JPS62297448A - Composite material for niti series functional alloy - Google Patents
Composite material for niti series functional alloyInfo
- Publication number
- JPS62297448A JPS62297448A JP14218786A JP14218786A JPS62297448A JP S62297448 A JPS62297448 A JP S62297448A JP 14218786 A JP14218786 A JP 14218786A JP 14218786 A JP14218786 A JP 14218786A JP S62297448 A JPS62297448 A JP S62297448A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- composite material
- composite
- filaments
- niti
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 70
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 34
- 239000000956 alloy Substances 0.000 title claims abstract description 34
- 229910001000 nickel titanium Inorganic materials 0.000 claims abstract description 14
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims description 96
- 238000012545 processing Methods 0.000 claims description 15
- 230000009467 reduction Effects 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 230000001788 irregular Effects 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- 229910052804 chromium Inorganic materials 0.000 claims 1
- 229910052750 molybdenum Inorganic materials 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 23
- 238000000034 method Methods 0.000 description 15
- 238000009792 diffusion process Methods 0.000 description 13
- 239000000047 product Substances 0.000 description 10
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000005491 wire drawing Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- QIVUCLWGARAQIO-OLIXTKCUSA-N (3s)-n-[(3s,5s,6r)-6-methyl-2-oxo-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-3-yl]-2-oxospiro[1h-pyrrolo[2,3-b]pyridine-3,6'-5,7-dihydrocyclopenta[b]pyridine]-3'-carboxamide Chemical compound C1([C@H]2[C@H](N(C(=O)[C@@H](NC(=O)C=3C=C4C[C@]5(CC4=NC=3)C3=CC=CN=C3NC5=O)C2)CC(F)(F)F)C)=C(F)C=CC(F)=C1F QIVUCLWGARAQIO-OLIXTKCUSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000792 Monel Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- RZJQYRCNDBMIAG-UHFFFAOYSA-N [Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Zn].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn] Chemical class [Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Zn].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn] RZJQYRCNDBMIAG-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 230000006386 memory function Effects 0.000 description 1
- XULSCZPZVQIMFM-IPZQJPLYSA-N odevixibat Chemical compound C12=CC(SC)=C(OCC(=O)N[C@@H](C(=O)N[C@@H](CC)C(O)=O)C=3C=CC(O)=CC=3)C=C2S(=O)(=O)NC(CCCC)(CCCC)CN1C1=CC=CC=C1 XULSCZPZVQIMFM-IPZQJPLYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
3、発明の詳細な説明
〔技術分野〕
本発明は、例えば形状記憶合金や超弾性合金、防振合金
などのNiTi系機能合金用の複合材に係わる。[Detailed Description of the Invention] 3. Detailed Description of the Invention [Technical Field] The present invention relates to a composite material for NiTi-based functional alloys, such as shape memory alloys, superelastic alloys, and anti-vibration alloys.
所定の組成比を有するNiTi系合金は、形状記憶効果
、B弾性挙動、防振効果などの種々の機能を有すること
が見出されて以来、巾広い用途への展開が進められてお
り、従来では主として次のような方法で製造されてきた
。Since it was discovered that NiTi alloys with a certain composition ratio have various functions such as shape memory effect, B-elastic behavior, and anti-vibration effect, they have been used in a wide range of applications, and compared to the conventional It has been mainly manufactured using the following methods.
その一方法は、所定量のT1とNiとを溶解することに
よって得た鋳塊に、熱間や冷間での加工を施し、又場合
によっては、熱処理を施しながら定められた寸法の製品
を得る方法である。One method is to hot or cold process an ingot obtained by melting a predetermined amount of T1 and Ni, and in some cases heat treat it to produce a product with a predetermined size. This is the way to get it.
又、他の方法としては、所定量のTi粉末とN1粉末と
を混合し熱処理拡散によって一体なNiT1合金を得る
という方法も行われている。Another method is to mix a predetermined amount of Ti powder and N1 powder and obtain an integral NiT1 alloy by heat treatment and diffusion.
しかしながら、これらの方法にあっては、該NiT1合
金の品質並びに経済性を考える時、解決されなければな
らない多数の問題点を残している。However, these methods leave many problems that must be solved when considering the quality and economic efficiency of the NiT1 alloy.
すなわち、前者の溶解法においては、
(1)一般的にTi材は酸化しやすい性質を有し、しか
も該溶解法にあっては、前記Ti材をさらに熔解するこ
とから、前記Ti材は酸化物となりやすく、従って、N
i材と合金化し得るTI絶対量が不足し、所望の組成比
を有する合金を得がたい。That is, in the former melting method, (1) Generally, Ti material has a property of being easily oxidized, and in this melting method, the Ti material is further melted, so that the Ti material is not oxidized. N
The absolute amount of TI that can be alloyed with the i material is insufficient, making it difficult to obtain an alloy having a desired composition ratio.
