[go: up one dir, main page]

JPS62294952A - Measurement of concentration of solute in aqueous solution - Google Patents

Measurement of concentration of solute in aqueous solution

Info

Publication number
JPS62294952A
JPS62294952A JP61138466A JP13846686A JPS62294952A JP S62294952 A JPS62294952 A JP S62294952A JP 61138466 A JP61138466 A JP 61138466A JP 13846686 A JP13846686 A JP 13846686A JP S62294952 A JPS62294952 A JP S62294952A
Authority
JP
Japan
Prior art keywords
aqueous solution
electrochemical cell
cathode
resin film
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61138466A
Other languages
Japanese (ja)
Other versions
JPH0533746B2 (en
Inventor
Yuko Fujita
藤田 雄耕
Hisashi Kudo
工藤 寿士
Shuji Hitomi
周二 人見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP61138466A priority Critical patent/JPS62294952A/en
Publication of JPS62294952A publication Critical patent/JPS62294952A/en
Publication of JPH0533746B2 publication Critical patent/JPH0533746B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To enable handy measurement, by immersing an electrochemical cell as junction body or pressure-weld body in which a cathode and an anode are junctioned or pressure-welded on an ion exchange resin film, as covered with a water repelling resin film, into an aqueous solution. CONSTITUTION:An electrochemical cell has an ion exchange resin film 1 comprising a perfluorocarbon sulfonic acid resin film, a cathode 2 made of platinum, a cathode current collector 4 comprising expanded titanium, an anode current collector 5 comprising expanded titanium and a water repelling resin film 6 comprising a porous polytetrafluoroethylene film. This electrochemical cell (concentration sensor) is immersed into a sulfuric acid aqueous solution, adjusted in various concentrations, and when a DC constant voltage is applied between the cathode 2 and the anode 3, with the electrolysis of water absorbed by the resin film 1, current is generated in direct proportion to a steam pressure corresponding to the concentration of the solution. By detecting this current, the concentrations of solutes in the aqueous solution can be measured with a very small electrochemical cell with a very handy operation and continuously.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は水溶液中の溶質の濃度を測定づる方法に関する
ものである。
Detailed Description of the Invention 3. Detailed Description of the Invention Field of Industrial Application The present invention relates to a method for measuring the concentration of a solute in an aqueous solution.

従来の技術 水溶液中の溶質の、9度を測定する方法どしては、従来
、化学分析法あるいは原子吸光分析、イオンクロマトグ
ラフ等の機器分析法が実施されている。
Conventional Techniques Chemical analysis, atomic absorption spectrometry, ion chromatography, and other instrumental analysis methods have conventionally been used to measure the 9 degrees of solutes in aqueous solutions.

また、より簡便な方法としては、例えば浮子式比重計が
用いられることがある。
Furthermore, as a simpler method, for example, a float type hydrometer may be used.

発明が解決しようとする問題点 しかるに、上記の化学分析法および機器分析法は、一般
に1間がかかるし、大がかりな装置を必要とする等の問
題があった。また浮子式比重計にしても、その操作は煩
雑であるし、連続的に溶71の1度を測定しようとする
場合に(よ不適である等の問題があった。
Problems to be Solved by the Invention However, the above-mentioned chemical analysis method and instrumental analysis method generally take a long time and have problems such as requiring large-scale equipment. Even if a float type hydrometer is used, there are problems such as its operation is complicated and it is not suitable for continuously measuring 1 degree of melt 71.

問題点を解決するための手段 本発明は、イオン交換樹脂膜の片面にド2ルを他面に陽
極を一体に接合又は圧接してなる接合体又は圧)&体を
撥水性プラスチック躾で被覆してなる電気化学ピルを測
定の対象となる水溶液中に浸漬し、陰極と陽極との間に
直流の定電圧を印加した際に、114記イオン交換樹脂
膜に吸収される水の電気分解に伴なって流れる電流が測
定の対象となる水溶液の溶′11の濃度に対応する水蒸
気圧に実質的に正比例づるという関係を利用して、水溶
液の溶質の濃度を測定することによって、上述の如き問
題点を解決せlυとするものである。
Means for Solving the Problems The present invention is a bonded body or pressure-bonded body formed by integrally bonding or pressing a dowel on one side of an ion-exchange resin membrane and an anode on the other side, and the body is covered with a water-repellent plastic membrane. When the electrochemical pill made of the above is immersed in the aqueous solution to be measured and a constant DC voltage is applied between the cathode and the anode, the electrolysis of water absorbed by the ion exchange resin membrane described in Section 114 occurs. By measuring the concentration of the solute in the aqueous solution using the relationship that the accompanying current is substantially directly proportional to the water vapor pressure corresponding to the concentration of the solute in the aqueous solution to be measured, the method described above can be achieved. This is to solve the problem.

