coil 1, Cr is the capacitance of the tuning capacitor 2, r4 is the off resistance of the crossover diode,
L2 indicates the inductance of the inductance cord 5,
Since Lz=Lz=L, the impedance of the equivalent circuit shown in FIG. 3 is expressed by a linear equation, where ω is the resonance frequency.
Z = r c + jωL+□
したがって、回路のQ値は1リアクタンス分1/抵抗分
であるので、第2図に示した等価回路のQ値は次式で表
わされる。Z=r c + jωL+□ Therefore, since the Q value of the circuit is 1 reactance/1/resistance, the Q value of the equivalent circuit shown in FIG. 2 is expressed by the following equation.
Ct r ll
すなわち、交叉ダイオード4およびインダクタンス素子
5を挿入することにより、Q値が低下することとなる。Ctr ll That is, by inserting the crossing diode 4 and the inductance element 5, the Q value is reduced.
本発明の目的は高周波磁場発生用コイルと信号検出用コ
イルを磁気的にデカップリングしつつ、信号検出用コイ
ルのQ値が低下するのを防ぐことにある。An object of the present invention is to magnetically decouple a high-frequency magnetic field generation coil and a signal detection coil while preventing the Q value of the signal detection coil from decreasing.
本発明は、信号検出用コイルの同調用コンデンサを直列
接続で分割し、交叉ダイオードとインダクタンス素子を
直列接続したものを前記同調用コンデンサの分割した一
方と並列接続した構成に特徴を有する。The present invention is characterized by a configuration in which the tuning capacitor of the signal detection coil is divided by series connection, and a cross-over diode and an inductance element connected in series are connected in parallel with one of the divided tuning capacitors.
上記の樋底によれば、同調用コンデンサの容量が大きく
なり、したがってインダクタンス素子のインダクタンス
が小さくなるので等価的に交叉ダイオードによる損失が
低減され、したがって高周波磁場発生用コイルと信号検
出用のコイルを磁気的にデカップリングしつつ、コイル
Q値が低下するのを防ぐことができる。According to the above-mentioned gutter bottom, the capacitance of the tuning capacitor becomes large, and therefore the inductance of the inductance element becomes small, so the loss due to the crossed diode is equivalently reduced, and therefore the high-frequency magnetic field generation coil and the signal detection coil are It is possible to prevent the coil Q value from decreasing while magnetically decoupling.
以下、本発明の実施例を1図面に基づいて詳細に説明す
る。第3図は本発明の一実施例である検査装置の構成を
示すものである。第3図において6は制御装置、7は高
周波パルス発生器、8は電力増幅器、10は高周波磁場
を発生させるコイル、9は対象物体22から生ずる信号
を検出するためのコイル、11は増幅器、12は検波器
、13は信号処理装置である。また、14,15および
16はそれぞれ2方向およびこれに直角の方向の傾斜磁
場を発生させるコイル、17,18.19はそれぞれ上
記コイル14,15.16を駆動する電源部である。Hereinafter, embodiments of the present invention will be described in detail based on one drawing. FIG. 3 shows the configuration of an inspection device that is an embodiment of the present invention. In FIG. 3, 6 is a control device, 7 is a high-frequency pulse generator, 8 is a power amplifier, 10 is a coil for generating a high-frequency magnetic field, 9 is a coil for detecting a signal generated from a target object 22, 11 is an amplifier, 12 13 is a wave detector, and 13 is a signal processing device. Further, 14, 15, and 16 are coils that generate gradient magnetic fields in two directions and in a direction perpendicular to these, respectively, and 17, 18, and 19 are power supply units that drive the coils 14, 15, and 16, respectively.
これらのコイルによる発生する傾斜磁場により検査対象
の置かれる空間の磁場分布を所望の傾斜をもつ分布とす
る。The gradient magnetic fields generated by these coils cause the magnetic field distribution in the space where the inspection object is placed to have a desired gradient.