(2)又前記熔解時においては、さらに酸素、炭素、そ
の他のガス不純物等の混入も多くみられ、例えば第5.
6図に示されるように、その内部には多数の黒点状の酸
化物が内在したものとなる。(2) Furthermore, during the melting process, oxygen, carbon, and other gaseous impurities are often mixed in.
As shown in FIG. 6, a large number of black dot-shaped oxides are present inside.
このような不都合は、製品の特性に種々の悪影響を及ぼ
すこととなる。Such inconveniences have various adverse effects on the characteristics of the product.
その−例として例えば形状記憶合金においてN1組成を
わずか0.1at%変えただけでも、得られた製品の変
態点は士数度と大きく変化し、それに伴って動作温度も
変化するなど、前記酸化による組成比の変動は大きな問
題となる。For example, even if the N1 composition in a shape memory alloy is changed by only 0.1 at%, the transformation point of the resulting product will change significantly by several degrees, and the operating temperature will change accordingly. Fluctuations in the composition ratio due to this pose a major problem.
(3)又その加工に際しても難加工であるNiT1合金
は一回の縮径当りの加工度をあまり太き(設定すること
ができず、その結果、大さ1鶴前後の細線を得る場合に
は、多くの工程が必要となり、従って生産性に劣り、又
高価となる。(3) Also, when processing NiT1 alloy, which is difficult to process, the degree of processing per diameter reduction cannot be set too thick, and as a result, when obtaining a thin wire of about 1 crane in size, requires many steps, and therefore has low productivity and is expensive.
(4ン さらに溶解設備を利用するこの方法では、少
量生産には不向きである。(4) Furthermore, this method, which uses melting equipment, is not suitable for small-scale production.
他方、後者の粉末冶金法では、一般的に粉末は表面積が
大きく、特にTi粉末ではその表面に酸化層が発生し、
これは拡散後にTI、Ni2Oになる酸化物形成を伴う
為、変態点の異常低下、さらには残留する内部空孔が強
度、寿命を低下させるという問題があった。On the other hand, in the latter powder metallurgy method, the powder generally has a large surface area, and an oxide layer is generated on the surface of the Ti powder in particular.
Since this is accompanied by the formation of oxides that become TI and Ni2O after diffusion, there is a problem that the transformation point is abnormally lowered, and furthermore, the remaining internal pores reduce the strength and life.
さらに特開昭59−116340号公報ではTi材とN
i材とを圧接して密着させるとともに、それらを加熱し
てNiTi相を得ることも提案されてはいるが、一般的
に拡散速度は非常に緩やかであるため、逆に大径品の生
産に長時間を要すこととなる0例えば、形状記憶合金用
として比較的需要の多い直径0.3〜1.5mm程度の
線条材を得るにも、100時間を越える長時間の拡散処
理が必要となり、この方法も結局実用的とは言い難い。Furthermore, in Japanese Patent Application Laid-open No. 59-116340, Ti material and N
It has been proposed to pressure-bond the i-material and heat them to obtain a NiTi phase, but since the diffusion rate is generally very slow, it is difficult to produce large-diameter products. For example, to obtain a wire material with a diameter of about 0.3 to 1.5 mm, which is in relatively high demand for shape memory alloys, a long diffusion process of over 100 hours is required. Therefore, this method cannot be called practical after all.
(発明の目的〕
、本発明はこのような現状に鑑がみ、特に所定の組成比
になるように制御されたTi線条材とN1線条材とを均
一に分散させることを基本とし、直接任意な大きさのN
iTi系合金を得ようとの思想から生まれたものであっ
て、その目的は生産性と均質性に優れかつ安価なN I
T を系機能合金の製造に好適に用いられる複合材の
提供を目的としている。(Objective of the invention) In view of the current situation, the present invention is based on uniformly dispersing Ti wire material and N1 wire material that are controlled to have a predetermined composition ratio, directly any size N
It was born from the idea of obtaining an iTi-based alloy, and its purpose was to obtain an iTi-based alloy that was highly productive, homogeneous, and inexpensive.
The purpose of the present invention is to provide a composite material that can be suitably used in the production of T-based functional alloys.
Niが48〜60a t%と、TIとを少なくとも含む
よう制御したNiTi系機能合金の為の複合材であって
、該複合材は、その内部に複数本のTi線条材とを有す
るとともに、それらを均一に分散させ、かつ隣接する前
記各線条材を互いに機械的結合によって一体化させたこ
とを特徴とするN iT l系機能合金の複合材である
。A composite material for a NiTi-based functional alloy controlled to contain at least 48 to 60 at% of Ni and TI, the composite material having a plurality of Ti filaments therein, This is a composite material of a NiTl-based functional alloy, characterized in that these are uniformly dispersed, and the adjacent wire materials are integrated by mechanical bonding to each other.
以下本発明の複合材の一実施例を図面に基づき説明する
。An embodiment of the composite material of the present invention will be described below based on the drawings.