作  用 イオン交換樹脂膜に陰極および陽極をそれぞれ一体に接
合又は圧接してなる電気化学セルのイオ交換樹脂膜に水
を吸収させ、陰・間両極間に直流電流を通電すると、イ
オン交換樹脂膜が電解質として作用し、イオン交換樹脂
膜中の水が電気分解される。イオン交換樹脂膜として水
素イオン導電体としてのカチオン交換膜を用いた場合に
は、次の反応が起こる。
Function: When water is absorbed into the ion exchange resin membrane of an electrochemical cell in which a cathode and an anode are integrally bonded or pressure-bonded to the ion exchange resin membrane, and a direct current is applied between the anode and the intermediate electrodes, the ion exchange resin membrane acts as an electrolyte, and the water in the ion exchange resin membrane is electrolyzed. When a cation exchange membrane as a hydrogen ion conductor is used as the ion exchange resin membrane, the following reaction occurs.

陰 極:21−r +20→l−12 陽 極:+20→1/202 +2Ll” +2e仝 
反 応 :1lzO→ ト] 2  →−1/202ま
たイオン交換樹脂膜として水酸イオン導電体としてのア
ニオン交換膜を用いた場合には、次の反応が起こる。
Cathode: 21-r +20→l-12 Anode: +20→1/202 +2Ll” +2e仝
Reaction: 1lzO→g] 2 →-1/202 When an anion exchange membrane as a hydroxyl ion conductor is used as the ion exchange resin membrane, the following reaction occurs.

陰  極 :  2H20+ 20 2e−+1−12
 + 20H−陽    1転  =  20 H−→
 1/202   + ト12 0全反応:H20→H
2+1/20z このような電気化学セルを撥水性プラスチック膜で被覆
したものを水溶液に氾;hすると、その水溶液中の水分
だけが蒸気となって、撥水性プラスチック膜を透過して
、イオン交換樹脂膜に吸収される。したがって、この電
気化学セルの陰・間両極間に直流電流を通すと、やはり
イオン交換樹脂膜に吸収された水の電気分解が起こる。
Cathode: 2H20+ 20 2e-+1-12
+ 20H-positive 1 turn = 20H-→
1/202 + 12 0 total reaction: H20→H
2+1/20z When such an electrochemical cell covered with a water-repellent plastic membrane is flooded with an aqueous solution, only the water in the aqueous solution turns into steam, which permeates through the water-repellent plastic membrane and forms an ion-exchange resin. absorbed into the membrane. Therefore, when a direct current is passed between the negative and intermediate electrodes of this electrochemical cell, electrolysis of the water absorbed in the ion exchange resin membrane also occurs.

また陰・間両極間に直流の定電圧を印加した場合には、
陰・間両極間に流れる電流は、上述の水溶液の水蒸気圧
にほぼ正比例する。本発明tよ、このような本発明者ら
の発見に基ずいてなされたものである。
In addition, when a constant DC voltage is applied between the negative and negative electrodes,
The current flowing between the negative and intermediate electrodes is approximately directly proportional to the water vapor pressure of the above-mentioned aqueous solution. The present invention has been made based on the discoveries made by the inventors.

即ら、一般にある溶質を溶解Uる水溶液の水蒸気圧は、
溶質の濃度が高ければ高いほど低いが、予め測定の対象
となる水溶液の溶質の濃度と水蒸気圧との関係を測定し
ておくか、溶質の既知の′fA度と上述の電気化学セル
の電流との関係を求めておけば、未知の濃度の水溶液に
上述の1気化学セルを浸漬した際の電流から、その水溶
液のm度を知ることができる。
That is, in general, the water vapor pressure of an aqueous solution that dissolves a certain solute is:
The higher the solute concentration, the lower the value, but it is best to measure the relationship between the solute concentration and water vapor pressure in the aqueous solution to be measured in advance, or use the known fA degree of the solute and the current of the electrochemical cell described above. By determining the relationship between , the m degree of the aqueous solution can be determined from the current generated when the above-mentioned 1-gas chemical cell is immersed in an aqueous solution of unknown concentration.

