JPS62294952A - Measurement of concentration of solute in aqueous solution - Google Patents
Measurement of concentration of solute in aqueous solutionInfo
- Publication number
- JPS62294952A JPS62294952A JP61138466A JP13846686A JPS62294952A JP S62294952 A JPS62294952 A JP S62294952A JP 61138466 A JP61138466 A JP 61138466A JP 13846686 A JP13846686 A JP 13846686A JP S62294952 A JPS62294952 A JP S62294952A
- Authority
- JP
- Japan
- Prior art keywords
- aqueous solution
- electrochemical cell
- cathode
- resin film
- exchange resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007864 aqueous solution Substances 0.000 title claims abstract description 32
- 238000005259 measurement Methods 0.000 title abstract 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000003456 ion exchange resin Substances 0.000 claims abstract description 26
- 229920003303 ion-exchange polymer Polymers 0.000 claims abstract description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 6
- 239000012528 membrane Substances 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 11
- 239000004033 plastic Substances 0.000 claims description 8
- 229920003023 plastic Polymers 0.000 claims description 8
- 239000005871 repellent Substances 0.000 claims description 7
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 abstract description 16
- -1 polytetrafluoroethylene Polymers 0.000 abstract description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 abstract description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract description 7
- 239000011347 resin Substances 0.000 abstract description 7
- 229920005989 resin Polymers 0.000 abstract description 7
- 239000010936 titanium Substances 0.000 abstract description 7
- 229910052719 titanium Inorganic materials 0.000 abstract description 7
- 229910052697 platinum Inorganic materials 0.000 abstract description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 abstract description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 abstract description 4
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 abstract description 2
- 230000001846 repelling effect Effects 0.000 abstract 2
- 239000000243 solution Substances 0.000 abstract 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 239000003011 anion exchange membrane Substances 0.000 description 3
- 238000005341 cation exchange Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007772 electroless plating Methods 0.000 description 2
- 239000010416 ion conductor Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000009614 chemical analysis method Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Measuring Oxygen Concentration In Cells (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
3、発明の詳細な説明
産業上の利用分野
本発明は水溶液中の溶質の濃度を測定づる方法に関する
ものである。Detailed Description of the Invention 3. Detailed Description of the Invention Field of Industrial Application The present invention relates to a method for measuring the concentration of a solute in an aqueous solution.
従来の技術
水溶液中の溶質の、9度を測定する方法どしては、従来
、化学分析法あるいは原子吸光分析、イオンクロマトグ
ラフ等の機器分析法が実施されている。Conventional Techniques Chemical analysis, atomic absorption spectrometry, ion chromatography, and other instrumental analysis methods have conventionally been used to measure the 9 degrees of solutes in aqueous solutions.
また、より簡便な方法としては、例えば浮子式比重計が
用いられることがある。Furthermore, as a simpler method, for example, a float type hydrometer may be used.
発明が解決しようとする問題点
しかるに、上記の化学分析法および機器分析法は、一般
に1間がかかるし、大がかりな装置を必要とする等の問
題があった。また浮子式比重計にしても、その操作は煩
雑であるし、連続的に溶71の1度を測定しようとする
場合に(よ不適である等の問題があった。Problems to be Solved by the Invention However, the above-mentioned chemical analysis method and instrumental analysis method generally take a long time and have problems such as requiring large-scale equipment. Even if a float type hydrometer is used, there are problems such as its operation is complicated and it is not suitable for continuously measuring 1 degree of melt 71.
問題点を解決するための手段
本発明は、イオン交換樹脂膜の片面にド2ルを他面に陽
極を一体に接合又は圧接してなる接合体又は圧)&体を
撥水性プラスチック躾で被覆してなる電気化学ピルを測
定の対象となる水溶液中に浸漬し、陰極と陽極との間に
直流の定電圧を印加した際に、114記イオン交換樹脂
膜に吸収される水の電気分解に伴なって流れる電流が測
定の対象となる水溶液の溶′11の濃度に対応する水蒸
気圧に実質的に正比例づるという関係を利用して、水溶
液の溶質の濃度を測定することによって、上述の如き問
題点を解決せlυとするものである。Means for Solving the Problems The present invention is a bonded body or pressure-bonded body formed by integrally bonding or pressing a dowel on one side of an ion-exchange resin membrane and an anode on the other side, and the body is covered with a water-repellent plastic membrane. When the electrochemical pill made of the above is immersed in the aqueous solution to be measured and a constant DC voltage is applied between the cathode and the anode, the electrolysis of water absorbed by the ion exchange resin membrane described in Section 114 occurs. By measuring the concentration of the solute in the aqueous solution using the relationship that the accompanying current is substantially directly proportional to the water vapor pressure corresponding to the concentration of the solute in the aqueous solution to be measured, the method described above can be achieved. This is to solve the problem.