制御装置6は各装置に種々の命令を一定のタイミングで
出力する機能を有するものである。高周波パルス発生器
7の出力は電力増幅器8で増幅され、上記コイル10を
励振する。該コイル9は受信コイルであり、受信された
信号成分は増幅器11を通り検波器12で検波後、信号
処理装置13で画像およびスペクトルに変換される。The control device 6 has a function of outputting various commands to each device at a constant timing. The output of the high frequency pulse generator 7 is amplified by a power amplifier 8 and excites the coil 10. The coil 9 is a receiving coil, and the received signal component passes through an amplifier 11 and is detected by a detector 12, and then converted into an image and a spectrum by a signal processing device 13.
なお、静磁場の発生は電源21により駆動されるコイル
20で行なう。検査対象物体である人体22はベッド2
3上に載置され、上記ベット23は支持台24上を移動
可能なように構成されている。Note that the static magnetic field is generated by a coil 20 driven by a power source 21. The human body 22, which is the object to be inspected, is on the bed 2.
3, and the bed 23 is configured to be movable on a support base 24.
第1図はQ値の低下を少なくし、高周波磁場発生用コイ
ル10とのカップリングを減少させるための信号検出用
コイル9の同調およびインピーダンス整合回路の一構成
例である。コンデンサ25および26は同調用コンデン
サ、コンデンサ27はインピーダンス整合用コンデンサ
、28は交叉ダイオード29はコンデンサ26と共鳴周
波数で共振条件を満たすインダクタンス素子である。第
2図は第4図に示した信−号検出用コイルの同調回路の
信号検出時における等価回路を示すm f’cはコイル
9の損失、Lxはコイル9のインダクタンス、Crtは
コンデンサ25の容量、Crtはコンデンサ26の容量
、r、は交叉ダイオードのoff抵抗、Laはインダク
タンス素子29のインダクタンスである。このときの条
件は以下の通りである。FIG. 1 shows an example of the configuration of a tuning and impedance matching circuit for a signal detection coil 9 to reduce a drop in Q value and reduce coupling with a high frequency magnetic field generation coil 10. Capacitors 25 and 26 are tuning capacitors, capacitor 27 is an impedance matching capacitor, and 28 is a crossed diode 29, which is an inductance element that satisfies resonance conditions at a resonance frequency with capacitor 26. FIG. 2 shows an equivalent circuit during signal detection of the tuned circuit of the signal detection coil shown in FIG. The capacitance Crt is the capacitance of the capacitor 26, r is the off resistance of the crossed diode, and La is the inductance of the inductance element 29. The conditions at this time are as follows.
Cr 1 = −Cr −(3)C
rz= a Cr ・= (
4)Cr
このとき、第5図に示した等価回路のインピーダンスは
次式で表わされる。Cr 1 = −Cr −(3)C
rz= a Cr ・= (
4) Cr At this time, the impedance of the equivalent circuit shown in FIG. 5 is expressed by the following equation.
r4+jω−
したがって、第5図に示した等価回路のQ値は次式で表
わされる。r4+jω- Therefore, the Q value of the equivalent circuit shown in FIG. 5 is expressed by the following equation.
ωL Q z =□ ・・・(8)rc+□ a”crrt ここで、aン1とすると、 a2crra Crra となり。ωL Q z =□ ...(8) rc+□ a”crrt Here, if we assume a1, a2crra Crra Next door.
Q 2 > Q t となる。またaを大きくしていくと、 □〜 O 2crra となり、 ωL Q2〜□=Q c ゛ となる。Q2>Qt becomes. Also, as we increase a, □〜 O 2crra Then, ωL Q2~□=Q c. It becomes ゛ .