第1図は、あらかじめ組成比を制御された複数本のTi
線条材2とNi線条材3とが、その横断面において均一
に分散し、かつそ、れらが機械的結合するこ゛とによっ
て一本の線条の複合材1を形成したものである。又第2
図には前記Ti線条材2とNi線条材3との均一分散性
を、より向上させる為の一例として、前記各線条材2及
び3をあらかじめ所定組成比になるよう撚り合わした複
合線体4の複数本を用いて形成した複合材1が各々図示
されている。Figure 1 shows a plurality of Ti films whose composition ratio has been controlled in advance.
The filament material 2 and the Ni filament material 3 are uniformly dispersed in the cross section and are mechanically connected to form a single filament composite material 1. Also second
As an example of improving the uniform dispersibility of the Ti wire material 2 and the Ni wire material 3, the figure shows a composite wire in which the respective wire materials 2 and 3 are twisted together to have a predetermined composition ratio. Each composite material 1 formed using a plurality of bodies 4 is shown.
本発明に使用する前記Ti線条材2とNi線条材3は、
純Ti材及び純Ni材の純金属線条材によりそれぞれ形
成される。、又必要に応じ最終製品での変態点や機械的
性質、加工型等の諸性性を改善させるため、T1母材又
はN1母材に例えば、Cu、V% MOSCr、、A1
1Feなどの他元素を含有させることもできる。しかし
その含有量は、全複合体の5at%以下程度が望ましい
。The Ti wire material 2 and Ni wire material 3 used in the present invention are:
They are formed of pure metal wire materials of pure Ti material and pure Ni material, respectively. , and if necessary, in order to improve various properties such as transformation point, mechanical properties, processing type, etc. of the final product, for example, Cu, V% MOSCr, A1 is added to the T1 base material or N1 base material.
Other elements such as 1Fe can also be contained. However, its content is desirably about 5 at% or less of the total composite.
そして、本発明の複合材1は、その最終用途を、例えば
形状記憶合金や超弾性などの機能合金としており、又こ
れらは、Ni元楽とTi元素とによって生まれるNiT
i相を基本的に利用することから、前記複合材1におけ
る組成は48〜60at%のN1とTiとを少なくとも
含むよう、あらかじめTi線条材2及びNi線条材3の
太さや本数等の組合せが調整される。The final use of the composite material 1 of the present invention is, for example, as a functional alloy such as a shape memory alloy or a superelastic alloy.
Since the i-phase is basically used, the thickness and number of the Ti wire material 2 and the Ni wire material 3 are determined in advance so that the composition of the composite material 1 contains at least 48 to 60 at% of N1 and Ti. The combination is adjusted.
又これらTi線条材2及びNi線条材3は、必ずしも同
−太さのものを用いる必要はなく、異線径であってもよ
く、又その断面も、円形の他、多角形、さらには不規則
な形状を有していてもよい。Furthermore, these Ti wire materials 2 and Ni wire materials 3 do not necessarily have to be of the same thickness, but may have different wire diameters, and their cross sections may be circular, polygonal, or even polygonal. may have an irregular shape.
又、内部のTi線条材2及びNi線条材3の太さ及び本
数は最終製品の仕上がり寸法等との兼ね合いにより、自
由に設定してもかまわず、一般的には、例えば、0.0
1 m m2以下の横断面面積を有する微細な繊維状の
線条材を、より多く (例えば、100本以上、好まし
くは1000本以上)含ませることが好ましく、このよ
うに形成することにより、最終でのTiとNiとの拡散
処理時間を大巾に短縮化し、又製品の表面状態や均質性
を向上する。Further, the thickness and number of the internal Ti wire material 2 and Ni wire material 3 may be set freely depending on the finished dimensions of the final product, etc., and generally, for example, 0. 0
It is preferable to include a larger number (for example, 100 or more, preferably 1000 or more) of fine fibrous filaments having a cross-sectional area of 1 mm or less, and by forming in this way, the final This greatly shortens the time required for Ti and Ni diffusion treatment, and improves the surface condition and homogeneity of the product.
又、第2図のような撚り付与された複合線体4を用いる
ことについても、該複合線体4はその内部に原子量組成
比がすでに所定の組成比になるよう制御されて撚られて
いるため、これをどのように分布させても、該複合材1
内部における前記組成比の均一性は十分に維持されてい
る。Furthermore, when using a twisted composite wire body 4 as shown in FIG. 2, the composite wire body 4 is already twisted in such a manner that the atomic weight composition ratio is already controlled to a predetermined composition ratio. Therefore, no matter how it is distributed, the composite material 1
The uniformity of the composition ratio inside is sufficiently maintained.