作 用
イオン交換樹脂膜に陰極および陽極をそれぞれ一体に接
合又は圧接してなる電気化学セルのイオ交換樹脂膜に水
を吸収させ、陰・間両極間に直流電流を通電すると、イ
オン交換樹脂膜が電解質として作用し、イオン交換樹脂
膜中の水が電気分解される。イオン交換樹脂膜として水
素イオン導電体としてのカチオン交換膜を用いた場合に
は、次の反応が起こる。Function: When water is absorbed into the ion exchange resin membrane of an electrochemical cell in which a cathode and an anode are integrally bonded or pressure-bonded to the ion exchange resin membrane, and a direct current is applied between the anode and the intermediate electrodes, the ion exchange resin membrane acts as an electrolyte, and the water in the ion exchange resin membrane is electrolyzed. When a cation exchange membrane as a hydrogen ion conductor is used as the ion exchange resin membrane, the following reaction occurs.
陰 極:21−r +20→l−12
陽 極:+20→1/202 +2Ll” +2e仝
反 応 :1lzO→ ト] 2 →−1/202ま
たイオン交換樹脂膜として水酸イオン導電体としてのア
ニオン交換膜を用いた場合には、次の反応が起こる。Cathode: 21-r +20→l-12 Anode: +20→1/202 +2Ll” +2e仝
Reaction: 1lzO→g] 2 →-1/202 When an anion exchange membrane as a hydroxyl ion conductor is used as the ion exchange resin membrane, the following reaction occurs.
陰 極 : 2H20+ 20 2e−+1−12
+ 20H−陽 1転 = 20 H−→
1/202 + ト12 0全反応:H20→H
2+1/20z
このような電気化学セルを撥水性プラスチック膜で被覆
したものを水溶液に氾;hすると、その水溶液中の水分
だけが蒸気となって、撥水性プラスチック膜を透過して
、イオン交換樹脂膜に吸収される。したがって、この電
気化学セルの陰・間両極間に直流電流を通すと、やはり
イオン交換樹脂膜に吸収された水の電気分解が起こる。Cathode: 2H20+ 20 2e-+1-12
+ 20H-positive 1 turn = 20H-→
1/202 + 12 0 total reaction: H20→H
2+1/20z When such an electrochemical cell covered with a water-repellent plastic membrane is flooded with an aqueous solution, only the water in the aqueous solution turns into steam, which permeates through the water-repellent plastic membrane and forms an ion-exchange resin. absorbed into the membrane. Therefore, when a direct current is passed between the negative and intermediate electrodes of this electrochemical cell, electrolysis of the water absorbed in the ion exchange resin membrane also occurs.
また陰・間両極間に直流の定電圧を印加した場合には、
陰・間両極間に流れる電流は、上述の水溶液の水蒸気圧
にほぼ正比例する。本発明tよ、このような本発明者ら
の発見に基ずいてなされたものである。In addition, when a constant DC voltage is applied between the negative and negative electrodes,
The current flowing between the negative and intermediate electrodes is approximately directly proportional to the water vapor pressure of the above-mentioned aqueous solution. The present invention has been made based on the discoveries made by the inventors.
即ら、一般にある溶質を溶解Uる水溶液の水蒸気圧は、
溶質の濃度が高ければ高いほど低いが、予め測定の対象
となる水溶液の溶質の濃度と水蒸気圧との関係を測定し
ておくか、溶質の既知の′fA度と上述の電気化学セル
の電流との関係を求めておけば、未知の濃度の水溶液に
上述の1気化学セルを浸漬した際の電流から、その水溶
液のm度を知ることができる。That is, in general, the water vapor pressure of an aqueous solution that dissolves a certain solute is:
The higher the solute concentration, the lower the value, but it is best to measure the relationship between the solute concentration and water vapor pressure in the aqueous solution to be measured in advance, or use the known fA degree of the solute and the current of the electrochemical cell described above. By determining the relationship between , the m degree of the aqueous solution can be determined from the current generated when the above-mentioned 1-gas chemical cell is immersed in an aqueous solution of unknown concentration.