したがって、第1図に示すように同調用コンデンサを直
列接続で分割することにより、交叉ダイオードとインダ
クタンス素子を直列接続したものを分割した同調用コン
デンサの一方と並列接続しても、高周波磁場送信時には
高周波磁場発生コイル10とのカップリングを低減し、
信号検出時には信号検出用コイル4のQ値の低下を小さ
くすることが可能となった。Therefore, by dividing the tuning capacitor in series as shown in Figure 1, even if a series connection of a crossed diode and an inductance element is connected in parallel with one of the divided tuning capacitors, it will not work when transmitting a high frequency magnetic field. Reduces coupling with the high frequency magnetic field generating coil 10,
At the time of signal detection, it has become possible to reduce the decrease in the Q value of the signal detection coil 4.
本発明によれば、高周波磁場発生時には信号検出用コイ
ルに誘導電流が流れるのをブロックしつつ、信号検出時
には信号検出用コイルのQの値が大きく低下しないよう
にする効果がある。According to the present invention, it is possible to block induced current from flowing in the signal detection coil when a high frequency magnetic field is generated, and to prevent the Q value of the signal detection coil from decreasing significantly during signal detection.
すなわち、前述のように同調用コンデンサを分割すると
、本発明による同調回路のQ (iffは従来の同調回
路のQ値よりも、次式に示す分だけ大きくすることがで
きる。That is, by dividing the tuning capacitor as described above, the Q (if) of the tuning circuit according to the present invention can be made larger than the Q value of the conventional tuning circuit by the amount shown in the following equation.
z−Q
ωL ωL
a 2Cr r a Cr r a(ただしa
〉1)z-Q ωL ωL a 2Cr r a Cr r a (however, a
〉1)
第1図は高周波磁場発生用コイルとのデカップリング用
回路を含む従来の信号検出用コイルの同調およびインピ
ーダンス整合回路の一実施例を示す図、第2図はその等
価回路を示す図、第3図は本発明の一実施例である検査
装置の構成を示す図。
第4図は従来の信号検出用コイルの同調およびインピー
ダンス整合回路の例を示す図、第5図はその等価回路を
示す図である。
藁 1 図
第 Z 図
14図
75 図FIG. 1 is a diagram showing an example of a conventional signal detection coil tuning and impedance matching circuit including a decoupling circuit with a high-frequency magnetic field generation coil, FIG. 2 is a diagram showing its equivalent circuit, and FIG. The figure shows the configuration of an inspection device that is an embodiment of the present invention. FIG. 4 is a diagram showing an example of a conventional signal detection coil tuning and impedance matching circuit, and FIG. 5 is a diagram showing its equivalent circuit. Straw 1 Figure Z Figure 14 Figure 75
Claims (1)
静磁場及び傾斜磁場の発生手段と、高周波磁場発生用コ
イルを介して高周波磁場を発生する高周波磁場発生手段
と、信号検出用コイルを介して前記検査対象からの核磁
気共鳴信号を検出する信号検出手段を備えた核磁気共鳴
を用いた検査装置において、 前記信号検出用コイルの同調用コンデンサを直列接続で
分割し、交叉ダイオードとインダクタンス素子を直列接
続し、これを前記同調用コンデンサの分割した一方のコ
ンデンサと並列接続させ、信号検出時にoff状態とな
る前記交叉ダイオードのoff抵抗および前記インダク
タンス素子からなる負荷を等価的に減少させ、信号検出
時に前記信号検出用コイルのQ値を大きく低下させるこ
となく、前記高周波磁場発生用コイルが高周波磁場を発
生するとき、前記交叉ダイオードが誘導電流によりon
状態となって、前記インダクタンス素子と前記同調用コ
ンデンサの分割した一方と共振回路を形成し、前記信号
検出用コイルに流れる誘導電流を低減することを特徴と
する核磁気共鳴を用いた検査装置。[Scope of Claims] 1. A means for generating a static magnetic field and a gradient magnetic field to create a desired magnetic field distribution in a space where an inspection target is placed, and a means for generating a high-frequency magnetic field to generate a high-frequency magnetic field via a high-frequency magnetic field generating coil. , in an inspection apparatus using nuclear magnetic resonance that includes a signal detection means for detecting a nuclear magnetic resonance signal from the inspection object via a signal detection coil, the tuning capacitor of the signal detection coil being divided by series connection. A crossed diode and an inductance element are connected in series, and this is connected in parallel with one of the divided capacitors of the tuning capacitor, and a load consisting of the off resistance of the crossed diode and the inductance element, which is turned off when a signal is detected, is connected in series. When the high-frequency magnetic field generating coil generates a high-frequency magnetic field, the crossed diode is turned on by an induced current without significantly reducing the Q value of the signal detecting coil during signal detection.