又仮に、Ti :Niの原子量組成比が化学量論組成で
ある1:1のNiT1合金を得ようとし、かつ前記複合
線体4内部のTi線条材2とNi線条材3とがともに略
同径の場合には、その本数比は予め3:2の割合にする
などの方法で制御されていなければならない、もちろん
異線径の場合にも、それに合うよう計算し闘整しておく
ことはいうまでもない。Further, suppose that an attempt is made to obtain a NiT1 alloy with a stoichiometric Ti:Ni atomic weight composition ratio of 1:1, and both the Ti wire material 2 and the Ni wire material 3 inside the composite wire body 4 are If the wire diameters are approximately the same, the ratio of wires must be controlled in advance by a method such as setting it to a ratio of 3:2.Of course, even if the wire diameters are different, calculations and adjustments must be made to match it. Needless to say.
また、この場合、該複合線体4を構成する前記各線条材
の本数や撚り回数などは自由に選択し、実施されたもの
でかまわないが、組成分布の均一性という点から見れば
、例えば2〜10本程度の少数本が望ましい。In this case, the number of each of the wire materials constituting the composite wire body 4 and the number of twists may be freely selected and practiced, but from the viewpoint of uniformity of composition distribution, for example, A small number of books, about 2 to 10, is desirable.
さらに本発明ではこのような複合線体を複数本さらに撚
り合わせて、より太い一本の複合線体4に形成でき、あ
るいはこれらを直接複合材1にすることもできる。Furthermore, in the present invention, a plurality of such composite wires can be further twisted together to form a single thicker composite wire 4, or these can be directly made into the composite material 1.
従って後者では第2図のように、複合材1の長手方向に
沿って前記複合線体4が配向したものとなる。Therefore, in the latter case, the composite wire body 4 is oriented along the longitudinal direction of the composite material 1, as shown in FIG.
そして本発明の複合材1は、その横断面において、前記
T1線条材2とNi線条材3とが、きわめて均一に分散
され、かつ隣接するTi線条材2及びNi線条材は両者
間の境界面において機械的結合きれて、一体な複合材1
を形成している。In the composite material 1 of the present invention, in its cross section, the T1 wire material 2 and the Ni wire material 3 are extremely uniformly dispersed, and the adjacent Ti wire material 2 and Ni wire material are both A composite material 1 that is mechanically bonded and integrated at the interface between
is formed.
なお本明細書において「機械的結合」とは「例えば、伸
線加工や、圧延加工、プレス加工などのような機械的な
圧接手段によって得られ、かつその状態のみで前記複合
材を形成し得る程度に結合された状態」を意味する。In this specification, "mechanical bonding" is defined as "a bond obtained by mechanical pressure bonding means such as wire drawing, rolling, press working, etc., and which is capable of forming the composite material in that state alone." ``a state of being connected to a certain degree''.
しかも、前記Ti線条材2やNi線条材3の横断面形状
はミ例えば第3図に示されているように、外周に微細な
凹凸を持った、不定形状を呈している。Moreover, the cross-sectional shape of the Ti wire material 2 and the Ni wire material 3 has an irregular shape with fine irregularities on the outer periphery, as shown in FIG. 3, for example.
このような形状は複合材が、その製造時に横断面方向か
らの十分な圧力(力)によって、内部各線条材を微細化
し、かつその間の空孔も合わせて消滅させた際に生じる
のである。This shape is created when the composite material is manufactured by applying sufficient pressure (force) from the cross-sectional direction to make the internal filaments finer and to eliminate the pores between them.
本発明では、このような微細凹凸も合わせて利用し、隣
接する各線条材の結合強性を高め、より強固な一体品を
形成することに有効である。In the present invention, such fine irregularities are also utilized, which is effective in increasing the bonding strength of adjacent wire members and forming a stronger integrated product.
このような状態は、第1図のA−A’ 断面の拡大図で
もある第3図からも理解することかできる。Such a state can also be understood from FIG. 3, which is also an enlarged view of the AA' cross section of FIG. 1.
もちろん、本発明では上述のようなもの以外であっても
かまわない。Of course, in the present invention, other types than those described above may be used.
また本発明では、例えば、複数本のN1線条材2又はT
i線条材3同志が部分的に接触する部分も含まれている
。この場合Ni線条材同志の境界を区別しがたいことも
あるが、特殊な薬品(11食方法)を用いることによっ
て把握しうる。Further, in the present invention, for example, a plurality of N1 wire members 2 or T
It also includes a portion where the i-line members 3 partially contact each other. In this case, it may be difficult to distinguish the boundaries between Ni wire materials, but they can be recognized by using special chemicals (11 food methods).
又本発明の複合材1においては、種々の応用が可能であ
り、例えば、第4図のようにTi線条材2とN1線条材
3との他に、前記第3元素を線条材6としてれらを組み
合わせて用いることも可能であり、又、該複合材1の形
状や寸法も任意に設定することができる。Moreover, the composite material 1 of the present invention can be applied in various ways. For example, as shown in FIG. 4, in addition to the Ti wire material 2 and the N1 wire material 3, the third element is It is also possible to use these in combination as 6, and the shape and dimensions of the composite material 1 can also be set arbitrarily.