なお、電気化学セルを撥水性プラスチック膜で被覆する
のは、測定の対象となる水溶液がイオン交換樹脂膜に直
接接触すると、水溶液の溌磨にあまり関係なく、はぼ一
定の電流が流れたり、また溶質によっては水の電気分解
の代りに溶質自体の電気分解が起こるために、水溶液の
濃度を測定することができないからである。The reason why the electrochemical cell is coated with a water-repellent plastic membrane is that when the aqueous solution to be measured comes into direct contact with the ion-exchange resin membrane, a fairly constant current flows, regardless of the polishing of the aqueous solution. Furthermore, depending on the solute, electrolysis of the solute itself occurs instead of electrolysis of water, making it impossible to measure the concentration of the aqueous solution.
本発明に用いるイオン交換樹脂膜としては、パーフルA
ロカーボンを樹脂骨格とし、スルフォン酸基をイオン交
換基として保有するカチオン交換膜が最も擾れているが
、水酸】、tをhするアニオン交換膜を用いてもよい。As the ion exchange resin membrane used in the present invention, Perflu A
Although a cation exchange membrane having a carbon skeleton as a resin skeleton and a sulfonic acid group as an ion exchange group is most troublesome, an anion exchange membrane having hydroxyl acid], t=h may also be used.
またイオン交換樹脂膜の樹脂骨格としてスチレン−ジビ
ニルベンピン共ffi合体の如き炭化水素系のもの4用
いてもよい。また電極はイオン交換樹脂膜と一体に接合
してもよいし、網状の電極を圧接してもよい。また電極
は、イオン交換樹脂膜の両面に配してもJ、いし、片面
だけに配設してもよい。イオン交換樹脂膜への電極の接
合方法としては、所:il’J無電解メッキ法あるいは
触媒粉末と結査剤との混合物をホットプレスするホット
プレス法が適用可能である。電極材料としては、カチオ
ン交換膜を用いる場合には、白金族金属、チタンなどが
、アニオン交換膜を用いる場合には白金族金属、ニッケ
ルなどが使用可能である。また電気化学セルを被覆すべ
き撥水性プラスチック膜材料としては、フッ素樹脂が最
ら浸れているが、ポリ塩化ビニル、ポリプロピレン、ポ
リエチレンむども使用可能である。1発水性プラスチッ
ク膜の構造としては、多孔性であることが望ましいが、
非多孔性でもよいことがある。Further, as the resin skeleton of the ion-exchange resin membrane, a hydrocarbon-based material 4 such as styrene-divinylbenpine co-ffi combination may be used. Further, the electrode may be integrally joined to the ion exchange resin membrane, or a mesh electrode may be pressed into contact with the ion exchange resin membrane. Further, the electrodes may be disposed on both sides of the ion exchange resin membrane, or may be disposed on only one side. As a method for joining the electrode to the ion exchange resin membrane, the il'J electroless plating method or the hot pressing method in which a mixture of catalyst powder and binder is hot pressed can be applied. As the electrode material, platinum group metals, titanium, etc. can be used when a cation exchange membrane is used, and platinum group metals, nickel, etc. can be used when an anion exchange membrane is used. Fluororesin is most often used as the water-repellent plastic film material for covering the electrochemical cell, but polyvinyl chloride, polypropylene, and polyethylene materials can also be used. It is desirable that the structure of the water-repellent plastic membrane is porous;
It may also be non-porous.
木5を明による水溶液の溶質の濃度を測定ず、る方法は
、1′!Iに鉛蓄電池の硫酸の濃度、尿中の塩分などを
測定する一Lで、効果的である。The method for measuring the concentration of solutes in an aqueous solution according to tree 5 is 1'! It is effective for measuring the concentration of sulfuric acid in lead-acid batteries, salt content in urine, etc.
実施例 以下、本発明の一実施例について詳)ホする。Example An embodiment of the present invention will be described in detail below.
パーフルAロカーボンスルフオン酸拉(脂11!J <
デュポン社製、ナフィオン117)の両面に白金(4m
g/cI11)を無電解メッキ法により匿合し、直径5
mmのイオン交換樹脂膜−電(引接合体を用意した。Perful A locarbon sulfonic acid (fat 11!J <
Platinum (4m) on both sides of DuPont Nafion 117)
g/cI11) by electroless plating, and the diameter was 5.
An ion-exchange resin membrane-electronic bonded body of 1.0 mm was prepared.