An inspection apparatus using nuclear magnetic resonance, characterized in that the inductance element and one of the divided parts of the tuning capacitor form a resonant circuit to reduce an induced current flowing through the signal detection coil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61140032A JPS62298344A (en) | 1986-06-18 | 1986-06-18 | Inspection device using nuclear magnetic resonance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61140032A JPS62298344A (en) | 1986-06-18 | 1986-06-18 | Inspection device using nuclear magnetic resonance |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62298344A true JPS62298344A (en) | 1987-12-25 |
Family
ID=15259369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61140032A Pending JPS62298344A (en) | 1986-06-18 | 1986-06-18 | Inspection device using nuclear magnetic resonance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62298344A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007121148A (en) * | 2005-10-28 | 2007-05-17 | Hitachi Ltd | NMR probe for nuclear magnetic resonance apparatus |
-
1986
- 1986-06-18 JP JP61140032A patent/JPS62298344A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007121148A (en) * | 2005-10-28 | 2007-05-17 | Hitachi Ltd | NMR probe for nuclear magnetic resonance apparatus |
JP4673188B2 (en) * | 2005-10-28 | 2011-04-20 | 株式会社日立製作所 | NMR probe for nuclear magnetic resonance apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230384404A1 (en) | Radio-frequency coil signal chain for a low-field mri system | |
Hutchinson et al. | A whole-body NMR imaging machine | |
JPS5999239A (en) | Nuclear magnetic resonance tomography device | |
JPS61124854A (en) | Nuclear magnetic resonance imaging antenna sub-system with plurality of non-orthogonal surface coil | |
EP0132338A2 (en) | Apparatus and method for reducing spurious currents in NMR imaging apparatus induced by pulsed gradient fields | |
EP0196134B1 (en) | Magnetic resonance imaging apparatus including two orthogonal r.f. coils | |
JPH02203839A (en) | Inspection device using nuclear magnetic resonance | |
Zevenhoven et al. | Dynamical cancellation of pulse-induced transients in a metallic shielded room for ultra-low-field magnetic resonance imaging | |
JPH01181855A (en) | Magnetic resonance imaging device | |
US4315215A (en) | Plural frequency type superconducting quantum interference fluxmeter | |
JPS62298344A (en) | Inspection device using nuclear magnetic resonance | |
JPH01299542A (en) | Inspection device using nuclear magnetic resonance | |
JPH01501251A (en) | Pseudo-resonance control device for observation coils for nuclear magnetic resonance | |
JPH0454450B2 (en) | ||
JP3170309B2 (en) | Magnetic resonance inspection equipment | |
CN106154191B (en) | Magnetic resonance imaging device, power amplifier module and power synthesizer | |
JPH01129842A (en) | Nuclear magnetic resonance imaging apparatus | |
JPS59122937A (en) | Nuclear magnetic resonance apparatus | |
Casas et al. | Performance of a double dc SQUID magnetometer | |
CN210894727U (en) | The receiving coil resonance device of the probe in the metal detector | |
JPS63222754A (en) | High frequency coil for nuclear magnetic resonance imaging | |
JPS61272641A (en) | Inspecting instrument using nuclear magnetic resonance | |
SU892376A1 (en) | Magnetometer | |
JPS6311144A (en) | MR imaging device | |
EP0279481A1 (en) | Magnetic resonance imaging apparatus incorporating improved detection |