なお、電気化学セルを撥水性プラスチック膜で被覆する
のは、測定の対象となる水溶液がイオン交換樹脂膜に直
接接触すると、水溶液の溌磨にあまり関係なく、はぼ一
定の電流が流れたり、また溶質によっては水の電気分解
の代りに溶質自体の電気分解が起こるために、水溶液の
濃度を測定することができないからである。
The reason why the electrochemical cell is coated with a water-repellent plastic membrane is that when the aqueous solution to be measured comes into direct contact with the ion-exchange resin membrane, a fairly constant current flows, regardless of the polishing of the aqueous solution. Furthermore, depending on the solute, electrolysis of the solute itself occurs instead of electrolysis of water, making it impossible to measure the concentration of the aqueous solution.

本発明に用いるイオン交換樹脂膜としては、パーフルA
ロカーボンを樹脂骨格とし、スルフォン酸基をイオン交
換基として保有するカチオン交換膜が最も擾れているが
、水酸】、tをhするアニオン交換膜を用いてもよい。
As the ion exchange resin membrane used in the present invention, Perflu A
Although a cation exchange membrane having a carbon skeleton as a resin skeleton and a sulfonic acid group as an ion exchange group is most troublesome, an anion exchange membrane having hydroxyl acid], t=h may also be used.

またイオン交換樹脂膜の樹脂骨格としてスチレン−ジビ
ニルベンピン共ffi合体の如き炭化水素系のもの4用
いてもよい。また電極はイオン交換樹脂膜と一体に接合
してもよいし、網状の電極を圧接してもよい。また電極
は、イオン交換樹脂膜の両面に配してもJ、いし、片面
だけに配設してもよい。イオン交換樹脂膜への電極の接
合方法としては、所:il’J無電解メッキ法あるいは
触媒粉末と結査剤との混合物をホットプレスするホット
プレス法が適用可能である。電極材料としては、カチオ
ン交換膜を用いる場合には、白金族金属、チタンなどが
、アニオン交換膜を用いる場合には白金族金属、ニッケ
ルなどが使用可能である。また電気化学セルを被覆すべ
き撥水性プラスチック膜材料としては、フッ素樹脂が最
ら浸れているが、ポリ塩化ビニル、ポリプロピレン、ポ
リエチレンむども使用可能である。1発水性プラスチッ
ク膜の構造としては、多孔性であることが望ましいが、
非多孔性でもよいことがある。
Further, as the resin skeleton of the ion-exchange resin membrane, a hydrocarbon-based material 4 such as styrene-divinylbenpine co-ffi combination may be used. Further, the electrode may be integrally joined to the ion exchange resin membrane, or a mesh electrode may be pressed into contact with the ion exchange resin membrane. Further, the electrodes may be disposed on both sides of the ion exchange resin membrane, or may be disposed on only one side. As a method for joining the electrode to the ion exchange resin membrane, the il'J electroless plating method or the hot pressing method in which a mixture of catalyst powder and binder is hot pressed can be applied. As the electrode material, platinum group metals, titanium, etc. can be used when a cation exchange membrane is used, and platinum group metals, nickel, etc. can be used when an anion exchange membrane is used. Fluororesin is most often used as the water-repellent plastic film material for covering the electrochemical cell, but polyvinyl chloride, polypropylene, and polyethylene materials can also be used. It is desirable that the structure of the water-repellent plastic membrane is porous;
It may also be non-porous.

木5を明による水溶液の溶質の濃度を測定ず、る方法は
、1′!Iに鉛蓄電池の硫酸の濃度、尿中の塩分などを
測定する一Lで、効果的である。
The method for measuring the concentration of solutes in an aqueous solution according to tree 5 is 1'! It is effective for measuring the concentration of sulfuric acid in lead-acid batteries, salt content in urine, etc.

実施例 以下、本発明の一実施例について詳)ホする。Example An embodiment of the present invention will be described in detail below.

パーフルAロカーボンスルフオン酸拉(脂11!J <
デュポン社製、ナフィオン117)の両面に白金(4m
g/cI11)を無電解メッキ法により匿合し、直径5
mmのイオン交換樹脂膜−電(引接合体を用意した。
Perful A locarbon sulfonic acid (fat 11!J <
Platinum (4m) on both sides of DuPont Nafion 117)
g/cI11) by electroless plating, and the diameter was 5.
An ion-exchange resin membrane-electronic bonded body of 1.0 mm was prepared.