次にこの接合体の両面にチタンリード線(ポリテドラフ
ルオロエチレン被1)付の白金メッキを施したエキスパ
ンデッドチタン(直0!3mm)からなる集電体を配設
し、さらにその上に多孔性ポリテトラフルオロエチレン
躾(直径10m1)を載置し、ホットプレスした。この
ようにして得られた電気化学セル(llf1度センサ)
の断面構造を第1図に示す。図にJ3いて、1はパーフ
ルA相カーボンスルフォン醗樹脂膜からなるイオン交1
条樹脂膜、2は白金からなる陰極、3は白金からなる陽
極、4はエキスパンデッドチタンからなる陰極集電体、
5(よエキスパンデッドチタンからなる陰極集電体、6
は多孔性ポリテトラフル3ロエチレン膜からなるla水
性プラスチック膜である。Next, current collectors made of platinum-plated expanded titanium (direction 0.3 mm) with titanium lead wires (polytetrafluoroethylene coating 1) were placed on both sides of this bonded body, and then A porous polytetrafluoroethylene tube (diameter 10 m1) was placed on the tube and hot pressed. Electrochemical cell thus obtained (llf1 degree sensor)
The cross-sectional structure of is shown in Fig. 1. J3 in the figure, 1 is an ion exchanger 1 consisting of a purfle A-phase carbon sulfone resin film.
2 is a cathode made of platinum, 3 is an anode made of platinum, 4 is a cathode current collector made of expanded titanium,
5 (Cathode current collector made of expanded titanium, 6
is a la water-based plastic membrane consisting of a porous polytetrafluoroethylene membrane.
次にこの電気化学セル(濃度センサ)を各種濃度に調整
した5APa水溶液に?2泊し、陰極2と陽極3との間
に3■の直流定電圧を印加した際の電流を測定したとこ
ろ、硫酸水溶液の水蒸気圧と電流との関係は第2図、硫
酸水溶液の濃度と電流との関係は第3図に示すとおりな
った。この第2図および第3図から、上述の電気化学セ
ル(0度センサ)の電流が水蒸気圧に正比例すること、
および硫酸水溶液の濃度な電気化学セル(fJ度セン七
す)の電流から知ることができることがわかる。Next, use this electrochemical cell (concentration sensor) in a 5APa aqueous solution adjusted to various concentrations. We stayed for two nights and measured the current when a constant DC voltage of 3cm was applied between the cathode 2 and anode 3. The relationship between the water vapor pressure of the sulfuric acid aqueous solution and the current is shown in Figure 2, and the concentration of the sulfuric acid aqueous solution and the current are measured. The relationship with current was as shown in Figure 3. From these Figures 2 and 3, it can be seen that the current of the electrochemical cell (0 degree sensor) described above is directly proportional to the water vapor pressure;
It can be seen that the concentration of sulfuric acid aqueous solution can be determined from the current of an electrochemical cell (fJ degree).
一方、硫酸水溶液の濃度を変化させた際の電気化学ヒル
(濃度センナ)の電流の変化を求めたところ、この電気
化学セル(濃度センサ)の応答速度は約2分と、かなり
速かった。したがって、この電気化学セル(ili1度
センサ)によって、1mの工!1度をj↑続的に測定す
ることができる。On the other hand, when we determined the change in the current of the electrochemical cell (concentration sensor) when changing the concentration of the sulfuric acid aqueous solution, we found that the response time of this electrochemical cell (concentration sensor) was quite fast, at about 2 minutes. Therefore, with this electrochemical cell (ili 1 degree sensor), the distance of 1 m! One degree can be measured continuously.
発明の効果
以上述べたように本発明は、穫めて小さな電気化学セル
(If度センサ)によって、直流の定電圧を印加した際
の電流を測定するという撓めて簡便な操作で、しかも連
続的に水溶液中の湿質の濃度を測定する方法を提供する
ものであり、その工業的1曲値極めて大である。Effects of the Invention As described above, the present invention uses a very small electrochemical cell (If temperature sensor) to measure the current when a constant DC voltage is applied, which is a flexible and simple operation, and can be carried out continuously. This method provides a method for measuring the concentration of wet substances in an aqueous solution, and its industrial value is extremely large.
第1図は本発明による水溶液中の溶質の濃度を測定する
方法に用いる電気化学セルの一実施例を示す断面構造図
、第2図は硫酸水溶液の水蒸気圧と電気化学セルのTs
流との関係を示す図、第3図は硫酸水溶液の1度と電気
化学セルの電流との関係を示ず図である。
1・・・イオン交換樹脂膜、2・・・陰極、3・・・陽
極、6・・・1鎖水性プラスチツク膜
笛1同
7;イオン交換樹脂膜
λ:吃柘
3:陽極Fig. 1 is a cross-sectional structural diagram showing an embodiment of an electrochemical cell used in the method of measuring the concentration of solute in an aqueous solution according to the present invention, and Fig. 2 shows the water vapor pressure of a sulfuric acid aqueous solution and the Ts of the electrochemical cell.