その−例は、例えば、線材、板材、角材、その他空品や
種々の非円形状品等にすることである。Examples thereof include, for example, wire rods, plate materials, square timbers, other blank articles, and various non-circular articles.
本発明の複合材1を得るには、本願出願人が先に提案し
た特願昭60−260844号に開示されるように、鉄
、銅、モネル合金等の安価で加工性に優れた管状のマト
リックス材中に、Ni線条材2及びTi線条材3を所定
量挿入するとともに、これに例えば50%程度以上での
加工率での加工(好ましくは冷間加工)を施し、その細
径化に伴って、内部のTi線条材2及びNi線条材3も
ほぼ同等に微細化させ、かつ内部空孔を除去させるとと
もに各線条材を機械的結合させる。In order to obtain the composite material 1 of the present invention, as disclosed in Japanese Patent Application No. 60-260844 previously proposed by the applicant, it is necessary to use a tubular material made of an inexpensive and easily workable material such as iron, copper, or Monel alloy. A predetermined amount of Ni wire material 2 and Ti wire material 3 are inserted into the matrix material, and processed at a processing rate of, for example, about 50% or more (preferably cold working) to reduce their fine diameter. Along with this, the internal Ti wire material 2 and Ni wire material 3 are also made almost equally fine, internal voids are removed, and each wire material is mechanically bonded.
なお前記マトリックス材は加工の後、機械的手段、化学
的手段等の方法により除去することによって、本発明の
複合材1が得られる。Note that the composite material 1 of the present invention can be obtained by removing the matrix material by mechanical means, chemical means, etc. after processing.
特にこの°場合、前記の加工(縮径加工)か大きな加工
率で施されていることは、素材の段階で線材(特にTI
線材)表面に発生していた酸化層の影響を減少させ、目
標に近い特性の製品(機能合金)を得るのに好都合であ
る。Especially in this case, the fact that the above processing (diameter reduction processing) is performed at a high processing rate means that the wire rod (especially TI
It is advantageous to reduce the influence of the oxidized layer that has been generated on the surface of the wire (wire rod), and to obtain a product (functional alloy) with properties close to the target.
そして、さらにこのような複合材1を用いて目的の機能
合金を製造するには、例えば700〜1100℃程度で
の無酸素雰囲気中加熱させることにより、前記TiとN
iとが拡散したNiTi相の合金を得ることができる。Further, in order to manufacture a desired functional alloy using such a composite material 1, the Ti and N
An alloy of NiTi phase in which i and i are diffused can be obtained.
しかし拡散することによって未拡散状態のものに比べ、
その加工性が極めて低いと言う欠点を有するため、直接
、最終寸法及び形状近くにまで加工したのち、最終処理
としての拡散処理を行うことが好ましい。However, due to diffusion, compared to the undiffused state,
Since it has the disadvantage of extremely low workability, it is preferable to process it directly to near the final dimensions and shape, and then perform a diffusion treatment as a final treatment.
また、前記拡散処理は、十分に行なわれることが望まれ
るが、本願発明者が行った実験によれば、加熱温度90
0℃における拡散速度は、2時間処理で40μm厚、又
10時間処理では70μm厚のNiTi相が生成するこ
とが見出された。従って前記各線条材が略70μm直径
にまで微細化されていれば、5時間程度の拡散処理で均
一なNiTi相の合金を得ることができることが判明し
た。Furthermore, although it is desired that the diffusion treatment be carried out sufficiently, according to an experiment conducted by the inventor of the present application, the heating temperature was 90°C.
It was found that the diffusion rate at 0° C. produced a 40 μm thick NiTi phase after 2 hours of treatment, and 70 μm thick NiTi phase after 10 hours of treatment. Therefore, it has been found that if each of the above-mentioned wire materials is refined to a diameter of about 70 μm, a uniform NiTi phase alloy can be obtained by a diffusion treatment of about 5 hours.
次に本発明の実施例について説明する。Next, examples of the present invention will be described.
〔実施例−1〕
直径0.18鶴のTI線条材と、0.2鶴直径のNi線
条材とを本数比率2:1の割合て燃り合わせてなる複合
線材(内部線条材3本を含む)の500本をそれぞれ平
行に束ね、外径12m、肉厚1鶴の軟鋼パイプ状のマト
リックス中に挿入した。[Example-1] Composite wire material (internal wire material) made by burning TI wire material with a diameter of 0.18 mm and Ni wire material with a diameter of 0.2 mm at a ratio of 2:1. 500 pieces (including 3 pieces) were each bundled in parallel and inserted into a mild steel pipe-shaped matrix with an outer diameter of 12 m and a wall thickness of 1 piece.
次にこの材料に合計99.8%での加工率で冷間伸線を
施し、全体の直径が0.6鶴の長尺伸線に加工した後、
機械的方法で前記外装マトリックス材を除去し、本発明
の複合材を得た。Next, this material was subjected to cold wire drawing at a total processing rate of 99.8%, and after being processed into a long wire with an overall diameter of 0.6 mm,
The exterior matrix material was removed by a mechanical method to obtain a composite material of the present invention.