次にこの接合体の両面にチタンリード線(ポリテドラフ
ルオロエチレン被1)付の白金メッキを施したエキスパ
ンデッドチタン(直0!3mm)からなる集電体を配設
し、さらにその上に多孔性ポリテトラフルオロエチレン
躾(直径10m1)を載置し、ホットプレスした。この
ようにして得られた電気化学セル(llf1度センサ)
の断面構造を第1図に示す。図にJ3いて、1はパーフ
ルA相カーボンスルフォン醗樹脂膜からなるイオン交1
条樹脂膜、2は白金からなる陰極、3は白金からなる陽
極、4はエキスパンデッドチタンからなる陰極集電体、
5(よエキスパンデッドチタンからなる陰極集電体、6
は多孔性ポリテトラフル3ロエチレン膜からなるla水
性プラスチック膜である。
Next, current collectors made of platinum-plated expanded titanium (direction 0.3 mm) with titanium lead wires (polytetrafluoroethylene coating 1) were placed on both sides of this bonded body, and then A porous polytetrafluoroethylene tube (diameter 10 m1) was placed on the tube and hot pressed. Electrochemical cell thus obtained (llf1 degree sensor)
The cross-sectional structure of is shown in Fig. 1. J3 in the figure, 1 is an ion exchanger 1 consisting of a purfle A-phase carbon sulfone resin film.
2 is a cathode made of platinum, 3 is an anode made of platinum, 4 is a cathode current collector made of expanded titanium,
5 (Cathode current collector made of expanded titanium, 6
is a la water-based plastic membrane consisting of a porous polytetrafluoroethylene membrane.

次にこの電気化学セル(濃度センサ)を各種濃度に調整
した5APa水溶液に?2泊し、陰極2と陽極3との間
に3■の直流定電圧を印加した際の電流を測定したとこ
ろ、硫酸水溶液の水蒸気圧と電流との関係は第2図、硫
酸水溶液の濃度と電流との関係は第3図に示すとおりな
った。この第2図および第3図から、上述の電気化学セ
ル(0度センサ)の電流が水蒸気圧に正比例すること、
および硫酸水溶液の濃度な電気化学セル(fJ度セン七
す)の電流から知ることができることがわかる。
Next, use this electrochemical cell (concentration sensor) in a 5APa aqueous solution adjusted to various concentrations. We stayed for two nights and measured the current when a constant DC voltage of 3cm was applied between the cathode 2 and anode 3. The relationship between the water vapor pressure of the sulfuric acid aqueous solution and the current is shown in Figure 2, and the concentration of the sulfuric acid aqueous solution and the current are measured. The relationship with current was as shown in Figure 3. From these Figures 2 and 3, it can be seen that the current of the electrochemical cell (0 degree sensor) described above is directly proportional to the water vapor pressure;
It can be seen that the concentration of sulfuric acid aqueous solution can be determined from the current of an electrochemical cell (fJ degree).

一方、硫酸水溶液の濃度を変化させた際の電気化学ヒル
(濃度センナ)の電流の変化を求めたところ、この電気
化学セル(濃度センサ)の応答速度は約2分と、かなり
速かった。したがって、この電気化学セル(ili1度
センサ)によって、1mの工!1度をj↑続的に測定す
ることができる。
On the other hand, when we determined the change in the current of the electrochemical cell (concentration sensor) when changing the concentration of the sulfuric acid aqueous solution, we found that the response time of this electrochemical cell (concentration sensor) was quite fast, at about 2 minutes. Therefore, with this electrochemical cell (ili 1 degree sensor), the distance of 1 m! One degree can be measured continuously.

発明の効果 以上述べたように本発明は、穫めて小さな電気化学セル
(If度センサ)によって、直流の定電圧を印加した際
の電流を測定するという撓めて簡便な操作で、しかも連
続的に水溶液中の湿質の濃度を測定する方法を提供する
ものであり、その工業的1曲値極めて大である。
Effects of the Invention As described above, the present invention uses a very small electrochemical cell (If temperature sensor) to measure the current when a constant DC voltage is applied, which is a flexible and simple operation, and can be carried out continuously. This method provides a method for measuring the concentration of wet substances in an aqueous solution, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による水溶液中の溶質の濃度を測定する
方法に用いる電気化学セルの一実施例を示す断面構造図
、第2図は硫酸水溶液の水蒸気圧と電気化学セルのTs
流との関係を示す図、第3図は硫酸水溶液の1度と電気
化学セルの電流との関係を示ず図である。 1・・・イオン交換樹脂膜、2・・・陰極、3・・・陽
極、6・・・1鎖水性プラスチツク膜 笛1同 7;イオン交換樹脂膜 λ:吃柘 3:陽極
Fig. 1 is a cross-sectional structural diagram showing an embodiment of an electrochemical cell used in the method of measuring the concentration of solute in an aqueous solution according to the present invention, and Fig. 2 shows the water vapor pressure of a sulfuric acid aqueous solution and the Ts of the electrochemical cell.
Figure 3 is a diagram showing the relationship between the current of the sulfuric acid aqueous solution and the current of the electrochemical cell. DESCRIPTION OF SYMBOLS 1... Ion exchange resin membrane, 2... Cathode, 3... Anode, 6... 1 chain aqueous plastic membrane whistle 1 and 7; Ion exchange resin membrane λ: 吃柘3: Anode