Figure 3 is a diagram showing the relationship between the current of the sulfuric acid aqueous solution and the current of the electrochemical cell. DESCRIPTION OF SYMBOLS 1... Ion exchange resin membrane, 2... Cathode, 3... Anode, 6... 1 chain aqueous plastic membrane whistle 1 and 7; Ion exchange resin membrane λ: 吃柘3: Anode
Claims (1)
接してなる接合体又は圧接体を撥水性プラスチック膜で
被覆してなる電気化学セルを測定の対象となる水溶液中
に浸漬し、陰極と陽極との間に直流の定電圧を印加した
際に、前記イオン交換樹脂膜に吸収される水の電気分解
に伴なって流れる電流が前記水溶液の溶質の濃度に対応
する水蒸気圧に実質的に正比例する関係を利用すること
を特徴とする水溶液中の溶質の濃度を測定する方法。An electrochemical cell consisting of a bonded body or pressure-bonded body formed by integrally bonding or press-bonding a cathode and an anode to an ion-exchange resin membrane and covering the body with a water-repellent plastic membrane is immersed in an aqueous solution to be measured, and the cathode and anode are When a constant DC voltage is applied between the ion-exchange resin membrane and the ion-exchange resin membrane, the current that flows due to the electrolysis of the water absorbed in the ion-exchange resin membrane is substantially directly proportional to the water vapor pressure corresponding to the concentration of the solute in the aqueous solution. A method for measuring the concentration of a solute in an aqueous solution, characterized by using the relationship:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61138466A JPS62294952A (en) | 1986-06-13 | 1986-06-13 | Measurement of concentration of solute in aqueous solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61138466A JPS62294952A (en) | 1986-06-13 | 1986-06-13 | Measurement of concentration of solute in aqueous solution |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62294952A true JPS62294952A (en) | 1987-12-22 |
JPH0533746B2 JPH0533746B2 (en) | 1993-05-20 |
Family
ID=15222695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61138466A Granted JPS62294952A (en) | 1986-06-13 | 1986-06-13 | Measurement of concentration of solute in aqueous solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62294952A (en) |
-
1986
- 1986-06-13 JP JP61138466A patent/JPS62294952A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0533746B2 (en) | 1993-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zawodzinski Jr et al. | Characterization of polymer electrolytes for fuel cell applications | |
Tricoli | Proton and methanol transport in poly (perfluorosulfonate) membranes containing Cs+ and H+ cations | |
US4865930A (en) | Method for forming a gas-permeable and ion-permeable membrane | |
KR0171227B1 (en) | Gas sensor | |
CN113373462A (en) | For electrochemical reduction of CO2Membrane type liquid flow electrolytic cell and testing process | |
JP3025473B2 (en) | Electrolytic ozone generator and method for making it | |
CA1327774C (en) | Gas permeable electrode for electrochemical system | |
Yamanaka et al. | Water transport during ion conduction in anion-exchange and cation-exchange membranes | |
Struck et al. | A three-compartment electrolytic cell for anodic oxidation of sulfur dioxide and cathodic production of hydrogen | |
Yasuda et al. | A planar electrochemical carbon monoxide sensor | |
Kita et al. | Metal electrodes bonded on solid polymer electrolyte membranes (SPE)—II. The polarization resistance of Pt-Nafion electrode | |
JPH0640092B2 (en) | Humidity measurement method | |
JPS62294952A (en) | Measurement of concentration of solute in aqueous solution | |
JPS63195559A (en) | Concentration sensor for measuring concentration of solute in aqueous solution | |
US3315271A (en) | Cell for dissolved oxidant analysis | |
JPH0534623B2 (en) | ||
JPS5834352A (en) | solid state reference electrode | |
Chi et al. | Electro-osmotic drag effect on the methanol permeation for sulfonated poly (ether ether ketone) and Nafion117 membranes | |
Delacourt | Electrochemical reduction of carbon dioxide and water to syngas (CO+ H2) at room temperature | |
Katakura et al. | An oxygen sensor composed of tightly stacked membrane/electrode/electrolyte. | |
Steck et al. | Conductance measurements in an electrolytic membrane cell at elevated temperatures and pressures | |
JP3188772B2 (en) | Coulometric detector | |
US3413209A (en) | Currentimetric sensor | |
JPH08145944A (en) | Electrical analyzing method for cod and cod measuring device | |
Javaid Zaidi | Comparative study of electrochemical methods for determination of methanol permeation through proton-exchange membranes |