得られた複合材を調整した結果、前記各線条材横断面面
積は、前記加工率に相関2 ×10’ms2程度の繊維
条にまで微細化され、またその組成比も素材での状態と
はほとんど変化していないNi49.8at%を含む複
合材であることがわかった。As a result of adjusting the obtained composite material, the cross-sectional area of each of the filaments was refined to a fiber strip of approximately 2 × 10'ms2, which correlated with the processing rate, and the composition ratio was also different from the state of the material. It was found that the composite material contained 49.8 at% of Ni, which was hardly changed.
さらにこの複合材はペンチで密着曲げしても、その表面
に亀裂が認められず更に加工しうろことが判明した。゛
〔実施例−2〕
実施例−1で得た複合材を真空中1000℃×10時間
の熱処理を施し、NiとTiとを十分に拡散させたN1
.Ti合金を得た。Furthermore, even when this composite material was tightly bent with pliers, no cracks were observed on its surface, and it was found that further processing was necessary.゛[Example-2] The composite material obtained in Example-1 was heat-treated in vacuum at 1000°C for 10 hours to form an N1 composite material in which Ni and Ti were sufficiently diffused.
.. A Ti alloy was obtained.
このようにして得たNiT1合金を手で曲げ加熱したと
ころ元の状態に回復する形状記憶機能を有していること
がわかった。When the NiT1 alloy thus obtained was bent and heated by hand, it was found that it had a shape memory function that allowed it to recover to its original state.
この合金の特性値の測定結果を、第1表に示す。Table 1 shows the measurement results of the characteristic values of this alloy.
第1表
〔実施例−3〕
前記実施例−1で得たN1組成49.8at%の複合材
80本と、同様に処理したN1組成54at%の複合材
80本との合計160本の複合材を用いてそれらを適当
に分散させ、前述の軟鋼バイブ中に挿入した。この材料
は、さらに伸線機により、外径11jに縮径加工を施し
た後、前記外装材を除去した結果、十分な一体品を有し
ていることがわかった。Table 1 [Example-3] A total of 160 composites of 80 composites with an N1 composition of 49.8 at% obtained in Example-1 and 80 composites with an N1 composition of 54 at% treated in the same manner. The materials were dispersed appropriately and inserted into the aforementioned mild steel vibrator. This material was further reduced in outer diameter 11j using a wire drawing machine, and then the sheathing material was removed. As a result, it was found that the material had a sufficient integrity.
そして、さらに温度900℃での熱処理を20時間施し
、N1組成比52at%、残量がT1であるNiTi合
金を得た。Then, heat treatment was further performed at a temperature of 900° C. for 20 hours to obtain a NiTi alloy with an N1 composition ratio of 52 at % and a residual amount of T1.
〔実施例−4〕
直径1flのTi材とほぼ同寸度のNi材とを内寸30
flの角パイプ(軟鋼製)沖に交互に並べて合計100
0本を詰め込むとともに、これに圧下率99.998%
での冷間圧延を施し帯状品を得た。[Example-4] A Ti material with a diameter of 1 fl and a Ni material of approximately the same size were made with an inner dimension of 30 mm.
fl square pipes (made of mild steel) arranged alternately on the shore, totaling 100
In addition to packing 0 pieces, the rolling reduction rate is 99.998%.
A strip product was obtained by cold rolling.
なお、その加工は数回に及ぶ繰り返しの加工で行なった
。The processing was repeated several times.
又その検断面を顕微鏡により観察した結果、前記各材料
は8 ×I Q=mt2の横断断面積にまで微細化され
、しかも、内部各材料の外周には無数の凹凸が認められ
た。外装材を除去した後の複合材をペンチではさみ、1
80°の直角繰り返し曲げ試験を行なったが、十分に圧
接されていることがわかった。Further, as a result of observing the cross-section of the sample using a microscope, it was found that each of the above-mentioned materials had been refined to a cross-sectional area of 8×IQ=mt2, and that countless irregularities were observed on the outer periphery of each of the internal materials. After removing the exterior material, hold the composite material with pliers and
An 80° right angle repeated bending test was conducted, and it was found that the welding was sufficiently pressure-welded.
〔実施例−5〕
直piltmのTi線条材100本と、直径1flのN
1線条材65本と、さらに直径0.2flのCu線条材
100本とを適当に分散させながら、合計265本の線
条材が撚り合う1本の複合線材を得るとともに、この複
合線材50本を、長さ1mの軟鋼パイプの外装材中に挿
入し、冷間加工により、98%加工率での冷間加工を行
い、さらに900〜1000℃での拡散処理を行った。[Example-5] 100 straight piltm Ti wire materials and 1fl diameter N
By appropriately dispersing 65 single wire materials and further 100 Cu wire materials with a diameter of 0.2 fl, one composite wire material in which a total of 265 wire materials are twisted together is obtained, and this composite wire material Fifty pieces were inserted into the exterior material of a mild steel pipe with a length of 1 m, cold worked at a working rate of 98%, and further subjected to a diffusion treatment at 900 to 1000°C.