Claims (1)

【特許請求の範囲】[Claims] イオン交換樹脂膜に陰極および陽極を一体に接合又は圧
接してなる接合体又は圧接体を撥水性プラスチック膜で
被覆してなる電気化学セルを測定の対象となる水溶液中
に浸漬し、陰極と陽極との間に直流の定電圧を印加した
際に、前記イオン交換樹脂膜に吸収される水の電気分解
に伴なって流れる電流が前記水溶液の溶質の濃度に対応
する水蒸気圧に実質的に正比例する関係を利用すること
を特徴とする水溶液中の溶質の濃度を測定する方法。
An electrochemical cell consisting of a bonded body or pressure-bonded body formed by integrally bonding or press-bonding a cathode and an anode to an ion-exchange resin membrane and covering the body with a water-repellent plastic membrane is immersed in an aqueous solution to be measured, and the cathode and anode are When a constant DC voltage is applied between the ion-exchange resin membrane and the ion-exchange resin membrane, the current that flows due to the electrolysis of the water absorbed in the ion-exchange resin membrane is substantially directly proportional to the water vapor pressure corresponding to the concentration of the solute in the aqueous solution. A method for measuring the concentration of a solute in an aqueous solution, characterized by using the relationship:
JP61138466A 1986-06-13 1986-06-13 Measurement of concentration of solute in aqueous solution Granted JPS62294952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61138466A JPS62294952A (en) 1986-06-13 1986-06-13 Measurement of concentration of solute in aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61138466A JPS62294952A (en) 1986-06-13 1986-06-13 Measurement of concentration of solute in aqueous solution

Publications (2)

Publication Number Publication Date
JPS62294952A true JPS62294952A (en) 1987-12-22
JPH0533746B2 JPH0533746B2 (en) 1993-05-20

Family

ID=15222695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61138466A Granted JPS62294952A (en) 1986-06-13 1986-06-13 Measurement of concentration of solute in aqueous solution

Country Status (1)

Country Link
JP (1) JPS62294952A (en)

Also Published As

Publication number Publication date
JPH0533746B2 (en) 1993-05-20

Similar Documents

Publication Publication Date Title
Zawodzinski Jr et al. Characterization of polymer electrolytes for fuel cell applications
Tricoli Proton and methanol transport in poly (perfluorosulfonate) membranes containing Cs+ and H+ cations
US4865930A (en) Method for forming a gas-permeable and ion-permeable membrane
KR0171227B1 (en) Gas sensor
CN113373462A (en) For electrochemical reduction of CO2Membrane type liquid flow electrolytic cell and testing process
JP3025473B2 (en) Electrolytic ozone generator and method for making it
CA1327774C (en) Gas permeable electrode for electrochemical system
Yamanaka et al. Water transport during ion conduction in anion-exchange and cation-exchange membranes
Struck et al. A three-compartment electrolytic cell for anodic oxidation of sulfur dioxide and cathodic production of hydrogen
Yasuda et al. A planar electrochemical carbon monoxide sensor
Kita et al. Metal electrodes bonded on solid polymer electrolyte membranes (SPE)—II. The polarization resistance of Pt-Nafion electrode
JPH0640092B2 (en) Humidity measurement method
JPS62294952A (en) Measurement of concentration of solute in aqueous solution
JPS63195559A (en) Concentration sensor for measuring concentration of solute in aqueous solution
US3315271A (en) Cell for dissolved oxidant analysis
JPH0534623B2 (en)
JPS5834352A (en) solid state reference electrode
Chi et al. Electro-osmotic drag effect on the methanol permeation for sulfonated poly (ether ether ketone) and Nafion117 membranes
Delacourt Electrochemical reduction of carbon dioxide and water to syngas (CO+ H2) at room temperature
Katakura et al. An oxygen sensor composed of tightly stacked membrane/electrode/electrolyte.
Steck et al. Conductance measurements in an electrolytic membrane cell at elevated temperatures and pressures
JP3188772B2 (en) Coulometric detector
US3413209A (en) Currentimetric sensor
JPH08145944A (en) Electrical analyzing method for cod and cod measuring device
Javaid Zaidi Comparative study of electrochemical methods for determination of methanol permeation through proton-exchange membranes