なお前記外装材は、熱処理前にあらかじめ除去しておい
た。Note that the exterior material was removed in advance before the heat treatment.
その結果、43%Ti−54%N i −3%Cu(れ
%)の組成を有しかつヒステリシス4℃を有するNiT
i系合金を得た。As a result, NiT with a composition of 43%Ti-54%Ni-3%Cu (reduction%) and a hysteresis of 4°C was obtained.
An i-based alloy was obtained.
叙上のごとく、本発明の複合材は、予め所定の組成比に
なるよう制御したT1線条材とNi線条材とを均一に分
散せしめ、かつこれらを機械的結合によって十分に接触
させていることから、合金内部における組成のバラツキ
を大きく抑制でき、均一な特性の製品を得ることができ
る。As mentioned above, the composite material of the present invention is made by uniformly dispersing the T1 wire material and the Ni wire material, which are controlled in advance to have a predetermined composition ratio, and bringing them into sufficient contact by mechanical bonding. As a result, variations in composition within the alloy can be greatly suppressed and products with uniform characteristics can be obtained.
しかも、該複合材においては、それを構成する前記各材
料がほとんど拡散されておらず、しかもNi材及びTi
材が軟質であることから、従来のNiT1合金の加工に
比べ、極めて大きな加工率を設定することができる。Moreover, in the composite material, each of the above-mentioned materials constituting it is hardly diffused, and moreover, the Ni material and the Ti material are hardly diffused.
Since the material is soft, it is possible to set an extremely high processing rate compared to conventional processing of NiT1 alloy.
又それに伴って各線条材も繊維状にまで微細化させるこ
ともできるため、拡散時間の短縮も可能となり、得られ
る合金の形状、寸法についても、巾広く自由に設定でき
、例えば、直接最終寸法の製品を得ることもできる。In addition, since each wire material can be made finer to the point of fiber, it is also possible to shorten the diffusion time, and the shape and dimensions of the resulting alloy can be freely set. For example, the final dimensions can be directly adjusted. products can also be obtained.
さらに本発明の複合材では、熔解等の段階を一切経ずし
て形成することが可能なため、Ti材の酸化やガス不純
物等による酸化物の発生が、第7図に示されるように非
常に少なく、きわめて清浄な組織と、ヒステリシスの非
常に小さいものを得ることができる。Furthermore, since the composite material of the present invention can be formed without any steps such as melting, the oxidation of the Ti material and the generation of oxides due to gas impurities, etc. are extremely difficult, as shown in Figure 7. It is possible to obtain very clean tissue with very little hysteresis.
さらに、′本発明においては、N1とTiとの組成比の
異なる複数本の複合材を任意に選択し、かつそれらをさ
らに組み合せることによって、任意な特性のNiTi系
機能合金を得ることも可能となるなど1.その適用性は
、きわめて高いものである。Furthermore, in the present invention, it is possible to obtain a NiTi-based functional alloy with arbitrary characteristics by arbitrarily selecting a plurality of composite materials with different composition ratios of N1 and Ti and further combining them. 1. Its applicability is extremely high.
第1図は本願発明の一実施例を模式的に示した拡大斜視
図、第2図は他の実施例を模式的に示した拡大斜視図、
第3図は複合材の組成を示す拡大断面図、第4図は他の
実施例を示す模式拡大斜視図、第5.6図は従来の熔解
法により得られたN1T1合金の金属組織を示す写真、
第7図は本発明のNiTi系機能合金用複合材を拡散処
理を行った状態で示す金属組織の写真である。
1−複合材、 2−T i線条材、
3・−N1線条材、 4−・−複合線体。
特許出願人 日 本 精 線 株式会社代理人
弁理士 苗 村 正第1図
第2図
第3図FIG. 1 is an enlarged perspective view schematically showing one embodiment of the present invention, FIG. 2 is an enlarged perspective view schematically showing another embodiment,
Fig. 3 is an enlarged sectional view showing the composition of the composite material, Fig. 4 is a schematic enlarged perspective view showing another example, and Fig. 5.6 shows the metal structure of the N1T1 alloy obtained by the conventional melting method. photograph,
FIG. 7 is a photograph of the metal structure of the NiTi-based functional alloy composite material of the present invention in a state where it has been subjected to a diffusion treatment. 1-Composite material, 2-Ti wire material, 3.-N1 wire material, 4-.-Composite wire material. Patent applicant Japan Seisen Co., Ltd. Agent Patent attorney Tadashi Naemura Figure 1 Figure 2 Figure 3
Claims (7)
むNiTi系機能合金の為の複合材であって、該複合材
は、その内部に複合本のTi線条材とNi線条材とを有
するとともに、それらを均一に分散させ、かつ隣接する
前記各線条材を互いに機械的結合によって一体化させた
ことを特徴とするNiTi系機能合金用複合材。(1) A composite material for a NiTi-based functional alloy containing 48 to 60 at% Ni and at least Ti, the composite material having a composite Ti wire material and a Ni wire material inside. What is claimed is: 1. A composite material for a NiTi-based functional alloy, characterized in that the above-mentioned wire materials are uniformly dispersed, and the adjacent wire materials are integrated by mechanical bonding to each other.
合せにより構成された少なくとも1本以上の複合線体を
含んでなる特許請求の範囲第1項記載の複合材。(2) The composite material according to claim 1, wherein the composite material includes at least one composite wire body formed by twisting a Ti wire material and a Ni wire material.
mm^2以下の横断面面積を有する特許請求の範囲第2
項記載の複合材。(3) The Ti wire material and the Ni wire material are each 0.01
Claim 2 having a cross-sectional area of mm^2 or less
Composite material as described in section.
横断面形状を有している特許請求の範囲第3項記載の複
合材。(4) The composite material according to claim 3, wherein the Ti wire material and/or the Ni wire material have an irregular cross-sectional shape.
細凹凸が形成されていることを特徴とする特許請求の範
囲第4項記載の複合材。(5) The composite material according to claim 4, wherein the Ti wire material and the Ni wire material have fine irregularities formed on their outer surfaces.
条材を含んでいる特許請求の範囲第1項記載の複合材。(6) The composite material according to claim 1, wherein the composite material includes a filament material made fine by diameter reduction processing.
Cr、Al、Feから選択される一種以上の第3元素が
含有されている特許請求の範囲第1項に記載の複合材。(7) The composite material contains 5 at% or less of Cu, V, Mo,
The composite material according to claim 1, which contains one or more third elements selected from Cr, Al, and Fe.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14218786A JPS62297448A (en) | 1986-06-17 | 1986-06-17 | Composite material for niti series functional alloy |
US06/932,339 US4830262A (en) | 1985-11-19 | 1986-11-19 | Method of making titanium-nickel alloys by consolidation of compound material |
DE8686116073T DE3686638T2 (en) | 1985-11-19 | 1986-11-20 | METHOD FOR PRODUCING TITANIUM-NICKEL ALLOYS. |
EP86116073A EP0226826B1 (en) | 1985-11-19 | 1986-11-20 | Method for making titanium-nickel alloys |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14218786A JPS62297448A (en) | 1986-06-17 | 1986-06-17 | Composite material for niti series functional alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62297448A true JPS62297448A (en) | 1987-12-24 |
Family
ID=15309406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14218786A Pending JPS62297448A (en) | 1985-11-19 | 1986-06-17 | Composite material for niti series functional alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62297448A (en) |
-
1986
- 1986-06-17 JP JP14218786A patent/JPS62297448A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4830262A (en) | Method of making titanium-nickel alloys by consolidation of compound material | |
US4478787A (en) | Method of making dispersion strengthened metal bodies and product | |
JP4068556B2 (en) | Stainless steel fiber by focused drawing | |
JP2003517935A (en) | Improved alloy fiber and method for producing the same | |
JPS62297448A (en) | Composite material for niti series functional alloy | |
JP3672903B2 (en) | Manufacturing method of oxide dispersion strengthened ferritic steel pipe | |
US6248192B1 (en) | Process for making an alloy | |
US20230340644A1 (en) | Ni-based alloy material | |
JP6091912B2 (en) | Copper-chromium alloy wire and method for non-heating production of high ductility, high-strength copper-chromium alloy wire | |
JPH08502099A (en) | Zirconium-based materials, products for use in nuclear reactor cores made from the same, and methods of making such products | |
US3529343A (en) | Method of producing metallic yarn | |
JPH02243747A (en) | Intermetallic compound wire and its production | |
JPS60135503A (en) | Manufacture of dispersion strengthened metal body and product | |
CA1229960A (en) | Method of making dispersion strengthened metal bodies and product | |
JPS62294155A (en) | Composite material for niti function alloy | |
JPS62120467A (en) | Manufacture of niti alloy | |
JPS63203212A (en) | Composite fiber for ni-ti base functional fibered material and its manufacture | |
JP2770386B2 (en) | Composite wire and method of manufacturing the same | |
JPS63166941A (en) | Ni-ti functional material and its production | |
JPH0432111A (en) | Manufacture of compound superconductive wire | |
JPH0381915A (en) | Manufacture of composite superconductive material | |
JPH0371912A (en) | Stellite wire drawing method | |
JPS62189423A (en) | Materials for eyeglass frames and their manufacturing method | |
JPS6235441B2 (en) | ||
JPH03104818A (en) | Oxide dispersion strengthened alloy tube and production thereof |